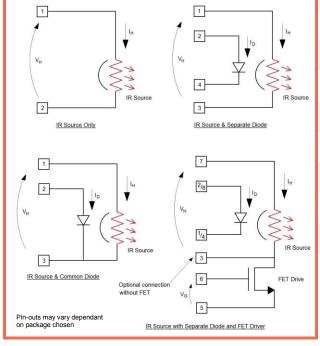


Electro Optical Components, Inc.

5464 Skylane Boulevard, Suite D, Santa Rosa, CA 95403 Toll Free: 855-EOC-6300

www.eoc-inc.com info@eoc-inc.com


CCSIRx79x Wideband Infrared Source

MID-IR SOURCE (800µm Diameter)

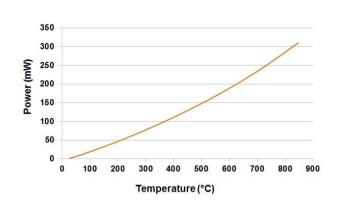
Benefits and Features	Applications	Packaging Options
High-stability broadband radiation source	NDIR Gas Sensor	Bare Die
Radiation 2 – 14µm	CO, CO ₂ , NOx, SOx	SMD
Built-in temperature-sensing diode	Hydro-carbon	TO39
Switching speed up 70Hz	Medical	TO46
Lifetime @ 450°C >10 years	HVAC	Ontions for reflectors, filters
Built-in FET Driver option	FTIR Spectroscopy	Options for reflectors, filters, sealing and encapsulation.
Power consumption <0.33mW/°C	ATR	Array versions also available.

MEMS CMOS IR radiation Source For Gas Sensing

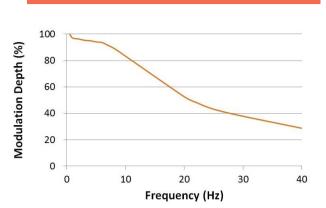
Description

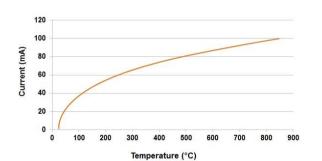
Basic Infrared Source where the heater temperature can be controlled by appropriately adjusting the current or the supply voltage. The device is fabricated on a

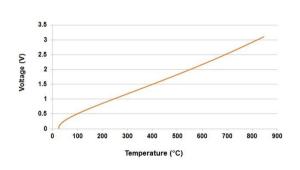
1.76mm x 1.76mm silicon die as a single-chip solution and can incorporate a temperature-sensing diode and/or FET driver.

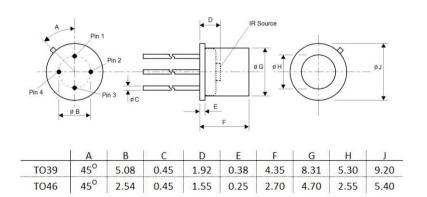

Electrical/Optical specifications

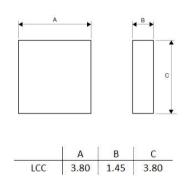
Parameter	Nominal Value
Power Consumption(DC) at 500°C	155mW ± 15mW
Thermal Rise Time (t ₉₀)	40ms ± 10ms
Thermal Fall Time (t ₁₀)	54ms ± 10ms
Operating Temperature	500°C
Ambient Resistance (R ₀)	$11\Omega \pm 2.5\Omega$
Heater Resistance Note1 (R) @ 500°C	$23\Omega \pm 5\Omega$
Heater Voltage (V _H) @ 500°C	1.9V ± 0.3V
Heater Current (I _H) @ 500°C	82mA ± 15mA
Diode Temp Coefficient (d) @ 65µA	1.17mV/K
Minimum Emissivity	~ 0.7
Heated Area	0.5mm ² min
Modulation Frequency	DC to 70Hz
Frequency at 50% Modulation	~ 20Hz
Life Time (MTTF) @ 500°C	~ 50000 Hours


$$\begin{split} &\text{Note1:} & & R = (R_0\text{-}R_T)[1 + \alpha(T - T_0) + \beta(T - T_0)^2] + R_T \\ & R_T \text{ (Track Resistance)} = 2.7\Omega \pm 0.5\Omega \textcircled{25}^\circ \text{C}, \, T_0 = 25^\circ \text{C} \\ & \alpha = 2.05 \times 10^{-3} \, \text{K}^{-1} \,, \, \beta = 0.3 \times 10^{-6} \, \text{K}^{-2} \end{split}$$


Power Consumption v Temperature


Modulation Depth v Frequency


Current v Temperature


Voltage v Temperature

TO Package dimensions

SMD Package dimensions

Various pin-outs available

The contents of this document are subject to change without notice. Customers are advised to consult with Cambridge CMOS Sensors (CCS) Ltd sales representatives before ordering or considering the use of CCS devices where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded. CCS will not be responsible for damage arising from such use. As any devices operated at high temperature have inherently a certain rate of failure, it is therefore necessary to protect against injury, damage or loss from such failures by incorporating appropriate safety measures.