

pecification

O2-A2 Oxygen Sensor

Figure 1 O2-A2 Schematic Diagram

All dimensions in millimetres (± 0.1mm)

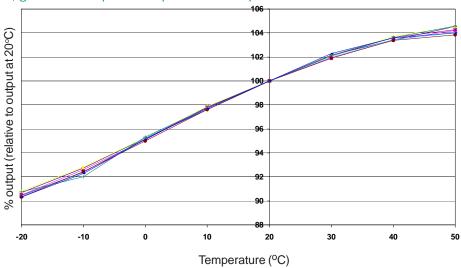
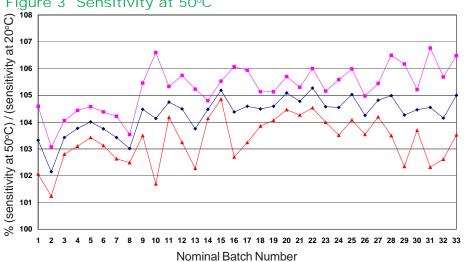
Top View Bottom View Side View

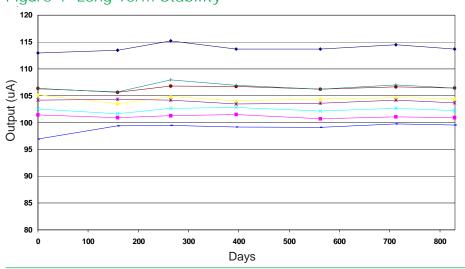
PERFORMANCE	Output Response time Zero current Pressure sensitivity Linearity Hysteresis Hand aspirator	μ A @ 20.9% O ₂ t90 (s) from 20.9% to 0% O ₂ μ A in N ₂ (% change of output)/(% change of pressure) @ 20kPa % O ₂ deviation @ 10% O ₂ % O ₂ change after 16 cycles: 0 to 20.9% O ₂ % O ₂ change during aspiration (typical) response	80 to 120 < 15 < 2 < 0.1 0.6 < 0.15 19.5 to 22.5
LIFETIME	Output drift Operating life	% change in output @ 3 months months until 85% original output of 20.9% O ₂	< 1 > 24
ENVIRONMENTAL	Humidity Sensitivity CO ₂ sensitivity	% O ₂ change: 0% to 95% rh @ 40°C % (change O ₂ reading) / % CO ₂ @ 5% CO ₂	< 0.7 0.1
PHYSICAL DIMENSIONS	Diameter Height Weight	mm (including label) mm (including foam ring) g	20.0 16.8 < 16
KEY SPECIFICATIONS	Temperature range Pressure range Humidity range Storage period Load resistor	$^{\circ}\text{C}$ kPa $^{\circ}\text{rh}$ continuous (0 to 99% rh short term) months @ 3 to 20°C (store in sealed pot, open circuit Ω (recommended)	-30 to 55 80 to 120 5 to 95 t) 6 47 to 100

NOTE: all sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

O2-A2 Performance Data

Figure 2 Output Temperature Dependence


Figure 2 shows the variation in sensitivity caused by changes in temperature.

This plot of the mean and ± 95% confidence intervals for 34 batches shows superior repeatability of the sensitivity dependence from batch to batch, giving confidence when setting temperature compensation in your gas detector.

Figure 4 Long Term Stability

The very stable output over the full lifetime of the O2-A2 shows that Alphasense has solved the problem of poor performance near the end of lifetime.

For further information on the performance of this sensor, on other sensors in the range or any other subject, please contact Alphasense Ltd. For Application Notes visit "www.alphasense.com".