Panasonic ideas for life

mm inch

RoHS Directive compatibility information http：／／www．mew．co．jp／ac／e／environment／

High sensitivity and

 low on－resistance． DIP（1 Form A／1 Form B） 8 －pin type．HE PhotoMOS （AQW654）

FEATURES

1．Compact 8－pin DIP size

The device comes in a compact（W） $6.4 \times(\mathrm{L}) 9.78 \times(\mathrm{H}) 3.9 \mathrm{~m}(\mathrm{~W}) .252 \times(\mathrm{L})$ $.385 \times(\mathrm{H}) .154$ inch， 8 －pin DIP size （through hole terminal type）．
2．Applicable for 1 Form $A 1$ Form B
use as well as two independent 1
Form A and 1 Form B use
3．Controls low－level analog signals PhotoMOS relays feature extremely low closed－circuit offset voltage to enable control of low－level analog signals without distortion．
4．High sensitivity，low ON resistance Can control a maximum 0.16 A
（AQW654）load current with a 5 mA input current．Low ON resistance of 16Ω （AQW654）．Stable operation because there are no metallic contact parts．

5．Low－level off state leakage current
The SSR has an off state leakage current of several milliamperes，whereas the PhotoMOS relay has typ． 100 pA even with the rated load voltage of 400 V （AQW654）．
6．Low thermal electromotive force （Approx． $1 \mu \mathrm{~V}$ ）

TYPICAL APPLICATIONS

－High－speed inspection machines
－Data communication equipment
－Telephone equipment

TYPES

Type	Output rating＊		Part No．				Packing quantity	
			Through hole terminal	Surface－mount terminal				
	Load voltage	Load current	Tube packing style		Tape and reel packing style		Tube	Tape and reel
					Picked from the 1／2／3／4－pin side	Picked from the 5／6／7／8－pin side		
AC／DC	400 V	120 mA	AQW654	AQW654A	AQW654AX	AQW654AZ	1 tube contains 40 pcs． 1 batch contains 400 pcs．	1，000 pcs

＊Indicate the peak AC and DC values．
Note：For space reasons，the SMD terminal shape indicator＂A＂and the package style indicator＂X＂or＂Z＂are not marked on the relay．

RATING

1．Absolute maximum ratings（Ambient temperature： $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$ ）

Item		Symbol	AQW654（A）	Remarks
Input	LED forward current	IF	50 mA	
	LED reverse voltage	V_{R}	5 V	
	Peak forward current	Ifp	1 A	$\mathrm{f}=100 \mathrm{~Hz}$ ，Duty factor $=0.1 \%$
	Power dissipation	Pin	75 mW	
Output	Load voltage（peak AC）	V	400 V	
	Continuous load current	IL	0．12A（0．16 A）	Peak AC，DC （ ）：in case of using only 1 channel）
	Peak load current	I peak	0.36 A	A connection： 100 ms （1 shot）， V L＝DC
	Power dissipation	Pout	800 mW	
Total power dissipation		$\mathrm{P}_{\text {T }}$	850 mW	
I／O isolation voltage		$V_{\text {iso }}$	1，500 V AC	Between input and output／between contact sets
Temperature limits	Operating	Topr	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$	Non－condensing at low temperatures
	Storage	$\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$	

2．Electrical characteristics（Ambient temperature： $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$ ）

