

Introduction

The performance of PE3236 and Qualcomm Q3236 was characterized and compared at a VCO frequency slightly above 2 GHz. This data included phase noise, spurious signal levels, and lock times at comparison frequencies of 1, 2.5, and 5 MHz for temperatures of 25°C and 85°C.

The PE3236 was measured with the 3236 evaluation kit (PE3236-EK) and the Q3236 was measured with the Q0420 evaluation kit. The latter kit includes a divide-by-two prescaler preceding the RF input.

AN9: Application Note

Performance Advantages of the PE3236 compared to Qualcomm's Q3236

Features

- PE3236 offers 10 dB of phase noise improvement over Q3236
- PE3236 consumes only onetenth the power of Q3236
- These advantages are achieved without any penalty in reference spurs, lock time, or temperature stability

The comparison of the PE3236 versus the Q3236 demonstrates the following:

- Lower power consumption. The PE3236 consumes 48 mW; the Q3236 consumes 540 mW.
- Lower phase noise. At an output frequency of 2.15 GHz and comparison frequency of 1 MHz, the phase noise of the PE3236 at 1 and 10 kHz offsets is -88 and -93 dBc / Hz, respectively. The Q3236's phase noise at the same offset is -82 and -81 dBc / Hz, a 6 to 12 dB difference. The RMS noise integrated from 10 Hz to 1 MHz measures 0.61 and 2.28 degrees for the PE3236 and Q3236 devices respectively, an advantage of almost 4x for the Peregrine device.
- *Improved spur levels*. Reference spurs of the PE3236 are from 10 to 20 dB better over temperature and comparison frequency. (Spur measurements are loop filter and board dependent due to the active filter implementation of the designs. Both evaluation boards were tuned for optimum spur performance.)
- Comparable, fast lock time. The lock times range from 71 µs to 80 µs to settle to within 10 kHz of the final frequency, and from 122 µs to 133 µs to settle to within 1 kHz. These measurements were taken at a comparison frequency of 1 MHz with a slightly lower loop bandwidth (80 kHz vs. 100 kHz) on the Peregrine board.
- Comparable temperature stability. The temperature dependence of spurs and lock time between 25° to 85°C was negligible for all three parts. The change in PE3236 phase noise is negligible at offsets of 5 kHz and above, and bounded to 4 dB or less in the neighborhood of 1 kHz offset. The change in phase noise for the Q3236 due to temperature was less than 2 dB.

Table 1. Setup

Part	EV Board	VCO	Кусо	Loop Filter	LF BW
PE9601	PE9600	MW 520	95 MHz / V	2 nd order passive	70 kHz @ f _c =1 MHz
PE3236	PE9600	MW 514	79 MHz / V	2 nd order active	50 kHz @ f _c =1 MHz
Q3236	Q0420*	MS3500C-2032T	114 MHz / V	2 nd order active	50 kHz @ f _c =1 MHz

* On-board divide-by-two prescaler was used.

The HP8561E spectrum analyzer was used for all phase noise measurements. A Vectron 10-MHz low noise crystal oscillator with a LVCMOS buffer was used as the reference for both the PLL and the spectrum analyzer.

Table 2.	Program	Parameters	(Note: 10 MHz reference frequency.)
----------	---------	------------	-------------------------------------

Parts	Fvco (MHz)	f _c (MHz)	R	М	Α
		1	9	188	5
PE9601	1895	2.5	3	74	8
		5	1	36	9
		1	9	214	0
PE3236	2150	2.5	3	85	8
		5	1	42	0
		1	9	106	5
Q3236*	2150	2.5	3	42	0
		5	1	20	5
		1	9	134	0
Q3236*	2700	2.5	3	53	0
		5	1	26	0

*On board divide-by-two prescaler was used.

Power Consumption

The voltage, current and power consumption are listed in Table 3. The Peregrine devices draw only 10% to 12% of the power required by the Q3236.

Table 3. Power Consumption Results

PLL	PE9601	PE3236	Q3236	
Vcc (V)	3	3	5	
Icc (mA)	21	16	108	
Power (mW)	63	48	540	

Lock Time

A frequency change of 40 MHz was commanded, and the time to settle to within 10, 1, and 0.2 kHz of the final frequency was measured. Table 4 lists the actual frequencies and VCO tuning voltages used.

