CMOS SOS Switches Offer Useful Features, High Integration
 Understanding the basic theory and characteristics underlying CMOS SOS switch technology opens the door to numerous RF and microwave applications.

witching RF and microwave signals is a fundamental function in all radio applications. Accordingly, there are a great variety of switch products and forms, from the basic single pole, single throw (SPST) to a large crosspoint matrix.

This article explains basic RF semiconductor switch functionality and reviews switch parameters and limitations. It examines the basic theory of an RF switch and the

Peregrine Semiconductor's Ultra-Thin-Silicon (UTSi) Technology enables the realization of quality RF switch-
trade-offs between power handling, insertion loss, and isolation.

Although therearediode-typeswitches, thefocus here is on complementary-metal-oxide-semiconductor (CM OS) metal-oxide-semiconductor field-effecttransistor (M O SFET) types, the main technology for wireless applications. Switches can also be classified as reflective and absorptive, but this article addresses only the reflective type.

M ost high-frequency switches use gallium-arsenide (GaAs) technology. es using dielectric isolation between UTSi M O SFETs that are fabricated in CMOS. UTSi is a Si-CM OS process that is fabricated on a sapphire insulator, known as Si-on-sapphire (SO S). This enables the manufacture of simple to highly integrated RF switches with modest-to-high-pow er capability (+10 to +37 dBm). Stacking devices allows UTSi RF switches to handle any practical power level. The complete isolation afforded by UTSi makes this switch impossible to fabricate in convention-

1a. The basic MOSFET SPST switch consists of two devices (M1 and M2) that either pass or block an RF input signal depending on the bias voltages that control M1 and M2.

FET switches. An SPST switch schematic is shown in Fig. 1a. An RF signal presented at the input node is either blocked from or passed through to the output node, depending on the DC bias of M OSFETs M 1 and M 2. Actual values of DC bias depend on the polarity and threshold of the M O SFET s. Resistor R0 isolates the bias from the AC signal and is essential for optimal switch action. The on- and off-states of the switch areexplained using Figs. 1b and c.

Figure 1 b illustrates the equivalent small-signal values of M OSFETsM 1 and M 2 when the RF switch is on. M 1 is primarily resistive, with a through coupling of r, while 22 is primarily capacitive, with coupling to ground through capacitors CGS off, CGD off, and CDS. The importance of the gate resistor R 1 is clearly illustrated. If R1 is too small, the gate node of M 1 would be held at the $D C$ bias voltage, resulting in negative feedback via capacitors CGS on and CGD on. This feedback has the effect of increasing r, resulting in larger O hmic loss. A small valueof $R 2$ prevents the voltage dividing action of M 2 capacitors CGS off and CGD off, reducing the 1-dB compression point up to 6 dB (as explained later). R , therefore, needs to be large enough so that RF signals feeding onto the gate node are AC isolated from the DC bias. That is:

$$
f_{\min }=5 / \pi R C_{o f f p} \sqrt{2}
$$

(1)

1c. In the normal off-state, M1 is turned off and M2 is turned on, thus blocking the input signal from the output node. M2 serves to increase the input-to-output isolation of the switch.
where:
R =the series resistor of the gate node (Fig. 1b), and $f_{\text {min }}=$ theminimum fre quency at which the switch can operate. SinceR is much larger than $50 \Omega, C_{\text {offp }}$ for M 2 is the parallel value of CGS off and CGD off (theoffcapacitancewas chosen since it results in the largest $f_{\text {min }}$). It is important to realize that Eq. 1 is based on simple resis-tive-capacitive (RC) calculations and has no lower limit due to semiconductor material limitations. By contrast, GaAs switches may have switching speed limitations as a result of slow states that may be present in the GaAs.

