Mounting Instructions

Force Transducer

B 20. C18.10 en

C18

Contents

HBM

Page

Safet	ty instructions	4
1	Scope of supply	7
2	Application information	7
3 3.1 3.2 3.3	Structure and mode of operationMeasuring bodyBase and thrust pieceDisturbances	8 8 8 8
4 4.1 4.2 4.3	Conditions on site	8 8 8 8
5 5.1 5.2 5.3	Mechanical installationImportant measures for installationGeneral installation guidelinesInstalling the transducer	9 9 9 10
6 6.1 6.2	Electrical connection Instructions for cabling Wiring pin assignment	11 11 11
7	Specifications	13
8	Dimensions C18	15
9	Declaration of conformity	16

Safety instructions

Use in accordance with the regulations

Force transducers of type C18 are to be used for precise force measurements. Use for any additional purpose shall be deemed to be **not** in accordance with the regulations.

In the interests of safety, the transducer should only be operated as described in the Mounting Instructions. It is also essential to observe the appropriate legal and safety regulations for the application concerned during use. The same applies to the use of accessories.

The transducer is not a safety element within the meaning of its use as intended. Proper and safe operation of this transducer requires proper transportation, correct storage, assembly and mounting and careful operation and maintenance.

General dangers of failing to follow the safety instructions

C18 force transducers comply with the state of the art and are fail-safe. The transducers can give rise to remaining dangers if they are inappropriately installed and operated by untrained personnel.

Everyone involved with the installation, commissioning, maintenance or repair of a force transducer must have read and understood the Mounting Instructions and in particular the technical safety instructions.

Remaining dangers

The scope of supply and performance of the transducer covers only a small area of force measurement technique. In addition, equipment planners, installers and operators should plan, implement and respond to the safety engineering considerations of force measurement technique in such a way as to minimize remaining dangers. Prevailing regulations must be complied with at all times. There must be reference to the remaining dangers connected with force measurement technique. In these mounting instructions remaining dangers are pointed out using the following symbols:

DANGER

Meaning: Highest level of danger

Warns of a **directly** dangerous situation in which failure to comply with safety requirements **will** lead to death or serious physical injury.

WARNING

Meaning: Possibly dangerous situation

Warns of a **potentially** dangerous situation in which failure to comply with safety requirements **can** result in death or serious physical injury.

Symbol:

Symbol:

CAUTION

Meaning: Possibly dangerous situation

Warns of a **potentially** dangerous situation in which failure to comply with safety requirements **could** lead to damage to property, slight or moderate physical injury.

Symbol:

bl: **NOTE** s that important information about the product or its

Means that important information about the product or its handling is being given.

Symbol:

Meaning: CE mark

The CE mark is the manufacturer's guarantee that his product meets the requirements of the relevant EC directives (see Declaration of Conformity at the end of this document).

Prohibition of own conversions and modifications

The transducer must not be modified from the design or safety engineering point of view except with our express agreement. Any modification shall exclude liability on our part for any resultant loss or damage.

5

Qualified personnel

These transducers are only to be installed by qualified personnel strictly in accordance with the specifications and with the safety rules and regulations which follow. It is also essential to observe the appropriate legal and safety regulations for the application concerned. The same applies to the use of accessories.

Qualified personnel means persons entrusted with the installation, fitting, commissioning and operation of the product who possess the appropriate qualifications for their function.

Conditions on site

Protect the transducer from damp and weather influences such as rain, snow, etc.

Maintenance

The C18 force transducer is maintenance free.

Accident prevention

Although the specified nominal (rated) force in the destructive range is several times the full scale value, the relevant accident prevention regulations from the trade associations must be taken into consideration.

1 Scope of supply

- C18 measuring body
- Thrust piece
- Base
- Test report
- Operating Manual C18

Accessories (not included in the scope of supply)

DKD calibration certificate according to EN10002-3, ISO376
Order no. K-CAL-FD...

2 Application information

Force transducers of the C18 type series are suitable for measuring compressive forces.

Do always install the transducer including base and thrust piece to avoid faulty measurement.

They measure static and quasi-static forces with great accuracy and reproducibility and therefore require careful handling.

