HOTTINGER BALDWIN MESSTECHNIK HBM Mess- und Systemtechnik GmbH

Mounting Instructions

Force transducer U3

B 20.U3.20 en

Contents

Safety	/ instructions	4
1	Scope of supply	7
2	Application information	7
3 3.1 3.2	Structure and mode of operation Measuring element Housing	8 8 8
4 4.1 4.2 4.3	Conditions on site	9 9 9 9
5 5.1 5.2 5.3 5.3.1 5.3.2 5.3.2	Mechanical installation	10 10 12 12 13 14
6	Electrical connection	15
6.1	Instructions for cabling	15
7	Specifications (VDI/VDE2638)	17
8	Dimensions	18
9	Declaration of conformity	20

Page

Safety instructions

Use in accordance with the regulations

Force transducers in the U3 range are designed for force measurements on test benches/in press–fit devices/test devices/pressing. Use for any additional purpose shall be deemed to be **not** in accordance with the regulations.

In the interests of safety, the transducer should only be operated as described in the Mounting Instructions. It is also essential to observe the appropriate legal and safety regulations for the application concerned during use. The same applies to the use of accessories.

The transducer is not a safety element within the meaning of its use as intended. Proper and safe operation of this transducer requires proper transportation, correct storage, assembly and mounting and careful operation and maintenance.

General dangers due to non-observance of the safety instructions

The U3 force transducer corresponds to the state of the art and is fail-safe.

The transducers can give rise to residual dangers if they are inappropriately installed and operated by untrained personnel.

Everyone involved with the installation, commissioning, maintenance or repair of a force transducer must have read and understood the Mounting Instructions and in particular the technical safety instructions.

Residual dangers

The scope of supply and performance of the transducer covers only a small area of force measurement technique. In addition, equipment planners, installers and operators should plan, implement and respond to the safety engineering considerations of force measurement technique in such a way as to minimise residual dangers. Prevailing regulations must be complied with at all times. There must be reference to the residual dangers connected with force measurement technique. In these mounting instructions residual dangers are pointed out using the following symbols:

Meaning: Dangerous situation

Warns of a **potentially** dangerous situation in which failure to comply with safety requirements **can** lead to death or serious physical injury.

ATTENTION

Meaning: Possibly dangerous situation

Warns of a potentially dangerous situation in which failure to comply with safety requirements **could** lead to damage to property, slight or moderate physical injury.

Symbol:

NOTE

Refers to the fact that important information is being given about the product or its use.

Symbol:

CE

Meaning: CE mark

The CE mark signals a guarantee by the manufacturer that his product meets the requirements of the relevant EC directives (see Declaration of conformity at the end of this Mounting Instructions).

Conversions and modifications

The transducer must not be modified from the design or safety engineering point of view except with our express agreement. Any modification shall exclude all liability on our part for any damage resulting therefrom. Mounting and removing the adapter in accordance with Chapter 5 excluded.

Qualified personnel

This instrument is only to be installed by qualified personnel strictly in accordance with the technical data and with the safety rules and regulations which follow. It is also essential to observe the appropriate legal and safety regulations for the application concerned. The same applies to the use of accessories.

Qualified personnel means persons entrusted with the installation, fitting, commissioning and operation of the product who possess the appropriate qualifications for their function.

Conditions on site

Protect the transducer from damp and weather influences such as rain, snow, etc.

Maintenance

The U3 force transducer is maintenance free.

Accident prevention

Although the specified nominal force in the destructive range is several times the full scale value, the relevant accident prevention regulations from the trade associations must be taken into consideration.

1 Scope of supply

- 1 U3 force transducer
- 1 U3 Operating Manual

Accessories (not included in the scope of supply):

• 'complete adapter' for knuckle eye mounting

0.5–10kN: Adapter with four M5x12 and four M5x16 screws Order no. 2–9289.1956

- 20kN: Adapter with four M10x25 and four M10x30 screws Order no. 2–9289.1957
- 50kN: Adapter with eight M10x25 and eight M10x30 screws Order no. 2–9289.1958
- 100kN: Adapter with eight M10x25 and eight M10x30 screws each Property class 12.9. galvanized Order no. 2–9289.2280
- Knuckle eye ZGUW for 0.5–10kN Order no. 1–U2A/1t/ZGUW
 - 20 kN Order no. 1–U2A/2t/ZGUW 50 kN Order no. 1–U2A/5t/ZGUW
 - 100kN Order no. 1–Z4/100kN/ZGUW

2 Application information

Force transducers of the U3 type series are suitable for measuring tensile and compressive forces. They measure static and dynamic forces extremely accurately and therefore require careful handling. You must take particular care when transporting and installing the devices. If you knock or drop the transducers, this could permanently damage them.