Theinsertion loss of the switch is the differencebetw een the maximum available power at the input and the power delivered to the output. At low frequencies, most of the power is lost across r, resulting in the following expression for insertion loss:

1b. The equivalent small-signal parameters of M1 and M2 in Fig. la show the dominant characteristics of each device. M1 is primarily resistive while M2 is capacitive.

$$
\begin{gather*}
I L=10 L O G_{l O}\left[\left(1+\frac{r}{2 R O}\right)^{2}+\right. \\
\left.\left(\frac{\omega C_{o f f s}(R 0+r)}{2}\right)^{2}\right](\text { in } d B) \tag{2a}
\end{gather*}
$$

where:
R0 =theimpedance of the sourceand load (50Ω),
$r=$ the resistance of M 1 when the switch is on, and
$C_{\text {offs }}=$ the series value of CGS off and CGD off in parallel with CDS of M 2 .

Equation 2a becomes invalid when the capacitive reactance of $M 2$ becomes comparableto r. However, Eq. 2a can serve as a guide in estimating insertion loss. Usually, ris much less than R 0 in real switches. Equation 2a is simplified as follows:

$$
\begin{gather*}
I L \approx \frac{10 r}{R 0 \ln (10)} \approx \\
0.087 r \tag{2b}
\end{gather*}
$$

within 5 percent at low frequencies ω $\times \mathrm{C} \times \mathrm{R} 0 \leqslant 0.1$ for $\mathrm{r}<10 \Omega$ and $\mathrm{R} 0=$ 50Ω

Thus, at low frequencies, a $3-\Omega$ value for r will result in approximately one-quarter-of-a-decibel insertion loss.

The small-signal equivalent circuit for the off-state of the switch in Fig. 1a is provided in Fig. 1c. For simplification, M 1 and M 2 are chosen identically, so
the values of capacitance and resistance are identical to those in Fig. 1b. However, for an actual circuit design, M 1 and M 2 may have different sizing for overall performance optimization.

In the off state, M 1 has the role of blocking the input from the output. W hen turned off, M 1 is primarily capacitive with feedthrough of the input determined by the series/parallel values of CGD off, CGS off, and CDS. Feedthrough of the signal is undesirable and is related to the isolation of output to input when the switch is turned off. To reduce the magnitude of the feedthrough (i.e., increase the isolation), M 2 comes into play.

M 2 is turned on when M 1 is turned off. In this condition, M 2 is primarily a resistor with value r. By design, this value is much less than the characteristic impedance of the RF source, so r greatly reduces the voltage at the input of $M 1$. When the value of r is much less than R 0 and thefeedthrough capacitive
reactance of M 2 , isolation can be easily calculated. Isolation for the offswitch is the difference between the maximum available power at theinput to power at the output. The circuit analysis results in the following equation for isolation:

$$
\begin{gather*}
I S=-10 L O G_{l 0} \\
{\left[4 r^{2} \omega^{2} C_{o f f s}^{2} /\right.} \\
\left(1+\frac{r}{R 0}\right)^{2}+\omega^{2} C_{o f f s}^{2} R 0^{2} \\
\left.\left(1+\frac{2 r}{R 0}\right)\right] \tag{3a}
\end{gather*}
$$

For the condition $r<0.1$ R 0 , and $\omega r C_{\text {ons }}<0.1$,
where:
$\omega=$ the frequency of the R F input,
R $0=$ the impedance of the source (50Ω),
$\mathrm{C}_{\text {offs }}=$ the feedthrough capacitance of M 1 in the off condition,
$r=$ the on resistance of $M 2$ in the on
condition, and
$\mathrm{C}_{\text {ons }}=$ the shunt capacitance of M 2 in the on condition. Equation 3a is derived by assuming that the coupling to ground is primarily through r. For small values of frequencies and r, the equation for isolation can be further simplified:

$$
\begin{equation*}
I S=-20 L O G_{10}(2 r \omega C t) \tag{3b}
\end{equation*}
$$

for the condition, $r<0.1$ R0, and $\omega r C_{s}<0.1$ and $\omega R 0 C_{\text {offs }}<0.1$

