

NTC Thermistors

Mounting instructions

Date:

February 2009

© EPCOS AG 2009. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

1 Soldering

1.1 Leaded NTC thermistors

Leaded thermistors comply with the solderability requirements specified by CECC.

When soldering, care must be taken that the NTC thermistors are not damaged by excessive heat. The following maximum temperatures, maximum time spans and minimum distances have to be observed:

	Dip soldering	Iron soldering
Bath temperature	max. 260 °C	max. 360 °C
Soldering time	max. 4 s	max. 2 s
Distance from thermistor	min. 6 mm	min. 6 mm

Under more severe soldering conditions the resistance may change.

1.2 Leadless NTC thermistors

In case of NTC thermistors without leads, soldering is restricted to devices which are provided with a solderable metallization. The temperature shock caused by the application of hot solder may produce fine cracks in the ceramic, resulting in changes in resistance.

To prevent leaching of the metallization, solder with silver additives or with a low tin content should be used. In addition, soldering methods should be employed which permit short soldering times.

1.3 SMD NTC thermistors

SMD NTC thermistors can be provided with a nickel barrier termination or on special request with silver-palladium termination. The usage of mild, non-activated fluxes for soldering is recommended as well as a proper cleaning of the PCB.

Nickel barrier termination

The nickel barrier layer of the silver/nickel/tin termination (see figure 1) prevents leaching of the silver base metalization layer. This allows great flexibility in the selection of soldering parameters.

The tin prevents the nickel layer from oxidizing and thus ensures better wetting by the solder. The nickel barrier termination is suitable for all commonly-used soldering methods.

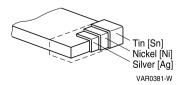


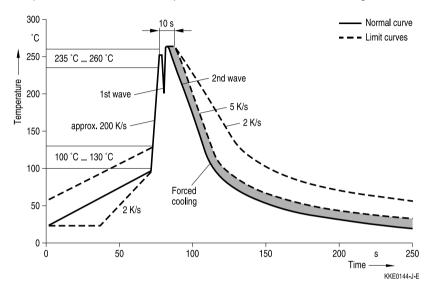
Figure 1 SMD NTC thermistors, structure of nickel barrier termination

1.3.1 Solderability (test to IEC 60068-2-58)

Preconditioning: Immersion into flux F-SW 32. Evaluation criterion: Wetting of soldering areas ≥95%.

Solder	Bath temperature (°C)	Dwell time (s)
SnPb 60/40	215 ±3	3
SnAg (3.0 4.0), Cu (0.5 0.9)	245 ±3	3

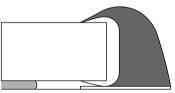
1.3.2 Resistance to soldering heat (test to IEC 60068-2-58)


Preconditioning: Immersion into flux F-SW 32. Evaluation criterion: Leaching of side edges $\leq 1/3$.

Solder	Bath temperature (°C)	Dwell time (s)
SnPb 60/40	260 -5	10
SnAg (3.0 4.0), Cu (0.5 0.9)	260 -5	10

Wave soldering

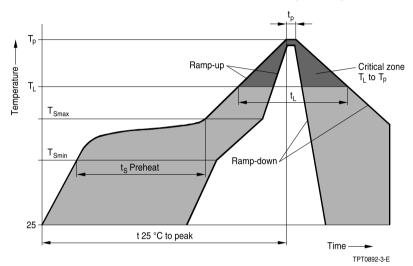
Temperature characteristic at component terminal with dual wave soldering



Solder joint profiles for silver/nickel/tin terminations

Good solder joint

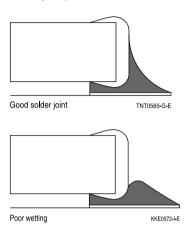
KKE0287-9-E

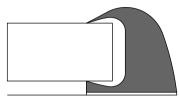

Too much solder Pad geometry too large, not soldered in preferred direction

KKE0288-H-E

Reflow soldering

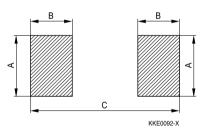
Recommended temperature characteristic for reflow soldering following J-STD-020C




Profile feature	Sn-Pb eutectic assembly	Pb-free assembly
Average ramp-up rate (T _{Smax} to Tp)	3 °C/ second max.	3 °C/ second max.
Preheat		
- Temperature min (T _{Smin})	100 °C	150 °C
- Temperature max (T _{Smax})	150 °C	200 °C
- Time (t_{Smin} to t_{Smax})	60 120 seconds	60 180 seconds
Time maintained above:		
- Temperature min (T_L)	183 °C	217 °C
- Time (t _L)	60 150 seconds	60 150 seconds
Peak/ classification temperature (T_p)	220 °C 240 °C	240 °C 260 °C
Time within 5 °C of actual peak temperature (t _p)	10 30 seconds	20 40 seconds
Ramp-down rate	6 °C/ second max.	6 °C/ second max.
Time 25 °C to peak temperature	6 minutes max.	8 minutes max.