The housing provides an elaborate seal to protect the sensitive strain gauge applications and it is essential that this is preserved. You must be particularly careful with the base of the housing, as this is extremely thin.

The limits for the permissible mechanical thermal and electrical stresses are stated in the Specifications. It is essential that these are taken into consideration in planning the measuring set–up, during installation and finally, during operation.

Structure and mode of operation 3

Measuring element 3.1

The measuring element is a measuring spring made from stainless steel, to which strain gauges (S/G) are applied. The S/Gs are arranged so that four of them can be strained and the other four compressed when the transducer reacts to a force.

Housing 3.2

The housing with the integrated measuring spring is completed underneath by an attached base. This base is extremely thin and must not be loaded centrally (see Page 11). It should be protected against mechanical damage.

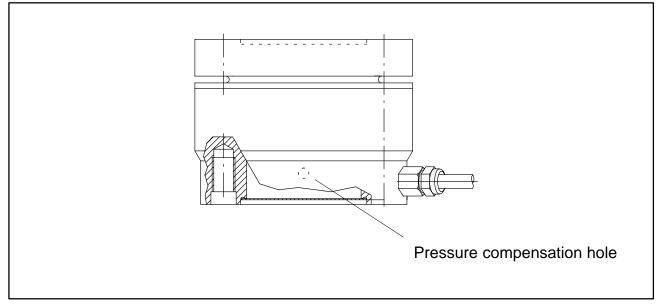


Fig. 3.1 Position of housing base

4 Conditions on site

4.1 Ambient temperature

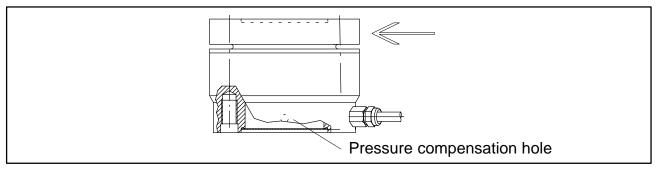
The effects of temperature on the zero signal and on the sensitivity are compensated. To achieve optimal measurement results the nominal temperature range must be maintained. Temperature–induced measurement errors are caused by heating (e.g. radiant heat) or cooling on one side. A radiation barrier and all–round thermal insulation will produce a marked improvement, but should not form a force shunt.

4.2 Moisture

Extreme humidity or a tropical climate should be avoided if this means that the classified limit values are exceeded (degree of protection IP65 under DIN EN 60529).

NOTE:

Moisture must not be allowed to penetrate the free end of the connection cable or get into the pressure compensation hole.


4.3 Deposits

Dust, dirt and other foreign bodies must not be allowed to accumulate such that they divert part of the measured force onto the housing and so falsify the measured value (force shunt).

NOTE:

Foreign bodies must not be allowed to clog the gap beneath the flange surface.

10

5 Mechanical installation

5.1 Important measures for installation

- Treat the transducer gently.
- Do not overload the transducer.
- Either during installation or immediately afterwards, the transducer should be bridged by a 50mm² stranded copper wire (highly flexible signal ground cable EEK from the HBM line). The cable is attached by screws both above and below the transducer. This prevents welding current flowing over the transducer and welding the force introduction point.

WARNING

If there is a risk of breakage through overload on the transducer and thus a risk to persons, additional safety measures are to be taken.

5.2 General installation guidelines

The direction of measurement in which the forces work should be as much towards the transducer as possible. Torsion and bending moments, eccentric loading and transverse forces may result in measurement errors and if the limit values are exceeded, could destroy the transducer.

The transducer can take up 100% (80% at 50kN, 50% at 100kN) of its nominal force as transverse force by reference to a force introduction point on the force–introduction surface (see diagram Fig. 5.1), without losing its mechanical competence.