Eqs. $2 b$ and $3 b$ can now be used to estimate values of r and C_{t} if target insertion loss and isolation areknown. For an insertion loss of $0.6 \mathrm{~dB}, \mathrm{r}$ must be less than 7Ω in a $50-\Omega$ system. For the samesw itch, a target isolation of 35 dB at $1-\mathrm{GHz} \mathrm{C}_{\text {offs }}$ must be less than 0.25 pF . Usually, the values of $\mathrm{C}_{\text {offs }}$ and r cannot be decoupled and both are determined by the geometry of the device. Thus, thelimits of insertion loss and isolation of the switch in Fig. 1a can be determined for a particular device

[^0]geometry. Usually, the product of r and C_{t} are independent of the M OSFET width, so fundamental isolation of the switch is also independent of M OSFET width.

Switch Compression

In addition to insertion loss and isoIation, another important parameter of RF switches is their ability to handle large input power when the switch is turned on, so that the insertion loss is not a function of power at a fixed frequen- cy. M any applications require that power transmitted through an on switch should not bedistorted. If two tones that areclosely spaced in frequency arepassed through a switch at the same time, nonlinearity of theswitch can produceintermodulation (IM) and create a false tone in adjacent channels. If these channels are reserved for information signals, power in these false tones must be as small as possible. A measure of thepower in thesefalsetones is known as the input third-order intercept point (IP3). Switches with large IP3 values produce little power in adjacent channels, which is important in applications such as antenna switches. IP3 is usually 17 to 20 dB larger than the largest input power a switch can handle without distortion.

An indicator of a switch's ability to handle power is known as the 1-dB compression point (P 1 dB). It is defined as the input power at which the insertion loss has increased by 1 dB from its low-power value.

$$
\begin{gather*}
I L(P 1 d B)-I L(P \rightarrow-\infty) \\
=1.0 d B \tag{4}
\end{gather*}
$$

To understand what causes compression, voltagelevels at various nodes aredrawn for the simple switch in Fig. la in theon-state and presented in Fig.
1d. The source is represented by a sine wave with a peak-to-peak amplitude of $2 \mathrm{~V}_{0}$. DC levels required to turn the M OSFETs on and off are $\mathrm{V}_{\text {on }}$ and $\mathrm{V}_{\text {off }}$, respectively. A normal, uncompressed signal is shown on the output node, as well as curves showing the compression modes at theoutput. To understand

how compression occurs, operation of the M O SFET must be understood.

M O SFETs require a gate-to-source bias that exceeds the threshold voltage, V_{t}, to turn on. Likew ise, the gate-to-source bias must be less than V_{t} for theswitch to beoff. V_{t} is positive in "typeN" M O SFET s and negative for " typeP" M O SFET s. For the switch in Fig. 1a, "type-N" M O SFET s werechosen. The source of an "type-N " M O SFET is the node with the low est potential.

The reason for the first type of compression can now beexplained using the previous concepts. If a transient voltageon M 2, shown in Fig. 1c, results in turning on M 2 during part of thecycle, input power will be routed to ground and lost to the output. This loss of power becomes larger for larger input powers and will cause compression. P1dB for this case can be estimated.

A ssuming CGD and CGS are simi-
lar or the same in value, only half of the transient voltage change on the input nodewill appear at the gate node of M 2. Eventually, thenegativeswing of theinput will dip below the potential of thegate, as well as below ground (thus becoming the source). W hen this difference becomes $\mathrm{V}_{\mathrm{t}}, \mathrm{M} 2$ begins to turn on and compression begins. P1dB from this effect is:

$$
\begin{gather*}
P 1 d B_{V T}=10 L O G_{10} \\
\left(\frac{2\left(V_{t}-V_{\text {off }}\right)^{2}}{R 0}\right)+30(\text { in } d B m) \tag{5}
\end{gather*}
$$

where:
PldB ${ }_{V T}=$ the onset of compression for the switch in Fig. 1a.

