FIS GAS SENSOR **SP3-AQ2**

for AIR QUALITY CONTROLS (VOCs)

The SP3-AQ2 series is a tin dioxide semiconductor gas sensor which has an excellent sensitivity to various air pollution sources (e.g. VOCs) with quick response speed. This sensor uses a compact plastic housing with 3 pins configuration achieving a wide applicability in various design of applied products.

Structure

Gas sensitive semiconductor material is formed on the alumina substrate on which the gold electrodes are printed. A thick film heater of ruthenium oxide is printed on the reverse of the substrate and placed in the compact plastic housing (Fig 1).

Operating conditions

Fig 2 shows the standard operating circuit for this model. The change of the sensor resistance (R_s) is obtained as the change of the output voltage across the fixed or variable resistor (R_L). In order to obtain the best performance and specified characteristics, the values of the heater voltage (V_H) circuit voltage (V_C) and load resistance (R_L) must be within the range of values given in the standard operating conditions shown in the Specification table on the next page.

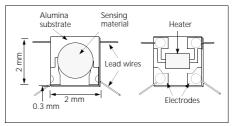


Fig 1a. Sensing element

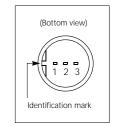


Fig 1c. Pin Layout

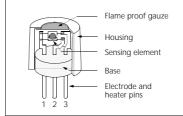


Fig 1b. Configuration

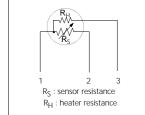


Fig 1d. Equivalent circuit

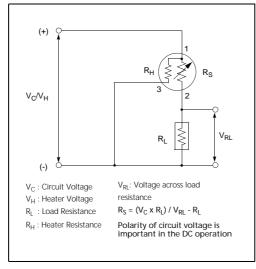

Sensitivity characteristics

Fig 3 shows the sensitivity characteristics curves of the SP3-AQ2 (typical data). Sensitivity characteristics of the FIS gas sensors are expressed by the relationship between the sensor resistance and gas concentration. The sensor resistance decreases with an increase of gas concentration based on a logarithmic function.

The sensitivity characteristics of the SP3-AQ2 are specified by the following parameters.

- Sensor resistance level: in air
- Sensor resistance change ratio: between hydrogen 10 ppm and in air

Please see the Specification table on the back page for further details.

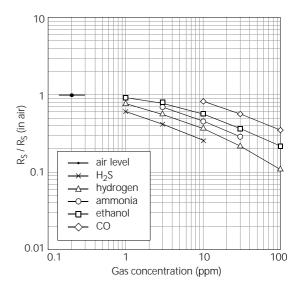


Fig 3. Sensitivity characteristics

Fig 2. Standard circuit

SPECIFICATIONS

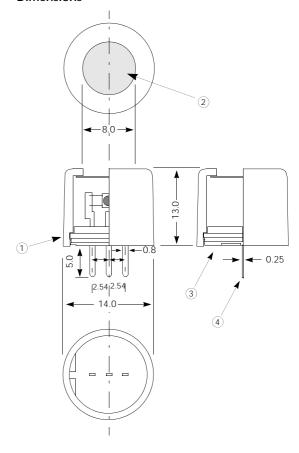
Specifications

A. Standard Operating conditions

Symbol	Parameter	Specification	Conditions etc.
V_{H}	Heater voltage	5.0 V ± 4%	AC or DC
V _C	Circuit voltage	5.0 V ± 4%	AC or DC
R_L	Load resistance	Variable	P _S < 15 mW
R _H	Heater resistance	57Ω±5%	at room temperature
P _H	Heater power consumption	315 mW (Typical value)	$P_H = V_H^2 / R_H$
P _S	Power dissipation of sensing element	Less than 15 mW	$P_S = \frac{(V_C - V_{RL})^2}{R_S}$

B. Environmental conditions

Symbol	Parameter	Specification	Conditions etc.
Tao	Operating temperature	0°C to 40 °C	
Tas	Storage temp	-10 °C to 70 °C	Recommended range
RH	Relative humidity	Less than 95% RH	
(O ₂)	Oxygen concentration	21% (Typical value)	Absolute minimum level: more than 18%
		The sensitivity characteristics are influenced by the variation in oxygen concentration.	


C. Sensitivity characteristics

Model	SP3-AQ2-01		
Symbol	Paramete r	Specification	Conditions etc.
R_S	Sensor resistance	10 kΩ to 40 kΩ	in air
β	Sensitivity	0.2 -0.5	R _S at hydrogen 10 ppm
Р	slope	0.2 0.0	R _S in air
Standard Test		Temp: $20 ^{\circ}$ C $\pm 2 ^{\circ}$ C Humidity: $65\% \pm 5\%$	$V_C: 5.0 V \pm 1\%$ $V_H: 5.0 V \pm 1\%$
Conditions:		(in clean air)	R_L : 10 k $\Omega \pm 5\%$
		Pre-heating time: more than 48 hours	

E. Mechanical characteristics

Items	Conditions		Specifications
Vibration	Frequency: Vertical amplitude: Duration:	100 cpm 4 mm 1 hour	Should satisfy the specifications shown in the
Shock	Acceleration: Number of impacts:	100 G 5 times	sensitivity characteristics.

Dimensions

Scale: mm

Weight: 1.2g

F. Parts and Materials

No.	Parts	Materials
1	Sensing element	Tin dioxide (SnO ₂)
2	Substrate	Alumina (Al ₂ O ₃)
3	Lead wire	Gold alloy (Au-Pd-Mo)
4	Heater	Ruthenium oxide (RuO ₂)
5	Electrode	Gold (Au)
6 ①	Plastic housing	Polyamide resin
7 ③	Plastic base	Polyamide resin
8 ②	Stainless steel mesh	SUS 316 (100 mesh)
9 ④	Heater/electrode pins	Iron-nickel alloy

Please contact March 2006

FIS Inc. 3-36-3, Kitazono Itami, Hyogo 664-0891 Japan

Tel: +81-72-780-1800 Fax: +81-72-785-0073 http://www.fisinc.co.jp