You must take particular care when transporting and installing the devices. If you knock or drop the transducers, this could permanently damage them.

The force transducers can be used with both DC amplifiers and CF amplifiers with a maximum carrier frequency of 600 Hz.

C18 force transducer with DKD certificate from HBM:

Additional force calibration according to EN 10002-3 or ISO376, guarantees a transducer rating to class 0.5.

For a DKD calibration, we recommend to calibrate the complete measuring chain including the transducer and the connected amplifier to ensure optimum accuracy.

The limits for the permissible mechanical, thermal and electrical stresses are stated in the Specifications. It is essential that these are taken into consideration in planning the measuring set-up, during installation and finally, during operation.

7

3.1 Measuring body

8

3

The measuring body comprises a measuring beam system made of rust-resistant steel with strain gages (ring torsion principle).

3.2 Base and thrust piece

The base is made from stainless steel for nominal (rated) forces from 10kN to 500kN and from hardened tempering steel for nominal (rated) forces from 1MN to 4.5MN.

3.3 Disturbances

Torsion, bending, and lateral loads are disturbances and must be avoided. The temperature effects on the zero signal (SG bridge and housing) and on the sensitivity are compensated.

4 Conditions on site

4.1 Ambient temperature

The effects of temperature on the zero signal and on the sensitivity are compensated. To achieve optimal measurement results the nominal (rated) temperature range must be maintained. Temperature-induced measurement errors can be caused by heating (for example radiant heat) or cooling on one side. A radiation shield and all-round heat insulation bring about marked improvements. They must not form a force shunt.

4.2 Moisture

Externed humidity and tropical climatic do not affect the transducer's function.

4.3 Air pressure

Barometric variations have similar effects on the force transducer as force variations. Please take into account that barometric variations result in zero offset.

Nominal (rated) load	kN	10	20	50	> 50
Zero effect at a barometric variation of 10mbar					
(related to the nom. (rated) load)	%	0.01	0.005	0.002	< 0.001

5 Mechanical installation

5.1 Important measures for installation

- treat the transducer gently
- when measuring, make sure that the support structure is rigid
- the force-introduction surfaces must be scrupulously clean and carry in full
- do not overload the transducer.

WARNING

If there is a risk of breakage through overload on the transducer and thus a risk to persons, additional safety measures are to be taken.

5.2 General installation guidelines

The measurement direction in which forces act on the transducer must be as precise as possible.

WARNING

Torsion and bending moments, eccentric loading and transverse forces may result in measurement errors and if the limit values are exceeded, could destroy the transducer.

5.3 Installing the transducer

10

NOTE

Do always install the transducer including base and thrust piece to avoid faulty measurement (both included in scope of supply).

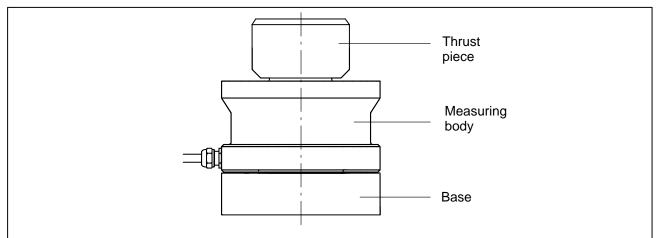


Fig. 5.1: Schematic diagram of the force transducer

C18/10kN...50kN

For measuring ranges from 10kN to 50kN, the base is firmly attached to the underside of the measuring body by four screws.

Tightening torque: 4Nm

C18/100kN...4.5MN

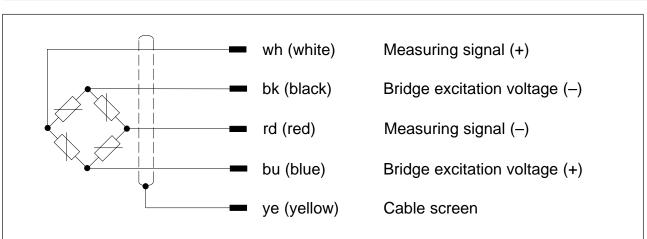
For measuring ranges from 100kN to 4.5MN, the measuring body is placed on the base. There is a centering device in the middle of the base.