This compression is caused by theturning on of a normally off gate in the shunt leg of the switch. Suppose V_{t} is approximately +0.7 VDC and $\mathrm{V}_{\text {off }}$ ischo-

Power capability versus insertion-loss trade-offs									
Number in stack	$\begin{aligned} & \text { Vth } \\ & (\mathrm{VDC} \end{aligned}$	$\mathrm{V}_{\mathrm{off}}$	$\begin{aligned} & \mathrm{IL} \mathrm{at} \\ & 1 \mathrm{CHz} \end{aligned}$	$\begin{aligned} & \hline \text { IS at } \\ & 1 \mathrm{CHz} \end{aligned}$	$\begin{aligned} & \hline \mathrm{IL} \text { at } \\ & 2 \mathrm{CHz} \end{aligned}$	$\begin{aligned} & \hline \text { IS at } \\ & 2 \mathrm{CHz} \end{aligned}$	$\begin{aligned} & \mathrm{IL} \mathrm{at} \\ & 4 \mathrm{CHz} \end{aligned}$	$\begin{aligned} & \text { IS at } \\ & 4 \mathrm{CHz} \end{aligned}$	Onset of comp. (dBm)
1	0.7	3.0/0	0.16	41	0.24	35	0.55	30	13
3	0	$\begin{aligned} & 3.01 \\ & -3.0 \end{aligned}$	0.39	41	0.40	35	0.43	29	31
6	0	$\begin{gathered} 3.01 \\ -3.0 \end{gathered}$	0.75	42	0.75	36	0.76	30	37
$\begin{gathered} \mathrm{C}_{\mathrm{offs}}=0.5 \mathrm{pF} \\ \mathrm{r}=1.5 \Omega \end{gathered}$									

sen to be 0 VDC. Substituting in Eq. 5, compression will begin at approximately +13 dBm . A negative value for $\mathrm{V}_{\text {off }}$ of -1 VDC will increase the compression to approximately +21 dBm . For thecir-
will be approximately +25 dBm .
Equations 5 and 6 set clear limits on the power-handling capabilities of
the switch as shown in Fig. 1a. For power levels above +22 to +25 dBm , there may be a limit set by source-to-drain

3. The basic SPST switch is the building block of more-complex switches such as the SPDT type shown here. Stacking can also be used here to increase power-handling capability (a). A more complex switch than that shown in Fig. 3a is the SP4T type that appears here. In this example, RF1 is turned on. Integrating devices of this complexity in ICs is not complex using UTSi technology (b).
breakdown. If not, the difficulty of producing negative supplies below $-\mathrm{V}_{\mathrm{dd}}$ (-3 VDC) demands other circuit solutions. Also, there is the very real issue of placing too much electrical-field switch can stand off, by +30 dBm for example, at with a negative supply of -3 VDC, the gateoxidewill experience up to +8 VDC . For a 100-Å gateoxide, this will pose a reliability problem.

Figure 2 is a SPST switch with N M O SFETs placed in series (or stacked) for the through and shunt legs. This switch has the advantage of increased power-handling capability, which is traded off against increased insertion loss. Layout of stacked devices is simple and does not requireany contacts at the diffusion connection of the M O SFETs, thus device-area penalty is moderate. Each gate has its own resistor R that AC-isolates the M O SFETs from DC bias.

Using small-signal analysis similar to that used in Fig. 1a, the insertion loss for theon-state of a stacked SPST switch is derived. In general, stacked devices will have less off capacitance (by $1 / \mathrm{N}$) and greater resistance than a single device. Thus, the insertion loss becomes:

$$
\begin{gather*}
I L(N)=10 L O G_{10} \\
\left\{\left(1+\frac{N r}{2 R 0}\right)^{2}+\right. \\
\left.\left[\frac{\omega C_{\text {offs }}(R 0+N r)}{2 N}\right]^{2}\right\} \tag{7}
\end{gather*}
$$

where:
IL (N) =the calculated insertion loss of the stacked switch in Fig. 2.