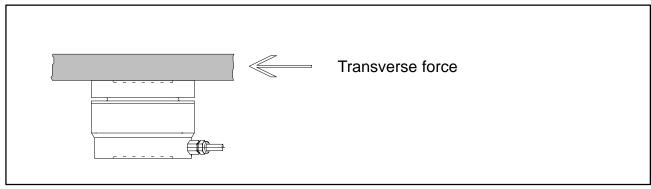


Fig. 5.1 Transverse force introduction

NOTE:

In the case of transducers of nominal forces 20kN, 50kN and 100kN, the base area is not flat.

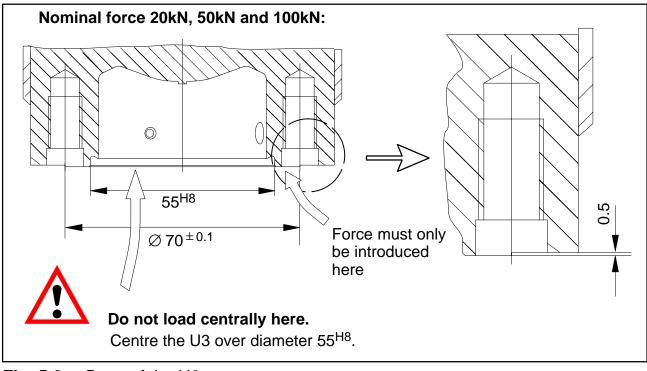


Fig. 5.2 Base of the U3

5.3 Installation for tensile loading/compressive loading

5.3.1 Installation without adapter

12

The transducer is screwed directly (by flange or base) on to an existing structural element (e.g. profile, cover, plate). This type of installation enables the transducers to measure axial forces in the tensile force **and** compressive force directions. Alternating loads can also be recorded perfectly. The transducer must be installed without axial play for this. For dynamic sustained loading, the top and bottom threaded connectors must be prestressed by lock nuts to above the maximum load.

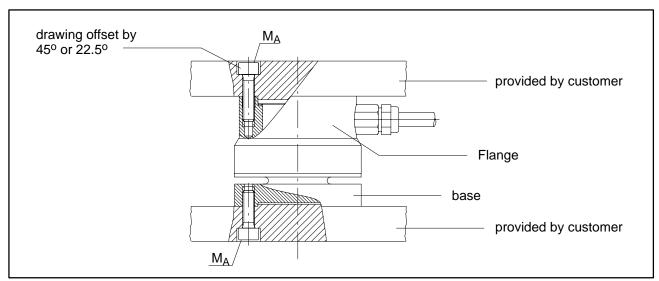


Fig. 5.3 Installation for compressive loading

Nominal force (kN)	Starting torque M _A (Nm)	Thread ¹⁾
0.5 – 10	5	4 x M5
20	40	4 x M10
50	40	8 x M10
100	94	8 x M10 ²⁾

¹⁾ Take note of the thread depth (see Dimensions, Page 18)

²⁾ 12.9 DIN912 galvanized

HBM supplies knuckle eyes as mounting accessories for transducers of the U3 type series. Knuckle eyes are suitable for use during quasi–static loading (10Hz alternating loads). In the case of dynamic loading at a higher frequency, you should use flexible tension bars. Knuckle eyes prevent the introduction of torsional moments and when 2 knuckle eyes are used, stop bending moments and transverse and angular loading being introduced in the transducers.

5.3.2 Installation with adapter and knuckle eye

If the transducer is to be tensile force loaded, it can be mounted with an adapter (HBM accessory) and a knuckle eye. There is a centre hole (34^{H8}mm or 55^{H8}mm, effective depth approx. 1mm) on both sides of the transducer.