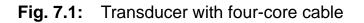
6 Electrical connection

6.1 Instructions for cabling

- Use only shielded and low-capacitance measurement cables (HBM cables meet these conditions).
- Do not install measurement cables parallel to power lines or control circuits. If this is not possible (e.g. in cable ducts) protect the measurement cable, e.g. with armoured steel tube and maintain a minimum distance of 50 cm from the other cables. High-voltage power lines and control lines should be twisted (15 turns per meter).
- Avoid stray fields of transformers, motors and contactors.
- Do not earth transducer, amplifier and display device more than once. All the devices in the measurement chain are to be connected to the same earthed conductor.
- The force transducers have been designed for four-wire connection, the cable must not be shortened.
- For optimum precision, we recommend to realize the cable extension using the six-wire technique.
- The screen of the connection cable is connected to the transducer housing.

CAUTION


Under no circumstances must the screwed cable gland of the force transducer be opened. Should this occur by mistake, the transducer must be returned to the factory for repair.


6.2 Wiring pin assignment

The 5m long transducer connection cable has color-coded pigtails.

If the transducer is connected in accordance with the following connection diagram, when compressive loading is applied to the transducer, the output voltage at the measuring amplifier is positive.

The transducers are fitted with a four-core connection cable and calibrated as standard using the four-wire circuit

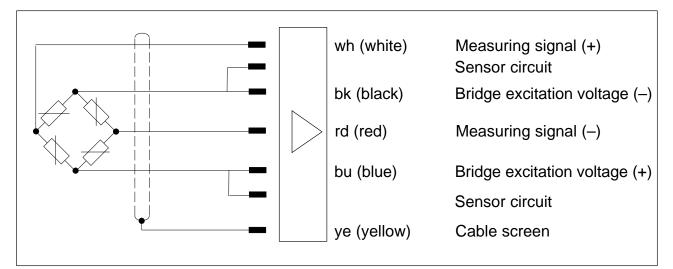
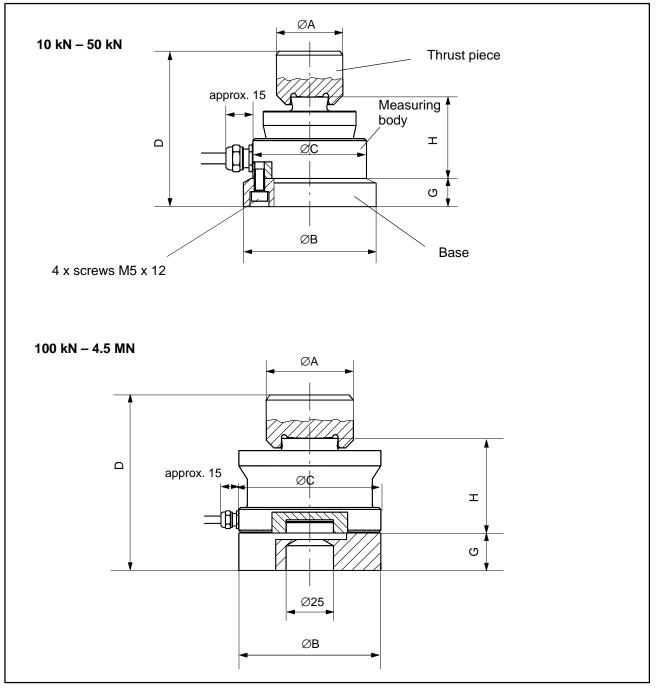