For small values of r, doubling it will double the insertion loss at low frequencies, while at higher frequencies, feedthrough through capacitor $\mathrm{C}_{\text {offs }}$ to ground will begin to increase IL further.

The calculation of the isolation of
stacked devices is made in a similar fashion as insertion loss. Since the net value of capacitancefor theoff-leg is proportional to $1 / \mathrm{N}$ and theon-valueof resistancein theon-leg is proportional to N , Eq. 7 predicts that the isolation of a stacked switch will be insensitiveto the number of stacked devices (at least to zero order). Including the effect of N there by creates:

$$
\begin{gather*}
I S=-10 \times L O G_{10} \\
{\left[4 r^{2} \omega^{2} C_{o f f s}^{2} /\right.} \\
\left(1+\frac{N r}{R 0}\right)^{2}+ \\
\frac{\omega^{2} C_{o f f s}^{2} R 0^{2}}{N^{2}} \\
\left.\left(1+\frac{2 N r}{R 0}\right)^{2}\right] \tag{8}
\end{gather*}
$$

for $\mathrm{N}_{\mathrm{r}}<0 . \mathrm{R} 0, \omega \mathrm{rC}_{\text {onp }}<0.1$ where:

- Enter NO. 408 at www.mwrf.com
$\mathrm{C}_{\text {offs }}=$ =thecapacitanceof a singlethrough device in the off-state and $r=$ the resistance of a singleshunt device in theon-state.

The Table illustrates that stacking devices and the ability to generate negative onboard voltage sources enables lation, and low-insertion loss switches in UTSi technology. With actual packaged parts, inductances and mutual coupling become the limiting factors in isolation and insertion loss. W hen a part is packaged, care must betaken in order to achieve proper matching, so the final part can approach the theoretical limits of the technology. A balance between target costs and final packaged switch characteristics must be made. H ow ever, values that areoutlined in the table are more easily realized in highly integrated applications where RF switching is only required betw een two on-chip locations. In these applications, point- to-point inductances are
much smaller than those in wirebonded parts.

The process that is used to build this type of SPST sw itch lends itself to high levels of integration. Since the process is based on standard CM OS process flows, digital interfaces can be created with little impact on area, design time, or yield. For example, matrix switches that have three-wire serial-to-parallel interfaces are simple to implement, and, when combined with NANDN AN D-typelogic, complex control can now be integrated on-chip. SPST switches can be combined into morecomplex switch functions, including single-pole, double-throw (SPDT) and single-pole, four-throw (SP4T) configurations as shown in Figs. 3a and b. A gain, digital control with correct digital-to-RF buffering is easily integrated. G ate resistors, which are located near R F switch components, provide excellent isolation. For high-power applications, negative
supply generators are integrated by using standard techniques. These techniques requirelow frequency and lowcurrent oscillators. With proper layout, they areisolated from RF. Sidebands from the negative supply generators are too small to be measured in the laboratory.

The availability of low threshold voltages enables the realization of lowvoltage parts in UTSi. For example, switches can operate below +2 VDC with trade-offs in RF characteristics. For +1-VDC applications, onboard voltagetriplers can beused to realizethefull potential of a switch as shown in the table with a trade-off in chip area. Low-frequency digital interfaces are affected little by low-voltage applications. As RF integrated solutions move toward lower voltages, such as in Bluetooth applications, UTSi switches can still be used with modest trade-offs in performance. [RF

