VOLTCON_MED

Medium sensitivity transmitter of photocurrent to a 0-5V signal

The Voltcon converts a photocurrent into an output voltage between 0 and 5V.

The present module works with a medium gain factor and converts a photocurrent of 5μ A to an output of 5V. This means, a current higher than 5μ A will cause saturation.

Other modules with low gain (VOLTCON_LO, up to 500μ A) and high gain (VOLTCON_HI, up to 40nA) are available. Alternatively, please refer to the below instruction for changing the gain.

	Dhatadiada Anada maaitina tamainal af tha ahatadiada
Input solder points	Photodiode Anode = positive terminal of the photodiode
	Photodiode Cathode = negative terminal of the photodiode
Power supply and	A voltage of 524V is to be applied between V+ and GND. The
output terminal solder	resulting output voltage between 0 and 5V is measured between the
points	signal output and GND. The voltage is proportional to the applied
	photocurrent.
Dimensions	W x L x H = 13 x 26 x 8mm
Operating temperature	-2080°C
Storage temperature	-4080°C
The amplification factor (gain) is adjustable with a potentiometer (see description).	
RoHS-compliant to 2002/95/EG.	

Connection:

Input solder points
1 Photodiode anode

2 Photodiode cathode

Power supply solder points

3 V+ power supply4 GND power supply5 Signal output

Gain fine adjustment:

The gain fine adjustment is done via the potentiometer (6) - turn left to raise the gain

- turn right to lower the gain

How to change the gain:

 R_{F} and C_{F} might have another appearance than in the picture.

To change the gain (measurement range) in a larger scale, please change the feedback resistor R_{F} (the present value is 1 $M\Omega$).

To calculate R_{Fnew} for the new resistor, please use this formula:

R_{Fnew}(in MΩ)=5/I_{max}(in μA)

 I_{max} is the max. measurable photocurrent. It is adjustable with the gain potentiometer. The capacitor C_F (the default value is 100nF) is influencing the time constant τ of the measurement system. The present time constant is 10ms. It is calculated with the formula:

 $\tau(in ms) = C_F(in nF)^* R_F(in M\Omega)$

maximum ratings $10k\Omega < R_{Fnew} < 3G\Omega$ and $\tau > 1ms$

Rev. 2.2

page 1 [1]