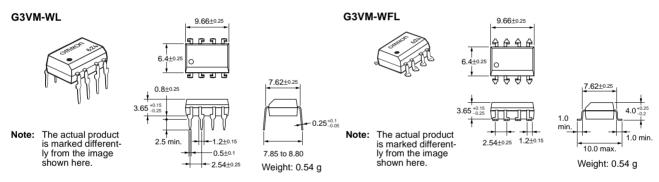
MOS FET Relays

G3VM-W(F)L

New Series with 350-V Load Voltage Current-limiting Models with 2 Outputs.

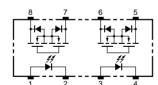
■ Application Examples

- Electronic automatic exchange systems
- · Multi-functional telephones
- Cordless telephones
- Measurement devices

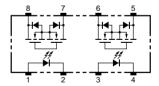

Note: The actual product is marked differently from the image shown here.

■List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Current limit	Number per stick	Number per tape
DPST-NO	PCB terminals	350 VAC	G3VM-WL	Yes	50	
	Surface-mounting		G3VM-WFL			
	terminals		G3VM-WFL(TR)			1,500

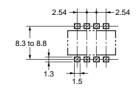

■ Dimensions

Note: All units are in millimeters unless otherwise indicated.



■ Terminal Arrangement/Internal Connections (Top View)

G3VM-WFL

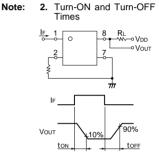

■ PCB Dimensions (Bottom View)

G3VM-WL

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-WFL

Note:

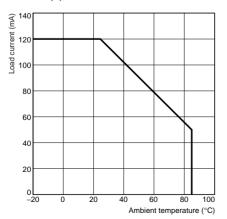

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current	I _{FP}	1	Α	100 μs pulses, 100 pps
	LED forward current reduction rate	Δ I _F /°C	-0.5	mA/°C	Ta ≥ 25°C
	LED reverse voltage	V_R	6	V	
	Connection temperature	Tj	125	°C	
Output	Output dielectric strength	V _{OFF}	350	V	
	Continuous load current	I _O	120	mA	
	ON current reduction rate	Δ I _{ON} /°C	-1.2	mA/°C	Ta ≥ 25°C
	Connection temperature	Tj	125	°C	
Dielectr output (Dielectric strength between input and output (See note 1.)		2,500	Vrms	AC for 1 min
Operati	Operating temperature		-40 to +85	°C	With no icing or condensation
Storage temperature		T _{stg}	-55 to +125	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

ltem		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V_{F}	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μА	V _R = 5 V	
	Capacity between terminals	C _T		30		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		1	3	mA	I _O = 120 mA	
Output	Maximum resistance with output ON	R _{ON}		22	35	Ω	I _F = 5 mA, I _O = 120 mA	
	Current leakage when the relay is open	I _{LEAK}			1.0	μА	V _{OFF} = 350 V	
Limit current		I _{LIM}	150		300	mA	$I_F = 5 \text{ mA},$ $V_{DD} = 5 \text{ V}, t = 5 \text{ ms}$	
Capacity between I/O terminals		C _{I-O}		0.8		pF	f = 1 MHz, Vs = 0 V	
Insulation resistance		R _{I-O}	1,000			МΩ	V_{I-O} = 500 VDC, RoH \leq 60%	
Turn-ON time		tON			1.0	ms	$I_F = 5$ mA, $R_L = 200 \Omega$,	
Turn-OFF time		tOFF			1.0	ms	V _{DD} = 20 V (See note 2	


■Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Output dielectric strength	V_{DD}			280	V
Operating LED forward current	I _F	5	7.5	25	mA
Continuous load current	I _O			100	mA
Operating temperature	Ta	- 20		65	°C

■ Engineering Data

Load Current vs. Ambient Temperature G3VM-W(F)L

■ Safety Precautions

Refer to page 6 for precautions common to all G3VM models.