Enter NO. 411 at www.mwrf.com

SUNSTAR 商斯达实业集团是集研发，生产，工程，销售，代理经销 ，技术咨询，信息服务等为一体的高科技企业，是专业高科技电子产品生产厂家，是具有 10 多年历史的专业电子元器件供应商，是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一，是一家专业代理和分銷世界各大品牌 IC 芯片和電子元器件的连锁经营綜合性国际公司，专业经营进口，国产名厂名牌电子元件，型号，种类齐全。在香港，北京，深圳，上海，西安，成都等全国主要电子市场设有直属分公司和产品展示展销窗口门市部专卖店及代理分销商，已在全国范围内建成强大统一的供货和代理分销网络。 我们专业代理经销，开发生产电子元器件，集成电路，传感器，微波光电元器件，工控机／DOC／DOM 电子盘，专用电路，单片机开发，MCU／DSP／ARM／FPGA 软件硬件，二极管，三极管，模块等，是您可靠的一站式现货配套供应商，方案提供商，部件功能模块开发配套商。商斯达实业公司拥有庞大的资料库，有数位毕业于著名高校——有中国电子工业摇篮之称的西安电子科技大学（西军电）并长期从事国防尖端科技研究的高级工程师为您精挑细选，量身订做各种高科技电子元器件，并解决各种技术问题。

微波光电部专业代理经销高频，微波，光纤，光电元器件，组件，部件，模块，整机；电磁兼容元器件，材料，设备；微波 CAD，EDA 软件，开发测试仿真工具；微波，光纤仪器仪表。欢迎国外高科技微波，光纤厂商将优秀产品介绍到中国，共同开拓市场。长期大量现货专业批发高频，微波，卫星，光纤，电视，CATV 器件：晶振，VC0，连接器，PIN 开关，变容二极管，开关二极管，低噪晶体管，功率电阻及电容，放大器，功率管，MMIC，混频器，耦合器，功分器，振荡器，合成器，衰减器，滤波器，隔离器，环行器，移相器，调制解调器；光电子元器件和组件：红外发射管，红外接收管，光电开关，光敏管，发光二极管和发光二极管组件，半导体激光二极管和激光器组件，光电探测器和光接收组件，光发射接收模块，光纤激光器和光放大器，光调制器，光开关，DWDM 用光发射和接收器件，用户接入系统光光收发器件与模块，光纤连接器，光纤跳线／尾纤，光衰减器，光纤适 配器，光隔离器，光耦合器，光环行器，光复用器／转换器；无线收发芯片和模组，蓝牙芯片和模组。
更多产品请看本公司产品专用销售网站：
商斯达微波光电产品网：HTTP：／／www．rfoe．net／
商斯达中国传感器科技信息网：http：／／www．sensor－ic．com／
商斯达工控安防网：http：／／www．pc－ps．net／
商斯达电子元器件网：http：／／www．sunstare．com／
商斯达消费电子产品网：／／www．icasic．com／
商斯达实业科技产品网：／／www．sunstars．cn／射频微波光电元器件销售热线：
地址：深圳市福田区福华路福庆街鸿图大厦 1602 室
电话：0755－83396822 833970338339858582884100
传真：0755－83376182（0）13823648918 MSN：SUNS8888＠hotmail．com
邮编：518033 E－mail：szss20＠163．com QQ： 195847376
深圳赛格展销部：深圳华强北路赛格电子市场2583号 电话：0755－83665529 25059422
技术支持：0755－8339403313501568376
欢迎索取免费详细资料，设计指南和光盘；产品凡多，未能尽录，欢迎来电查询。
北京分公司：北京海淀区知春路 132 号中发电子大厦 3097 号
TEL：010－81159046 8261502013501189838 FAX：010－62543996
上海分公司：上海市北京东路 668 号上海賽格电子市场 D125号
TEL：021－28311762 5670303713701955389 FAX：021－56703037
西安分公司：西安高新开发区 20 所（中国电子科技集团导航技术研究所）
西安劳动南路 88 号电子商城二楼 D23号
TEL：029－81022619 13072977981 FAX：029－88789382

[^0]: 1d. Various types of compression result in the circuit shown in Fig. 1a, depending on the bias voltages at the gates of M1 and M2. A compressed output is caused by the tuming on of the shunt switch (M2), thereby diverting the input signal from appearing at the output node.