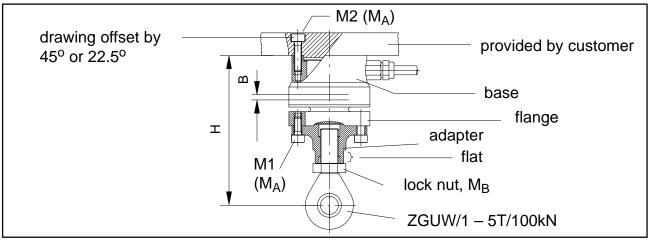


Fig. 5.4 Installation for tensile loading

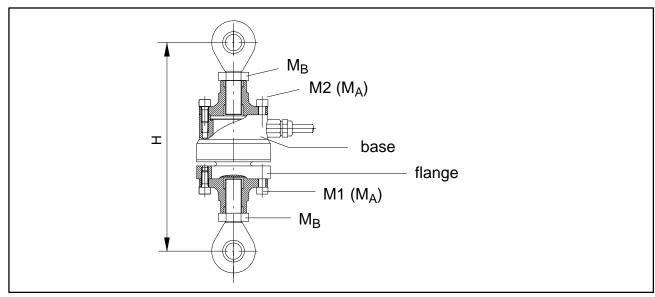
Nominal force (kN)	H _{Max} (mm)	B _{MIN} (mm)	Starting torque M _A (Nm)	Starting torque M _B (Nm)	Screws fo mour	
					M1	M2
0.5 – 10	108	7	5	60	M5x12	M5
20	170	18	40	300	M10x25	M10
50	180	24	40	500	M10x25	M10
100	187	24	94	1000	M10x25	M10

Attaching the knuckle eye:

- Screw the correct adapter (dependent on nominal force!) to the U3 (please note screw length, screw quality A2–70, at 100kN. 12.9 DIN912, galvanized)
- Turn the lock nut back as far as the eye
- Screw the knuckle eye into the adapter as far as the stop

ATTENTION

Do not apply force to the transducer flange.


- Unscrew knuckle eye 1 to 2 turns and align
- Load eye with nominal load
- Tighten lock nut (M_B, lock using the flat of the adapter)

ATTENTION

When locking with the lock nut, under no circumstances let the torque be transmitted through the transducer.

5.3.3 Installation with two knuckle eyes

Fig. 5.5	Installation for tensile loading with two knuckle eyes
----------	--

Nominal force (kN)	H(mm)	Starting torque M _A (Nm)	Starting torque M _B (Nm)	Screws fo mour	
				M1	M2
0.5 – 10	153	5	60	M5x12	M5x16
20	232	40	300	M10x25	M10x30
50	256	40	500	M10x25	M10x30
100	300	94	1000	M10x25	M10x30

Attaching the knuckle eye:

- Screw the correct adapter (dependent on nominal force!) to the U3 (please note screw length)
- Turn the lock nut back as far as the eye
- Screw the knuckle eye into the adapter as far as the stop

14

ATTENTION

Do not apply force to the transducer flange.

- Unscrew knuckle eye 1 to 2 turns and align
- Load eye with nominal load
- Tighten lock nut (M_B, lock using the flat of the adapter)

ATTENTION

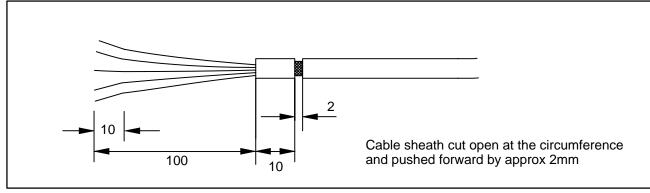
When locking with the lock nut, under no circumstances let the torque be transmitted through the transducer.

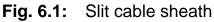
6 Electrical connection

The transducers come complete with a 3m long cable with free ends. The cable shielding is connected in accordance with the Greenline concept. This means that the measurement system is surrounded by a Faraday cage and is not affected by electromagnetic interference.

Connectors to CE standard are to be fitted at the free cable end of the transducer. The shielding is here to be laid over the whole area. If a different connection technique is used then good EMC shielding is to be provided in the wiring loom, the shielding again being laid over the full area (see also HBM Greenline Information, document G36.35.0).

6.1 Instructions for cabling


- Always use shielded, low–capacity measurement cable, available from HBM.
- Do not lay measurement cable parallel to high-voltage power lines or control circuits. If this is not possible (e.g. in cable ducts) protect the measurement cable, e.g. with armoured steel tube and maintain a minimum distance of 50 cm from the other cables. High voltage power lines and control lines should be twisted (15 turns per metre).
- Avoid stray fields of transformers, motors and contactors.
- Do not earth transducer, amplifier and display device more than once. All the devices in the measuring chain are to be connected to the same earthed conductor.
- The screen of the connection cable is connected to the transducer housing.


