
VOLTCON HI

High sensitivity transmitter of photocurrent to a 0-5V signal

The Voltcon converts a photocurrent into an output voltage between 0 and 5V.

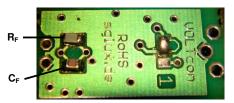
The present module works with a high gain factor and converts a photocurrent of 40nA to an output of 5V. This means, a current higher than 40nA will cause saturation.

Input solder points	Photodiode Anode = positive terminal of the photodiode
	Photodiode Cathode = negative terminal of the photodiode
Power supply and	A voltage of 524V is to be applied between V+ and GND. The
output terminal solder	resulting output voltage between 0 and 5V is measured between the
points	signal output and GND. The voltage is proportional to the applied
	photocurrent.
Dimensions	W x L x H = 13 x 26 x 8mm
Operating temperature	-2080℃
Storage temperature	-4080℃
The amplification factor (gain) is adjustable with a potentiometer (see description).	
RoHS-compliant to 2002/95/EG.	

Connection:

Input solder points

- 1 Photodiode anode
- 2 Photodiode cathode


Power supply solder points

- 3 V+ power supply
- 4 GND power supply
- 5 Signal output

Gain fine adjustment:

- The gain fine adjustment is done via the potentiometer (6)
- turn left to raise the gain
- turn right to lower the gain

How to change the gain:

 R_{F} and C_{F} might have another appearance than in the picture.

To change the gain (measurement range) in a larger scale, please change the feedback resistor R_{F} (the present value is $120~\text{M}\Omega).$

To calculate R_{Fnew} for the new resistor, please use this formula:

 $R_{Fnew}(in M\Omega)=5/I_{max}(in \mu A)$

 l_{max} is the max. measurable photocurrent. It is adjustable with the gain potentiometer. The capacitor C_F (the default value is 820pF) is influencing the time constant τ of the measurement system. The present time constant is approx. 10ms. It is calculated with the formula:

au (in ms)= C_F(in nF)* R_F (in M Ω)

maximum ratings $10k\Omega < R_{Fnew} < 3G\Omega$ and au > 1ms

Rev. 2.0 page 1 [1]