Table 4. Lock Frequency and VCO Tuning Voltage

Part	Frequency Transition (40 MHz)
PE9601	From 1885 MHz (Vt = 1.412 V) to 1925 MHz (Vt = 1.814 V)
PE3236	From 2130 MHz (Vt = 1.225 V) to 2170 MHz (Vt = 1.772 V)
Q3236	From 2500 MHz (Vt = 7.04 V) to 2540 MHz (Vt = 7.39 V)

Table 5 shows the measured lock times at comparison frequencies of 1, 2.5, and 5 MHz and temperatures of 25°C and 85°C. Lock time improves as f_c increases. In some cases, the Q3236 locked up slightly faster than the PE9601 and PE3236. Temperature has very little effect on the lock time.

 Table 5. Lock Time Comparison Frequency and Temperature

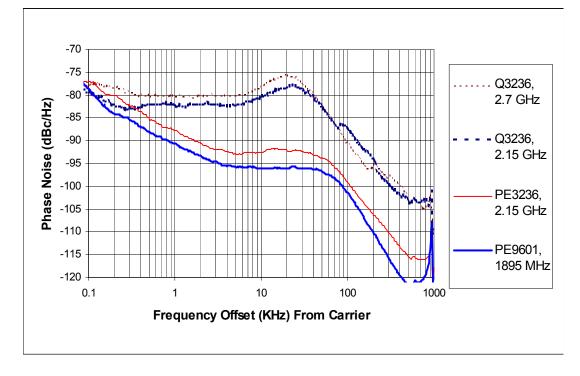
		Loc	k Time (us) at 2	25° C	Lock Time (us) at 85° C			
Part	f _c (MHz)	to +/- 10 kHz	to +/- 1 kHz	to +/- 200 kHz	to +/- 10 kHz	to +/- 1 kHz	to +/- 200 kHz	
	1	80	133	178	58	122	222	
PE9601	2.5	62	122	178	62	111	178	
	5	58	122	156	58	100	156	
	1	76	122	200	67	122	200	
PE3236	2.5	71	111	200	71	122	200	
	5	71	111	178	67	122	178	
	1	71	122	156	76	122	156	
Q3236	2.5	44	88	156	49	78	156	
	5	49	89	156	49	78	156	

Phase Noise and Spur

The measured phase noise and spurious signal level at comparison frequencies of 1, 2.5, and 5 MHz and temperatures of 25°C and 85°C are shown in Table 6.

Table 6. Phase Noise and Spur Comparison	Table 6.	Phase	Noise	and S	pur Com	parison
--	----------	-------	-------	-------	---------	---------

					Phase Noise (dBc / Hz) at offset				
Part	f _c (MHz)	fvco (MHz)	Temp (°C)	Spur (dBc)	100 Hz	1 kHz	10 kHz	100 kHz	RMS noise (Deg.)
PE9601	1	1895	25	-47	-78.7	-90.7	-96.0	-101.3	0.48
PE9001	1	1095	85	-47	-76.3	-86.5	-95.0	-101.3	0.51
PE3236	1	2150	25	-55	-77.0	-87.7	-92.7	-99.2	0.61
PE3230	1	2150	85	-64	-75.3	-86.2	-90.8	-98.7	0.69
Q3236	1	2150	25	-44	-79.0	-82.3	-80.5	-87.5	2.28
Q3230	1	2150	85	-42	-79.0	-81.3	-80.2	-87.5	2.4
02226	1	2700	25	-41	-77.8	-80.3	-78.0	-90.8	2.55
Q3230	3236 1 2700	2700	85	-41	-76.5	-80.0	-77.8	-89.3	2.76
	2.5	1905	25	-48	-76.2	-91.3	-98.3	-100.7	0.5
PE9001	PE9601 2.5 1895	1095	85	-48	-79.2	-87.2	-97.8	-100.7	0.44
PE3236	2.5	0.5 0450	25	-62	-79.8	-89.8	-96.5	-98.5	0.49
FE3230	3236 2.5 2150	85	-54	-77.3	-87.2	-94.0	-98.3	0.57	
Q3236	00000 0.5	0450	25	-45	-84.7	-86.8	-85.8	-89.0	1.62
Q3230	2.5	2150	85	-43	-84.7	-86.7	-86.3	-88.3	1.66
Q3236	2.5	2700	25	-45	-82.3	-84.8	-83.8	-89.0	1.92
Q3230	2.5	2700	85	-42	-80.7	-85.3	-84.0	-87.7	1.88
	PE9601 5 1895	1905	25	-51	-73.3	-91.5	-98.7	-102.2	0.47
FE9001		1695	85	-51	-76.3	-87.0	-98.5	-101.8	0.46
PE3236	5 0450	2150	25	-60	-79.5	-90.2	-97.8	-100.0	0.5
PE3236 5	2150	85	-47	-75.5	-87.2	-96.2	-99.0	0.56	
Q3236	5	2150	25	-50	-84.3	-90.5	-89.9	-99.0	1.33
Q3230	5	2100	85	-46	-85.8	-90.0	-90.0	-89.2	1.5
Q3236	5	2700	25	-48	-83.7	-88.0	-87.8	-89.0	1.46
Q3230	5	2700	85	-45	-82.7	-87.8	-87.2	-88.3	1.90