Item				Symbol	AQW654（A）	Remarks
Input	LED operate（OFF）current		Typical	$\begin{aligned} & \text { IFon (N.O.) } \\ & \text { IFoff (N.C.) } \end{aligned}$	0.9 mA	$\mathrm{L}=\mathrm{Max}$.
			Maximum		3 mA	
	LED reverse（ON）current		Minimum	$\begin{aligned} & \text { IFoff (N.O.) } \\ & \text { IFon (N.C.) } \end{aligned}$	0.4 mA	$\mathrm{L}=\mathrm{Max}$.
			Typical		0.8 mA	
	LED dropout voltage		Typical	V_{F}	$1.25 \mathrm{~V}\left(1.14 \mathrm{~V}^{\text {at }} \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}\right)$	$\mathrm{IF}=50 \mathrm{~mA}$
			Maximum		1.5 V	
Output	On resistance		Typical	Ron	11Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}(\mathrm{~N} . \mathrm{O} .) \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}(\mathrm{~N} . \mathrm{C} .) \\ & \mathrm{IL}=\text { Max. } \\ & \text { Within } 1 \mathrm{~s} \text { on time } \end{aligned}$
			Maximum		16Ω	
	Off state leakage current		Maximum	ILeak	$1 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}(\mathrm{~N} . \mathrm{O} .) \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}(\mathrm{~N} . \mathrm{C} .) \\ & \mathrm{V}_{\mathrm{L}}=\mathrm{Max} . \end{aligned}$
Transfer characteristics	Switching speed	Operate（OFF） time＊	Typical	$\begin{aligned} & \text { Ton (N.O.) } \\ & \text { Toff (N.C.) } \end{aligned}$	0.8 ms （N．O．） $1.2 \mathrm{~ms} \mathrm{(N.C)}$.	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \rightarrow 5 \mathrm{~mA} \\ & \mathrm{IL}=\mathrm{Max} . \end{aligned}$
			Maximum		2 ms	
		Reverse（ON） time＊	Typical	$\begin{aligned} & \text { Toff (N.O.) } \\ & \text { Ton (N.C.) } \end{aligned}$	0.04 ms （N．O．） 0.36 ms （N．C．）	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \rightarrow 0 \mathrm{~mA} \\ & \mathrm{IL}_{\mathrm{L}}=\mathrm{Max} . \end{aligned}$
			Maximum		1 ms	
	I／O capacitance		Typical	Ciso	0.8 pF	$\begin{aligned} & f=1 \mathrm{MHz} \\ & V_{B}=0 \mathrm{~V} \end{aligned}$
			Maximum		1.5 pF	
	Initial I／O isolation resistance		Minimum	Riso	$1,000 \mathrm{M} \Omega$	500 V DC

Note：Recommendable LED forward current $I_{F}=5 \mathrm{~mA}$ ．
For type of connection．

＊Operate／Reverse time

REFERENCE DATA

1．Load current vs．ambient temperature characteristics
Allowable ambient temperature：$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$

2．On resistance vs．ambient temperature characteristics
Measured portion：between terminals 5 and 6，
7 and 8；LED current： 5 mA ；Load voltage： 400 V （DC）； Continuous load current： 120 mA （DC）

3．Operate（OFF）time vs．ambient temperature characteristics
LED current： 5 mA ；Load voltage： 400 V （DC）； Continuous load current： 120 mA （DC）

4．Reverse（ON）time vs．ambient temperature characteristics
LED current： 5 mA ；
Load voltage： 400 V （DC）；
Continuous load current： 120 mA （DC）

7．LED dropout voltage vs．ambient temperature characteristics
LED current： 5 to 50 mA

10．Operate（OFF）time vs．LED forward current characteristics
Measured portion：between terminals 5 and 6， 7 and 8； Load voltage： 400 V （DC）；Continuous load current： 120 mA （DC）；Ambient temperature： $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

5．LED operate（OFF）current vs．ambient temperature characteristics
Load voltage： 400 V （DC）；
Continuous load current： 120 mA （DC）

8．Current vs．voltage characteristics of output at MOS portion
Measured portion：between terminals 5 and 6， 7 and 8；Ambient temperature： $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

11．Reverse（ON）time vs．LED forward current characteristics
Measured portion：between terminals 5 and 6， 7 and 8； Load voltage： 400 V （DC）；Continuous load current： 120 mA （DC）；Ambient temperature： $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

6．LED reverse（ON）current vs．ambient temperature characteristics
Load voltage： 400 V （DC）；
Continuous load current： 120 mA （DC）

9．Off state leakage current vs．load voltage characteristics
Measured portion：between terminals 5 and 6， 7 and 8；Ambient temperature： $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

12．Output capacitance vs．applied voltage characteristics
Measured portion：between terminals 5 and 6， 7 and 8； Frequency： 1 MHz ；
Ambient temperature： $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

