TGS 3870 －for the detection of both Methane and Carbon Monoxide

Features：

＊Miniature size and low power consumption
＊High sensitivity and selectivity to both methane and carbon monoxide（CO）
＊Low sensitivity to alcohol vapor
＊Long life and low cost

Applications：

＊Combination methane and carbon monoxide detectors

TGS 3870 is Figaro＇s new metal oxide semiconductor gas sensor for the detection of both methane and carbon monoxide．Using a micro－bead gas sensing structure，both methane and carbon monoxide can be detected with a single sensor element by periodic application of two different heater voltages （high and low）．Miniaturization of the gas sensing bead results in a heater power consumption of only 38 mW （average）．
TGS 3870 has low sensitivity to alcohol vapors（a typical interference gas in the residential environment）and has high durability，making the sensor ideal for consumer market gas alarms．

The figure below represents typical sensitivity characteristics， all data having been gathered at standard test conditions（see reverse side of this sheet）．The Y －axis is indicated as sensor resistance ratio（ $\mathrm{Rs} / \mathrm{Ro}$ ）which is defined as follows：

Rs＝Sensor resistance in displayed gases at various concentrations
Ro $=$ Sensor resistance in 3000ppm of methane
Sensitivity Characteristics（methane）：

The figure below represents typical sensitivity characteristics， all data having been gathered at standard test conditions（see reverse side of this sheet）．The Y －axis is indicated as sensor resistance ratio（ $\mathrm{Rs} / \mathrm{Ro}$ ）which is defined as follows：

Rs＝Sensor resistance in displayed gases at various concentrations
Ro $=$ Sensor resistance in 100ppm of CO
Sensitivity Characteristics（CO）：

Basic Measuring Circuit：

The sensor requires two voltage inputs： heater voltage（ VH_{H} ）and circuit voltage （Vc）．The sensor has three pins：Pin \＃3－ －heater（＋），Pin \＃2－－sensor electrode（＋）， and Pin \＃1－－common（－）．To maintain the sensing element at specific temperatures which are optimal for sensing two different gases，heater voltages of 0.9 V and 0.2 V are alternately applied between pins \＃1 and \＃3 during a 20 second heating cycle．

Circuit voltage（ V_{c} ）is applied between both ends of the sensor（Rs）and a load resistor（RL），which are connected in series，to allow measurement of voltage（VRS）．
Circuit voltage（Vc）should be applied only at the moment when the signal is taken from the sensor．
Please refer to the document＂Technical Information for TGS3870＂for details regarding the timing and application of Vc and VH．

Specifications：

Model number			TGS 3870	
Sensing element type			Micro－bead	
Standard package			Plastic base and metal can	
Target gases			Methane and Carbon Monoxide	
Typical detection range			Methane－500～12500 ppm Carbon monoxide－50～1000ppm	
Standard circuit conditions	Heater Voltage	V ${ }_{\text {H }}$	$\begin{aligned} & \mathrm{VHH}=0.9 \mathrm{~V} \pm 3 \%, 5 \mathrm{sec} . \\ & \mathrm{VHL}=0.2 \mathrm{~V} \pm 3 \% \text {, } 15 \mathrm{sec} . \end{aligned}$	
	Circuit voltage	Vc	$5.0 \pm 0.2 \mathrm{~V}$ DC pulse （refer to Technical Information for TGS3870）	
	Load resistance	RL	Variable（ $>0.75 \mathrm{k} \Omega$ ）	
Electrical characteristics under standard test conditions	Heater resistance	RH	$3 \pm 0.3 \Omega$ at room temp．	
	Heater power consumption	Рн	120 mW	$\mathrm{VHH}=0.9 \mathrm{~V}$ DC
			11 mW	$\mathrm{VHL}=0.2 \mathrm{~V}$ DC
			38 mW	average
	Sensor resistance	Rs	$0.35 \sim 3.5 \mathrm{k} \Omega$ in 3000 ppm methane	
			$1.8 \sim 24 \mathrm{k} \Omega$ in 150ppm CO	
	Sensitivity （Change ratio of Rs）	β	0．50～0．65	Rs $\mathrm{CH}_{4} 3000$ ppm Rs CH4 1000ppm
			0．1～0．6	$\begin{aligned} & \hline \text { Rs CO 300ppm } \\ & \text { Rs CO 150ppm } \end{aligned}$
Standard test conditions	Test gas conditions		Target gas in air at $20 \pm 2^{\circ} \mathrm{C}, 65 \pm 5 \% \mathrm{RH}$	
	Circuit conditions		$\begin{gathered} \mathrm{VHH}=0.9 \mathrm{~V} \pm 2 \% \mathrm{~V}, 5 \mathrm{sec} \text {. } \\ \mathrm{VHL}=0.2 \mathrm{~V} \pm 2 \% \mathrm{~V}, 15 \mathrm{sec} . \\ \mathrm{VC}=5.0 \pm 0.02 \mathrm{~V} \text { DC pulse } \\ \text { (refer to Technical Information for TGS3870) } \end{gathered}$	
	Conditioning period before test		≥ 5 days	

The value of power dissipation（Ps）can be calculated by utilizing the following formula：

$$
P s=\frac{\left(V_{R S}\right)^{2}}{R s}
$$

Sensor resistance（Rs）is calculated with a measured value of $V_{R S}$ by using the following formula：

$$
R s=\frac{\left(V_{R S}-0.5 V_{H}\right)}{\left(V_{C}-V_{R S}\right)} \times R L
$$

Basic measuring circuit
Caution：Do not apply a constant circuit voltage（5．0V）or the sensor would not exhibit its specified characteristics．

Structure and Dimensions：

FIGARO ENGINEERING INC．
1－5－11 Senba－nishi
Mino，Osaka 562 JAPAN
Phone：（81）－727－28－2561
Fax：（81）－727－28－0467
www．figaro．co．jp
email：figaro＠figaro．co．jp