Q3236, PE3236 and PE9601 Phase Noise Comparisons

Figures 1-6 directly compares the phase noise performance of the PE9601, PE3236, and Q3236 devices. In general, the phase noise of the PE3236 and PE9601 is better than that of Q3236. For some comparison frequencies (f_c) this difference can be dramatic. A comparison frequency of 1 MHz results in the largest difference in performance This difference decreases as f_c increases and a 1/f phase noise floor in the Peregrine devices limits improvement.

Figures 4-6 compares the 85°C phase noise of PE9601, PE3236, and Q3236. Peregrine devices continue to provide a significant performance advantage over temperature.

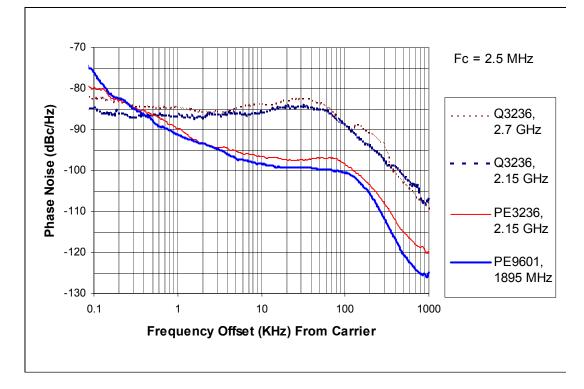
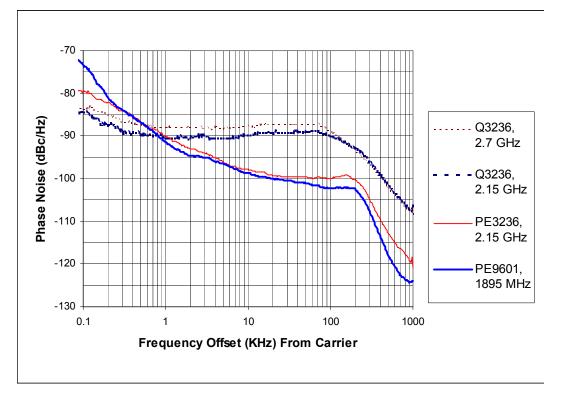
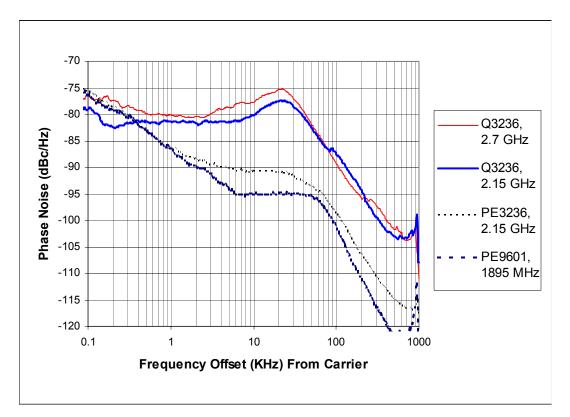

Figures 7-12 shows how temperature affects the phase noise of the three devices. There is only a very slight degradation of phase noise as temperature increases. This degradation holds for each of the three parts.