Note: All temperatures refer to topside of the package, measured on the package body surface.

Solder joint profiles for silver/nickel/tin terminations



Too much solder Pad geometry too large

KKE0071-A-E

1.3.3 Recommended geometry of solder pads

Recommended maximum dimensions (mm)

Case size inch/mm	A	В	С
0402/1005	0.6	0.6	1.7
0603/1608	1.0	1.0	3.0
0805/2012	1.3	1.2	3.4

1.3.4 Notes

Iron soldering should be avoided, hot air methods are recommended for repair purposes.

2 Conductive adhesion

An alternative to soldering is the gluing of thermistors with conductive adhesives. The benefit of this method is that it involves no thermal stress. The adhesives used must be chemically inert.

3 Clamp contacting

Pressure contacting by means of clamps is particularly suitable for applications involving frequent switching and high turn-on powers.

4 Robustness of terminations (leaded types)

I eads

The leads meet the requirements of IEC 60068-2-21. They may not be bent closer than 4 mm from the solder joint on the thermistor body or from the point at which they leave the feed-throughs. During bending, any mechanical stress at the outlet of the leads must be removed. The bending radius should be at least 0.75 mm.

Tensile strength: Test Ua1:

1.0 N	Ø ≤0.25 mm =	
2.5 N	Ø ≤0.35 mm =	0.25 <
5.0 N	Ø ≤0.50 mm =	0.35 <
10.0 N	Ø ≤0.80 mm =	0.50 <
20.0 N	Ø ≤1.25 mm =	0.80 <

Bending strength: Test Ub:

Two 90°-bends in opposite directions at a weight of 0.25 kg.

Torsional strength: Test Uc: severity 2

The lead is bent by 90° at a distance of 6 to 6.5 mm from the thermistor body. The bending radius of the leads should be approx. 0.75 mm. Two torsions of 180° each (severity 2).

When subjecting leads to mechanical stress, the following should be observed:

Tensile stress on leads

During mounting and operation tensile forces on the leads are to be avoided.

Bending of leads

Bending of the leads directly on the thermistor body is not permissible.

A lead may be bent at a minimum distance of twice the wire's diameter +2 mm from the solder joint on the thermistor body. During bending the wire must be mechanically relieved at its outlet. The bending radius should be at least 0.75 mm.

Twisting of leads

The twisting (torsion) by 180° of a lead bent by 90° is permissible at 6 mm from the bottom of the thermistor body.

5 Sealing and potting

When thermistors are sealed, potted or overmolded, there must be no mechanical stress caused by thermal expansion during the production process (curing / overmolding process) and during later operation. The upper category temperature of the thermistor must not be exceeded. Ensure that the materials used (sealing / potting compound and plastic material) are chemically neutral.

6 Cleaning

If cleaning is necessary, mild cleaning agents such as ethyl alcohol and cleaning gasoline are recommended. Cleaning agents based on water are not allowed. Ultrasonic cleaning methods are permissible.

7 Storage

In order to maintain their solderability, thermistors must be stored in a non-corrosive atmosphere. Humidity, temperature and container materials are critical factors.

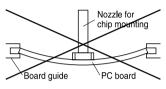
Do not store SMDs where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed or SMDs may stick together, causing problems during mounting. After opening the factory seals, such as polyvinyl-sealed packages, use the SMDs as soon as possible.

The components should be left in the original packing. Touching the metallization of unsoldered thermistors may change their soldering properties.

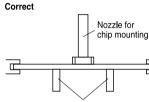
Storage temperature:	−25 °C up to 45 °C
Relative humidity (without condensation):	≤75% annual mean
	<95%. maximum 30 davs per annum

Solder the thermistors listed in this data book after shipment from EPCOS within the time specified:

SMDs: 12 months


Leaded components: 24 months

8 Placement and orientation of SMD NTC thermistors on PCB


EPCOS

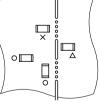
a) Component placement

Incorrect

It is recommended that the PC board should be held by means of some adequate supporting pins such as shown left to prevent the SMDs from being damaged or cracked.

Supporting pins

b) Cracks


SMDs located near an easily warped area

SMD breakage probability due to stress at a breakaway

KKE0267-U-E

- o = correct
- \times = incorrect
- $\Delta = \text{incorrect}$
 - (under certain conditions)

KKE0268-3-E

c) Component orientation

Incorrect orientation

Locate chip horizontal to the direction in which stress acts

Correct orientation KKE0269-B-E

When placing a component near an area which is apt to bend or a grid groove on the PC board, it is advisable to have both electrodes subjected to uniform stress, or to position the component's electrodes at right angles to the grid groove or bending line (see c) Component orientation).

Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board.