Fig. 7.2: Transducer with four-core cable, amplifier in six wire technique

C18

7 Specifications

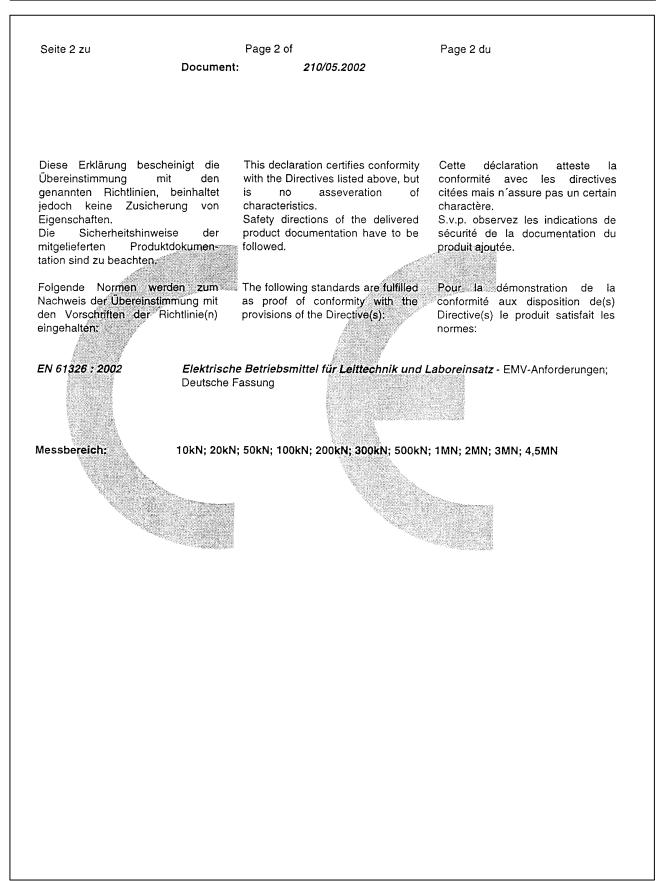
Nominal (rated) force	F _{nom}	kN	10 – 200	300	500 – 1000	2000 – 4500
Accuracy class			0.05			
Nominal (rated) sensitivity	C _{nom}	mV/V	/ 2			
Rel. sensitivity deviation compressive force	d _C	%	0.1			
Rel. zero signal deviation (zero signal tolerance)	d _{s,o}	%	1			
Rel. zero point compensation (zero signal return) ¹	f _o	%	0.0	024		
Rel. range (0.2Fnom to Fnom) at: unchanged mounting position, typically ¹ different mounting positions, typically ¹	b _{rg} b _{rv}	% %	0.04 0.08			
Hysteresis (0.2F _{nom} to F _{nom}) ¹	u	%		(80.0	
Linearity deviation	d _{lin}	%		(0.05	
Effect of temperature on sensitivity/10K rel. to sensitivity	тк _с	%	0.01			
Effect of temperature on zero signal/10K rel. to sensitivity	тк _о	%	0.01			1
Effect of lateral forces (lateral force 10% F _{nom})*)	d _Q	%				0.15
Eccentricity effect / mm		%	0.02			
Rel. creep over 30 min	$d_{cr,F+E}$	%	0.03			
Input resistance	R _e	Ω	4450 ± 100			
Output resistance	R _a	Ω			10 ± 5	
Isolation resistance	R _{is}	Ω	>50 x 10 ⁹			
Reference excitation voltage	U _{ref}	V			5	
Operating range of the excitation voltage	$B_{U,G}$	V		5	to 30	
Carrier frequency of the excitation voltage		Hz		1	≤600	
Nominal (rated) temperature range	B _{t,nom}	°C		+10	to +40	
Operating temperature range	$B_{t,G}$	°C		-30	to +80	
Storage temperature range	B _{t,S}	°C	-50 to +85			
Reference temperature	t _{ref}	°C	+22			1
Max. operational force	(F _G)	%	170		150	
Limit force	(F _L)	%	170 1		150	
Breaking force	(F _B)	%		400		320
Static lateral limit force	(F _Q)	%	0.3· F_{nom} ; (to $F_z \le 0.5F_{nom}$ 0.5·(F_{nom} -0.8· F_z); (for $F_z > 0.5F_{nom}$) (F_z = Force in direction of measurement)			


 class 0.5 acc. to EN10002–3 or ISO376, Classification only guaranteed in conjunction with a DKD calibration certificate acc. to EN10002–3 resp. ISO376

²⁾ relative to a force introduction point on the force-introduction surface of the measuring body

14	
----	--

	-												
Nominal (rated) force	Fnom	kN	10	20	50	100	200	300	500	1000	2000	3000	4500
Nominal (rated) displace ment	Snom	mm	0.13	0.12	0.13	0.17	0.19	0.23	0.26	0.45	0.62	0.79	0.98
Weight		kg	1.2	1.2	1.2	2.3	2.3	3.9	10.4	15.3	45.6	52.6	90.4
Rel. permissible vibrational stress	Frb	%	70										
Degree of pr acc. to DIN E	IP68												
Cable length connection	5												
Measuring b material	stainless steel												


