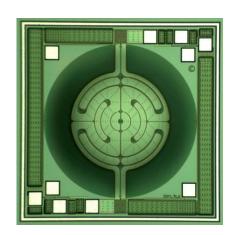
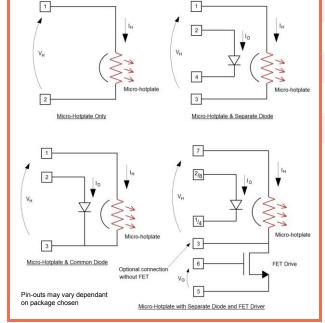


Electro Optical Components, Inc.

5464 Skylane Boulevard, Suite D, Santa Rosa, CA 95403 Toll Free: 855-EOC-6300

www.eoc-inc.com | info@eoc-inc.com




CCSMHx79x MEMS Micro-hotplate

MICRO-HOTPLATE (800µm Diameter)

Benefits and Features Sensing Applications Packaging Options High stability + High temperature Catalytic gases Bare Die Built-in FET & temp-sensing diode option Medical SMD TO46 Thermal response <40ms Humidity Lifetime @ 450°C >10 years **TO39** Flow Power consumption <0.31mW/°C Array versions also available. Multiple gases (without sensing material) Micro-heating element

MEMS CMOS MICRO-HOTPLATE For Gas Sensing

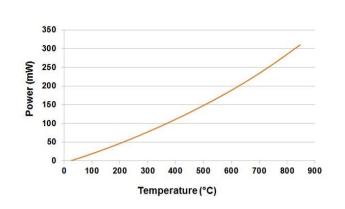
Description

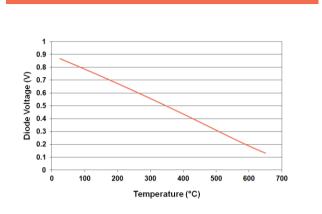
Basic high temperature micro-hotplate where the heater temperature can be controlled by appropriately adjusting the current or the supply voltage. The device is fabricated on a 1.76mm x 1.76mm silicon die as a single-chip solution and can incorporate a temperature-sensing diode and/or FET driver. Gold sensing electrodes are on top of the membrane.

Electrical/Optical specifications

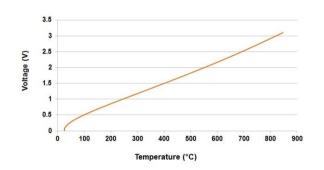
Parameter	Nominal Value
Power Consumption(DC) at 500°C	155mW ± 15mW
Thermal Rise Time (t ₉₀)	40ms ± 10ms
Thermal Fall Time (t ₁₀)	55ms ± 10ms
Operating Temperature	500°C
Ambient Resistance (R ₀)	$11\Omega \pm 2.5\Omega$
Heater Resistance Note1 (R) @ 500°C	$23\Omega \pm 5\Omega$
Heater Voltage (V _H) @ 500°C	1.9V ± 0.3V
Heater Current (I _H) @ 500°C	82mA ± 15mA
Diode Temp Coefficient (d) @ 65µA	1.17mV/K
Sensing Area	0.5mm ² min
Life Time (MTTF) @ 500°C Note2	~ 50000 Hours

Note1

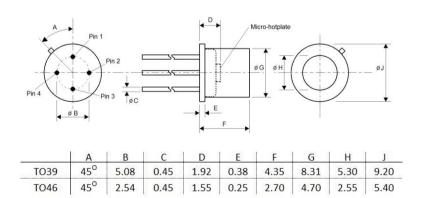

$$\begin{split} R &= (R_0\text{-}R_T)[1 + \alpha(T - T_0) + \beta(T - T_0)^2] + R_T \\ R_T & (\text{Track Resistance}) = 2.7\Omega \pm 0.5\Omega \ @ 25^{\circ}\text{C}, \, T_0 = 25^{\circ}\text{C} \\ \alpha &= 2.05 \times 10^{-3} \ \text{K}^{-1} \ , \, \beta = 0.3 \times 10^{-6} \ \text{K}^{-2} \end{split}$$

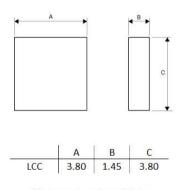

Note2
Without sensing material

Diode characteristics



Current v Temperature


Voltage v Temperature



TO Package dimensions

SMD Package dimensions

Various pin-outs available

The contents of this document are subject to change without notice. Customers are advised to consult with Cambridge CMOS Sensors (CCS) Ltd sales representatives before ordering or considering the use of CCS devices where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded. CCS will not be responsible for damage arising from such use. As any devices operated at high temperature have inherently a certain rate of failure, it is therefore necessary to protect against injury, damage or loss from such failures by incorporating appropriate safety measures.