Connecting to terminals:

- 1. You can get to the screen through a slit in the cable sheath (see Fig. 6.1).
- 2. Lay the screen flat on the housing frame.

Attaching to a connector:

Lay the cable shield flat on the connector housing.

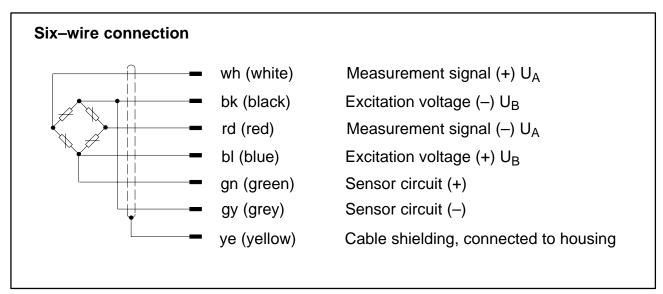
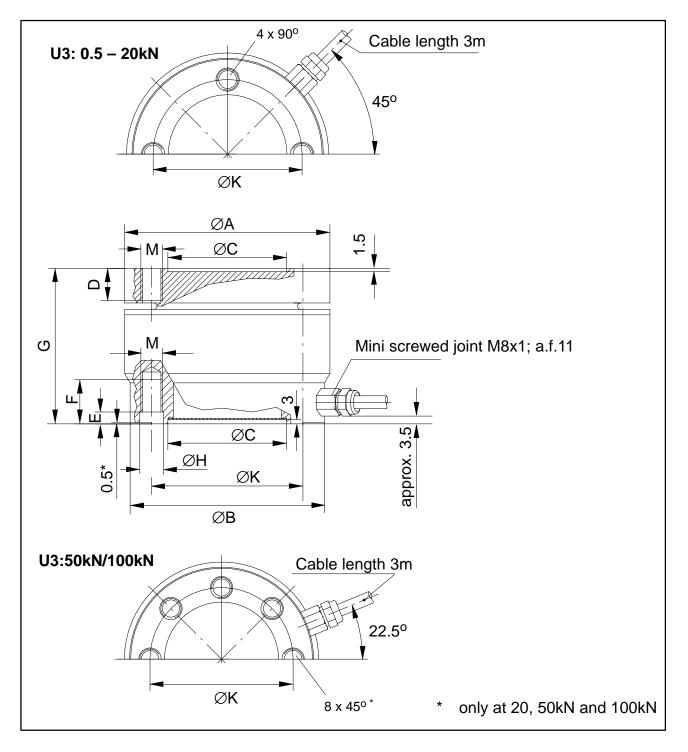
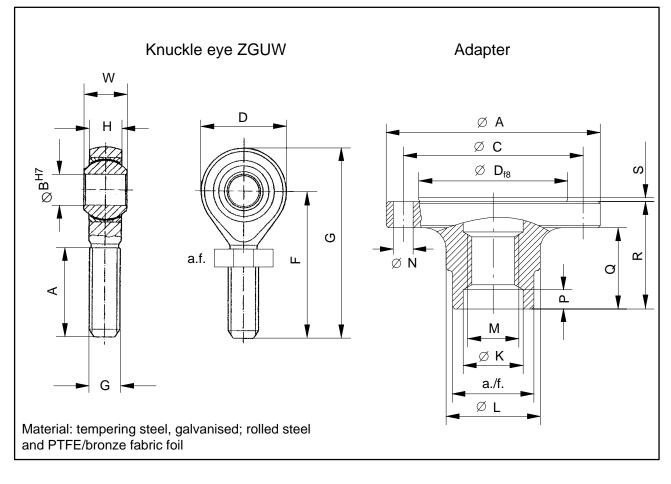