Figure 1. Phase Noise of PE9601, PE3236, and Q3236 at $f_c = 1$ MHz, 25°C

Figure 2. Phase Noise of PE9601, PE3236 and Q3236 at f_c =2.5 MHz, 25°C

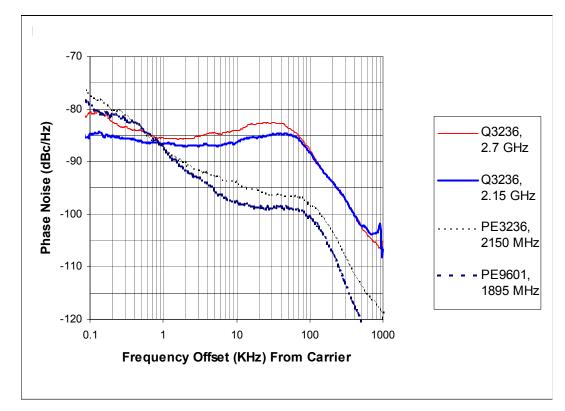

Figure 3. Phase Noise of PE9601, PE3236 and Q3236 at f_c =5 MHz, 25°C

Figure 4. Phase Noise of PE9601, PE3236 and Q3236 at f_c =1 MHz, 85°C

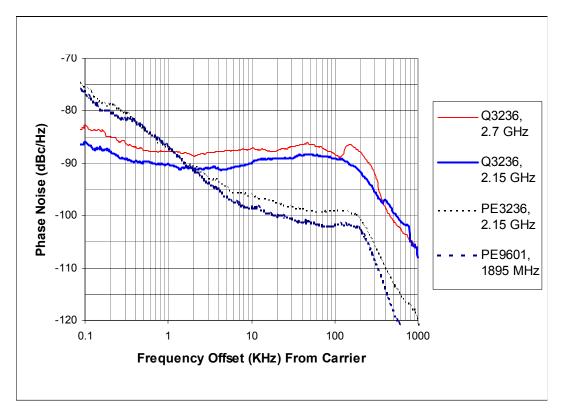
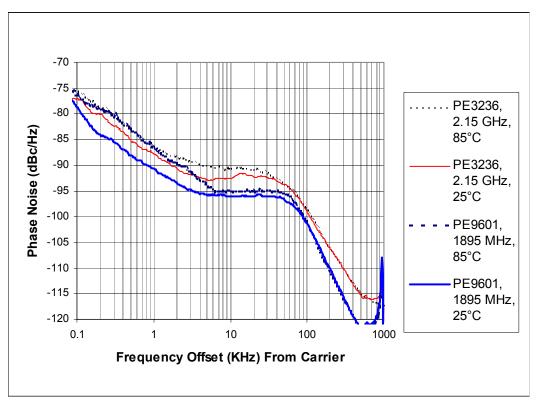
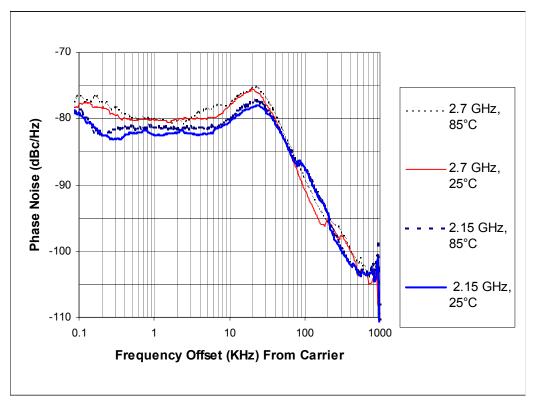

