Ultra Subminiature Slide Switch

Ultra Subminiature Detection Switch with Slide Mechanism

－Compact $(8 \times 6 \times 4.2 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D}))$ and light （approximately 0.3 g ）with long，3－mm stroke．
■ Built－in slide mechanism allows selection of shorting or non－shorting timing to match the application．
－Ideal for a wide variety of applications，including compact household appliances，audio equipment， office machines，and telecommunications equip－ ment．

Ordering Information

－Model Number Legend

D3C－$\square \mathbf{2} \square 0$

1．Switching Timing
1：\quad Non－shorting
2：Shorting

2．Operating Force max．
1： $1.28 \mathrm{~N}\{130 \mathrm{gf}\}$
2：$\quad 0.39 \mathrm{~N}\{40 \mathrm{gf}\}$

■ List of Models

Actuator	OF 1．28 N \｛130 gf $\}$		OF 0．39 N \｛40 gf $\}$	
	Non－shorting Model	Shorting Model	Non－shorting Model	Shorting Model
Hinge lever	D3C－1210	D3C－2210	D3C－1220	D3C－2220

Specifications

－Ratings

Electrical ratings	0.1 A at 30 VDC （resistive load）

Note：The ratings values hold under the following test conditions：
Ambient temperature： $20 \pm 2^{\circ} \mathrm{C}$
Ambient humidity： $65 \pm 5 \%$
Operating frequency： 30 operations／min

■ Characteristics

Operating speed	1 to $500 \mathrm{~mm} / \mathrm{s}$
Operating frequency	Mechanical： 200 operations $/ \mathrm{min}$ Electrical： 30 operations $/ \mathrm{min}$
Insulation resistance	$100 \mathrm{M} \Omega$（at 250 VDC ）
Contact resistance	$50 \mathrm{~m} \Omega$ max．（initial value）
Dielectric strength	$250 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between terminals of same polarity $250 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between current－carrying metal parts and ground
Vibration resistance	Malfunction： 10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	Malfunction： $300 \mathrm{~m} / \mathrm{s}^{2}$ \｛approx． 30 G$\}$ max．
Life expectancy	50,000 operations min．
Degree of protection	IP00
Degree of protection against electric shock	Class I
Proof tracking index（PTI）	175
Ambient temperature	Operating：$-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C} \mathrm{(at} \mathrm{ambient} \mathrm{humidity} \mathrm{of} 60 \%$ max．）（with no icing）
Ambient humidity	Operating： 65% max．（for $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ ）
Weight	Approx． 0.3 g

－Contact Specifications

Contact	Specification	Slide
	Material	Silver plated
Minimum applicable load		1 mA at 5 VDC

－Contact Form

Dimensions

■ Mounting Holes

Note：All units are in millimeters unless otherwise indicated．

■ Dimensions and Operating Characteristics

Note：1．All units are in millimeters unless otherwise indicated．
2．Unless otherwise specified，a tolerance of $\pm 0.4 \mathrm{~mm}$ applies to all dimensions．

	Non－shorting Model		Shorting Model	
	D3C－1210	D3C－1220	D3C－2210	D3C－2220
OF max．	$1.28 \mathrm{~N}\{130 \mathrm{gf}\}(0.98 \mathrm{~N})$	$0.39 \mathrm{~N}\{40 \mathrm{gf}\}(0.29 \mathrm{~N})$	$1.28 \mathrm{~N}\{130 \mathrm{gf}\}(0.98 \mathrm{~N})$	$0.39 \mathrm{~N}\{40 \mathrm{gf}\}(0.29 \mathrm{~N})$
RF min．	$0.10 \mathrm{~N}\{10 \mathrm{gf}\}(0.15 \mathrm{~N})$	$0.03 \mathrm{~N}\{3 \mathrm{gf}\}(0.05 \mathrm{~N})$	$0.10 \mathrm{~N}\{10 \mathrm{gf}\}(0.15 \mathrm{~N})$	$0.03 \mathrm{~N}\{3 \mathrm{gf}\}(0.05 \mathrm{~N})$
FP max．	4.8 mm	4.8 mm		
OP1	$3.5 \pm 0.3 \mathrm{~mm}$	$3.4 \pm 0.3 \mathrm{~mm}$		
OP2	$2.5 \pm 0.3 \mathrm{~mm}$	$2.6 \pm 0.3 \mathrm{~mm}$		
TTP	$1.3 \pm 0.4 \mathrm{~mm}$	$1.3 \pm 0.4 \mathrm{~mm}$		

Note：The values for operating characteristics apply for operation in direction（A）shown above．The values in parentheses indicate those for operation in direction（B）．

Switching Timing

Non－shorting Model

Shorting Model

Precautions

Refer to pages 26 to 33 for common precautions．

■ Cautions

Terminal Connection

When soldering the lead wire to the terminal，first bind the lead wire to the terminal and then apply the $6(\mathrm{Sn}): 4(\mathrm{~Pb})$ solder to the termi－ nal．Complete soldering within 5 s at a soldering iron temperature of $260^{\circ} \mathrm{C}$ ．Soldering at a temperature exceeding $260^{\circ} \mathrm{C}$ ，soldering for more than 5 s ，or repeated soldering will degrade the Switch charac－ teristics．
When soldering the lead wire to the PCB terminal，pay careful atten－ tion so that the flux and solder liquid level does not exceed the PCB level．
It is also recommended that you apply flux guard to the mounting surface of the Switch．

■ Correct Use

Mounting

Turn OFF the power supply before mounting or removing the Switch，wiring，or performing maintenance or inspection．Failure to do so may result in electric shock or burning．
Use M1．6 mounting screws with plane washers or spring washers to securely mount the Switch．Tighten the screws to a torque of 4.9 to $9.8 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~m}\{0.5$ to $1 \mathrm{kgf} \cdot \mathrm{cm}\}$ ．
Mount the Switch onto a flat surface．Mounting on an uneven sur－ face may cause deformation of the Switch，resulting in faulty opera－ tion or breakage in the housing．

Application of Operation Force to the Lever

Apply operation forces to the lever in its operating direction．Apply－ ing operating force to the lever in any other directions will damage the Switch or cause malfunction．

Mounting Plate

Use materials other than ABS or polycarbonate for the mounting plate．Since grease is used for the Switch，cracks may be caused if grease from the Switch comes in contact with such materials．

Using Micro Loads

Using a model for ordinary loads to open or close the contact of a micro load circuit may result in faulty contact．Use models that oper－ ate in the following range．However，even when using micro load models within the operating range shown below，if inrush current oc－ curs when the contact is opened or closed，it may increase contact wear and so decrease life expectancy．Therefore，insert a contact protection circuit where necessary．
The minimum applicable load is the N －level reference value．This value indicates the malfunction reference level for the reliability lev－ el of $60 \%(\lambda 60)$ ．The equation，$\lambda 60=0.5 \times 10^{-6} /$ operations indi－ cates that the estimated malfunction rate is less than $1 / 2,000,000$ operations with a reliability level of 60% ．