Fig. 6.2: Pin assignment for the U3


7 Specifications (VDI/VDE2638)

Туре							U3			
Nominal force	F nom	kN	0.5	1	2	5	10	20	50	100
Accuracy class				0.2						
Nominal sensitivity	C _{nom}	mV/V	/ 2							
Relative sensitivity deviation compressive force	d _c	%				<	±0.2			
Relative tensile/compressive force sensitivity difference	d _{zd}	%	<2				<	:1		
Relative zero signal deviation	d _{s.o}	%		1			<1			
Hysteresis (0.2F _{nom} to F _{nom})	u	%				<	0.2			
Linearity deviation compressive force	d _{lin}	%				<	0.2			
Linearity deviation tensile force	d _{lin}	%	< 0.3				<().2		
Effect of temperature on sensitivity/10K by reference to sensit.	TK _c	%	< 0.2				<(0.1		
Effect of temperature on zero signal/10K by reference to sensitivity	TK ₀	%		•		<	:0.1			
Effect of eccentricity at 1mm	d _E	%				<	±0.1			
Effect of transverse forces	d _Q	%			<	±0.1				< ± 0.2
Transverse force 10% F _{nom} 1)										
Creep over 30 min	d _{crf+E}	%				<	±0.1			
Input resistance	R _e	Ω	> 345							
Output resistance	R _a	Ω	300–400							
Isolation resistance	R _{is}	Ω				>2	x 10	9		
Reference excitation voltage	U _{ref}	V					5			
Operating range of the excit. volt.	B _{U.GT}	V				0.5	bis 1	2		
Nominal temperature range	B _{t.nom}	°C				-10 I	bis +	70		
Operating temperature range	B _{t.G}	°C				-30 I	bis +	85		
Storage temperature range	B _{t.S}	°C				-50 l	bis +	85		
Reference temperature	t _{ref}	°C				-	+23			
Maximum operating force	(F _G)	%	130			15	50			130
Limit force	(F _L)	%	130			15	50			130
Breaking force	(F _B)	%			>	300				250
Static lateral limit force ¹⁾	(F _Q)	%			10	0			80	50
Permissible eccentricity	e _G	mm			25			40	32	20
Nominal displacement	Snom	mm	< 0.08 < 0.1).1		
Fundamental resonance frequency	f _G	kHz	1.3 2.1 3.1 5.2 7.1 3.7 5.7 7.1				7.25			
Rel. permissible vibrational stress	F _{rb}	%	100		•	•	16	50	•	
Weight		kg		ар	p. 0.6	6			app.	2.5
Degree of protection to DIN EN6052	9					IF	P65	•		
Cable length, six-wire connection		m					3			
1) by reference to a force introduction pair					,					

1) by reference to a force introduction point on the force-introduction surface


8 Dimensions

18

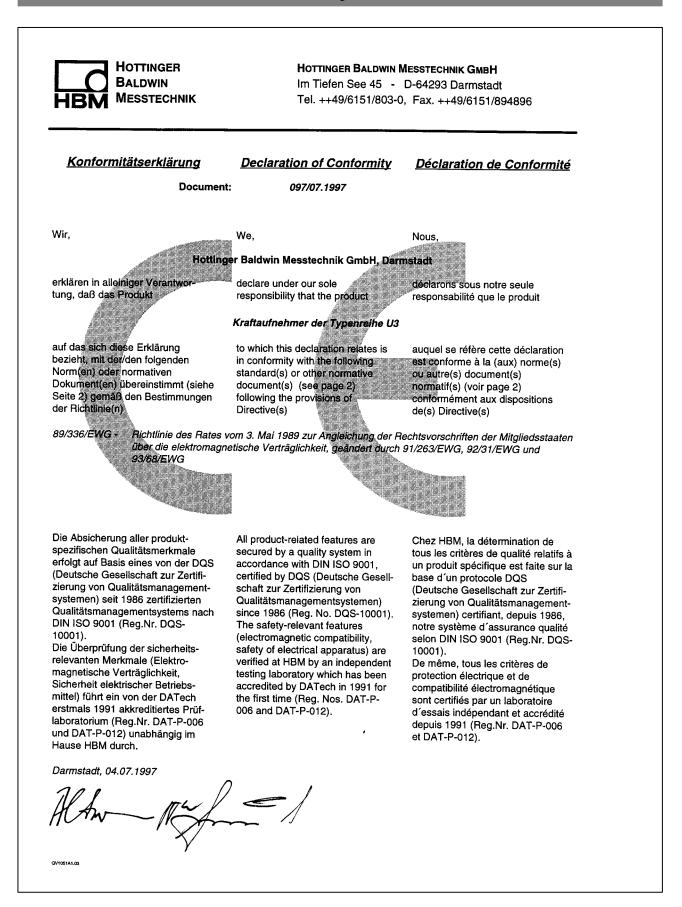
Nominal force	ØA	ØB_0.02	ØCH8	D	E	F	G	ØH	ØK ^{±0.1}	Μ
U3/0.5–10kN	54	50	34	8.5	5	13	47	5.5	42	M5
U3/20kN										
U3/50kN	95	90	55	15	5.5	20.5	72	11	70	M10
U3/100kN										