Copyright © Peregrine Semiconductor Corp. 2003

Figure 5. Phase Noise of PE9601, PE3236 and Q3236 at f_c =2.5 MHz, 85°C

Figure 6. Phase Noise of PE9601, PE3236 and Q3236 at f_c =5 MHz, 85°C

Copyright © Peregrine Semiconductor Corp. 2003

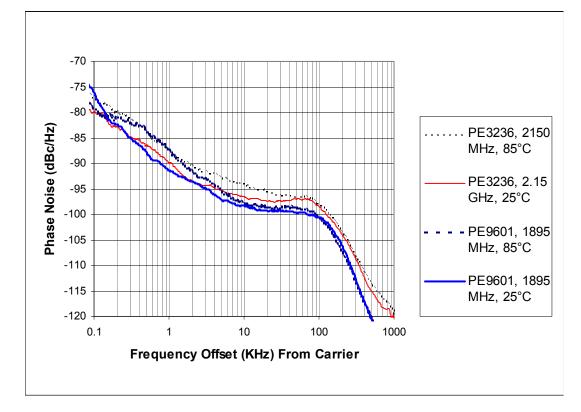

Figure 7. Temperature Effect of Phase Noise on PE3236 and PE9601 at f_c =1 MHz

Figure 8. Temperature Effect of Phase Noise on Q3236 at $f_{\rm c}$ =1 MHz

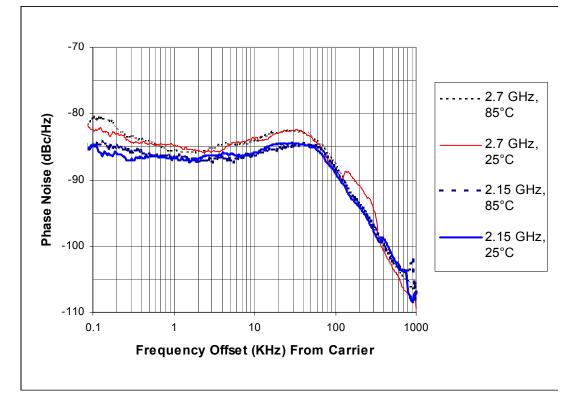

Copyright © Peregrine Semiconductor Corp. 2003

Figure 9. Temperature Effect on Phase Noise of PE3236 and PE9601 at f_c =2.5 MHz

Figure 10. Temperature Effect on Phase Noise of Q3236 at f_c =2.5 MHz

Copyright © Peregrine Semiconductor Corp. 2003

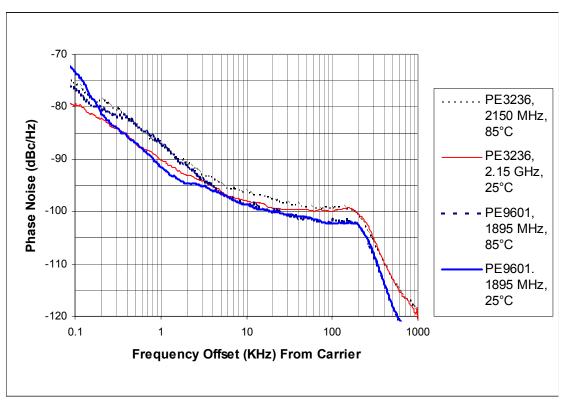
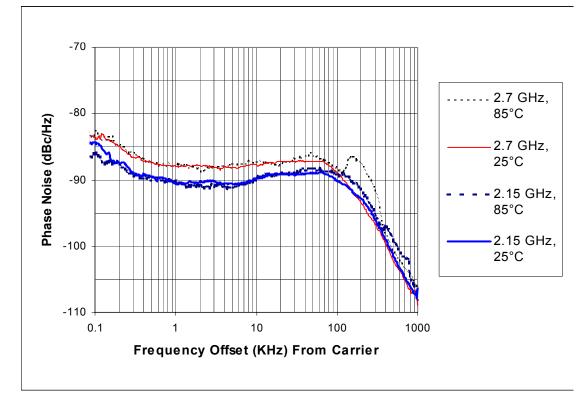



Figure 11. Temperature Effect on Phase Noise of PE3236 and PE9601 at f_c =5 MHz

Figure 12. Temperature Effect of Phase Noise of Q3236 at f_c =5 MHz

Copyright © Peregrine Semiconductor Corp. 2003

Sales Offices

United States

Peregrine Semiconductor Corp.

6175 Nancy Ridge Drive San Diego, CA 92121 Tel 1-858-455-0660 Fax 1-858-455-0770

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F- 92380 Garches Tel 33-1-47-41-91-73 Fax 33-1-47-41-91-73

Japan

Peregrine Semiconductor K.K.

5A-5, 5F Imperial Tower 1-1-1 Uchisaiwaicho, Chiyoda-ku Tokyo 100-0011 Japan Tel: 03-3507-5755 Fax: 03-3507-5601

Australia

Peregrine Semiconductor Australia 8 Herb Elliot Ave. Homebush, NSW 2140 Australia Tel: 011-61-2-9763-4111 Fax: 011-61-2-9746-1501

For a list of representatives in your area, please refer to our Web site at: http://www.peregrine-semi.com

Application Note Identification

No patent rights or licenses to any circuits described in this application note are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications. Peregrine products are protected under one or more of the following U.S. patents: 6,090,648; 6,057,555; 5,973,382; 5,973,363; 5,930,638; 5,920,233; 5,895,957; 5,883,396; 5,864,162; 5,863,823; 5,861,336; 5,663,570; 5,610,790; 5,600,169; 5,596,205; 5,572,040; 5,492,857; 5,416,043. Other patents may be pending or applied for.

Peregrine, the Peregrine logotype, Peregrine Semiconductor Corp., and UTSi are registered trademarks of Peregrine Semiconductor Corporation. Copyright © 2003 Peregrine Semiconductor Corp. All rights reserved.