8 Dimensions C18

Туре	ØA	ØB	ØC	D	G	Н
C18 / 10 kN 50kN	35	70	60	72	15	43
C18 / 100 kN 200 kN	45	75	75	89	20	50
C18 / 300 kN	58	95	95	112	20	65
C18 / 500 kN	85	130	130	157	37	85
C18 / 1 MN	100	150	150	171	40	90
C18 / 2 MN	135	230	225	239	50	130
C18 / 3 MN	135	230	225	254	50	145
C18 / 4.5 MN	160	275	270	303	60	170

Im Tiefen See 45 - D-64293 Darmstadt Hottinger Baldwin Messtechnik GmbH Tel. ++49/6151/803-0, Fax. ++49/6151/894896 Konformitätserklärung Declaration of Conformity Déclaration de Conformité Document: 210/05.2002 Wir. We. Nous Hottinger Baldwin Messtechnik GmbH, Darmstadt erklären in alleiniger Verantwortung, déclarons declare under our sole sous notre seule dass das Produkt responsibility that the product responsabilité que le produit Kraftaufnehmer Typenreihe C18 auf das sich diese Erklärung to which this declaration relates is auquel se réfère cette déclaration bezieht, mit der/den folgenden in conformity with the following est conforme à la (aux) norme(s) ou standard(s) or other normative autre(s) document(s) normatif(s) Norm(en) oder normativen document(s) Dokument(en) übereinstimmt (siehe (voir page 2) conformément aux (see page 2) Seite 2) gemäß den Bestimmungen following the dispositions de(s) Directive(s) provisions of der Richtlinie(n) Directive(s) 89/336/EWG -Richtlinie des Rates vom 3. Mai 1989 zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit, geändert durch 91/263/EWG, 92/31/EWG, 93/68/EWG und 93/97/EWG Die Absicherung aller produkt-All product-related features are Chez HBM, la détermination de spezifischen Qualitätsmerkmale secured by a quality system in tous les critères de qualité relatifs à erfolgt auf Basis eines von der DQS accordance with DIN ISO 9001, un produit spécifique est faite sur la (Deutsche Gesellschaft zur Zertificertified by DQS (Deutsche Gesellbase d´un protocole DQS zierung von Managementsystemen) schaft zur Zertifizierung von (Deutsche Gesellschaft zur Zertifiseit 1986 zertifizierten Qualitäts-Managementsystemen) since 1986 zierung von Managementsystemen) managementsystems nach DIN ISO (Reg. No. DQS-00001). certifiant, depuis 1986, notre (Reg. Nr. DQS-00001). 9001 safety-relevant système d'assurance qualité selon The features Die Überprüfung der sicherheits-(electromagnetic compatibility, DIN ISO 9001 (Reg. Nr. relevanten Merkmale safety of electrical apparatus) are (Elektro-DQS-00001). magnetische Verträglichkeit, verified at HBM by an independent De même, tous les critères de Sicherheit elektrischer Betriebstesting laboratory which has been protection électrique et de mittel) führt ein von der DATech accredited by DATech in 1991 for compatibilité électromagnétique the first time (Reg. Nos. DAT-P-006 erstmals 1991 akkreditiertes Prüfsont certifiés par un laboratoire laboratorium (Reg. Nr. DAT-P-006 and DAT-P-012). d'essais indépendant et accrédité und DAT-P-012) unabhängig im depuis 1991 (Reg. Nr. DAT-P-006 Hause HBM durch. et DAT-P-012). Darmstadt, 2002-05-07 m. Viz Dr. Michael Altwein H. Fritz

C18

17

Modifications reserved. All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

Hottinger Baldwin Messtechnik GmbH

Postfach 10 01 51, D-64201 Darmstadt Im Tiefen See 45, D-64293 Darmstadt Tel.: +49/61 51/ 8 03-0; Fax: +49/61 51/ 8039100 E-mail: support@hbm.com www.hbm.com

B 20.C18.10 en