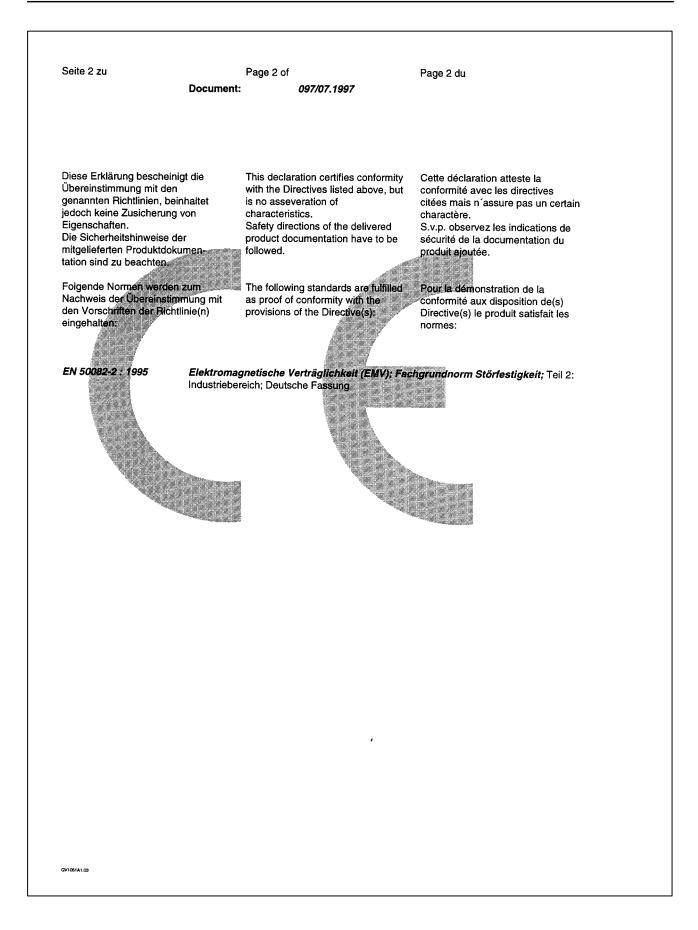
Mounting accessories

Knuckle eye

Nominal force (kN)	Α	Ø B H7	D	F	G	Н	Μ	Х	W	a./f.	Weight (kg)
0,510	33.5	12	32	54.5	70.5	12	M12	7	16	19	0.1
20	47	20	50	79.8	104.8	18	M20x1.5	9	25	30	0.4
50	57	25	60	94.5	124.5	22	M24x2	10	31	36	0.6
100	66	30 ^{H7}	70	110	145	25	M30x2	24	37	46	1.1

Adapter


Nomi- nal force (kN)	ØA	ØC	Ø D ^{f8}	Μ	ØK	ØL	ØN	Ρ	Q	R	S	a./f.	Weight ¹⁾ (kg)
0.510	50	42	34	M12	14	22	4x5.5	4.5	19	25.1	0.9	19	0.15
20	90	70	55	M20x1.5	22	34	4x11	4.5	15	40.1	0.9	30	1.3
50	90	70	55	M24x2	26	42	8x11	6	20	45.1	0.9	36	1.45
100	90	70	55	M30x2	26	42	8x11	6	20	45.1	0.9	41	1.45


1) including screws

20

9

Declaration of conformity

HOTTINGER BALDWIN MESSTECHNIK HBM Mess- und Systemtechnik GmbH Postfach 10 01 51, D-64201 Darmstadt Im Tiefen See 45, D-64293 Darmstadt Tel.: +49/ 61 51/ 8 03-0; Fax: +49/ 61 51/ 89 48 96; www.hbm.com e-mail: info@hbm.com

Modifications reserved. All details describe our products in general form only. They are not to be understood as express warranty and do not constitute any liability whatsoever.

IM-C 12.00-POD