Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Description

32176 Group is a 32-bit, single-chip RISC microcomputer with built-in flash memory, which was developed for use in general industrial and household equipment.

To make full use of microcomputer built-in mass volume flash memory, this microcomputer contains a variety of peripheral functions ranging from two independent blocks of 16-channel A-D converters to 37-channel multifunction timers, 10-channel DMAs, 4-channel serial I/Os, and 1-channel real-time debugger. Also included 2-channel Full-CAN modules and JTAG (boundary scan facility).

With lower power consumption and low noise characteris tics also considered, these microcomputers are ideal for embedded equipment applications.

Features

M32R RISC CPU core

- Uses the M32R family RISC CPU core (Instruction set common to all microcomputers in the M32R family)
- · Five-stage pipelined processing
- Sixteen 32-bit general-purpose registers
- 16-bit/32-bit instructions implemented
- DSP function instructions (sum-of-products calculation using 56-bit accumulator)
- · Built-in flash memory
- · Built-in flash programming boot program
- Built-in RAM
- PLL clock generating circuit Multiply by 4
- Oscillation stop detection function
- Maximum operating frequency of the CPU clock M32176F4VFP/M32176F3VFP/M32176F2VFP

........... 32 MHz (when operating at -40°C to +125°C) M32176F4TFP/M32176F3TFP/M32176F2TFP

...... 40 MHz (when operating at -40°C to +85°C)

Single power supply: 5V (+0.5V) or 3.3V (+0.3V)

Table 1. Type Name List (32176 Group)

Table 1. Type Name List	32170 GIOU	Ρ)
Type Name	RAM Size	ROM Size
M32176F4VFP/M32176F4TFP	24K bytes	512K bytes
M32176F3VFP/M32176F3TFP	24K bytes	384K bytes
M32176F2VFP/M32176F2TFP	24K bytes	256K bytes

37-channel multijunction timers (MJT)

Multifunction timers are incorporated that support various purposes of use.

16-bit output related timers	11	channels
16-bit input/output related timers	10	channels
16-bit input related timers	. 8	channels
32-bit input related timers	. 8	channels

- Flexible configuration is possible through interconnection of timers.
- The internal DMAC and A-D converter can be started by a timer.

Real-time Debugger

- Includes dedicated clock-synchronized serial I/O that can read and write the contents of the internal RAM independently of the CPU.
- Can look up and update the data table in real time while the program is running.
- Can generate a dedicated interrupt based on RTD communication.

Abundant internal peripheral functions

In addition to the timers and real-time debugger, the microcomputer contains the following peripheral functions.

- A-D converters (Sample & hold function, Disconnection detector assist function, Injection current bypass circuit)
- Interrupt controller 23 interrupt sources, 8 priority levels
- Wait controller
- Full CAN (CAN Specification 2.0B active)2 channels
- JTAG (boundary scan function, Mitsubishi original SDI debug function)
- Port input threshold level select function 3 levels

Designed to operate at high temperatures

To meet the need for use at high temperatures, the microcomputer is designed to be able to operate in the temperature range of -40 to +125°C when CPU clock operating frequency = 32 MHz. When CPU clock operating frequency = 40 MHz, the microcomputer can be used in the temperature range of -40 to +85°C.

Note: • This does not guarantee continuous operation at 125°C. If you are considering use of the microcomputer at 125°C, please consult Mitsubishi.

Applications

Automobile equipment control (e.g., Engine, ABS, AT), industrial equipment system control, and high-function OA equipment (e.g., PPC)

Under Development

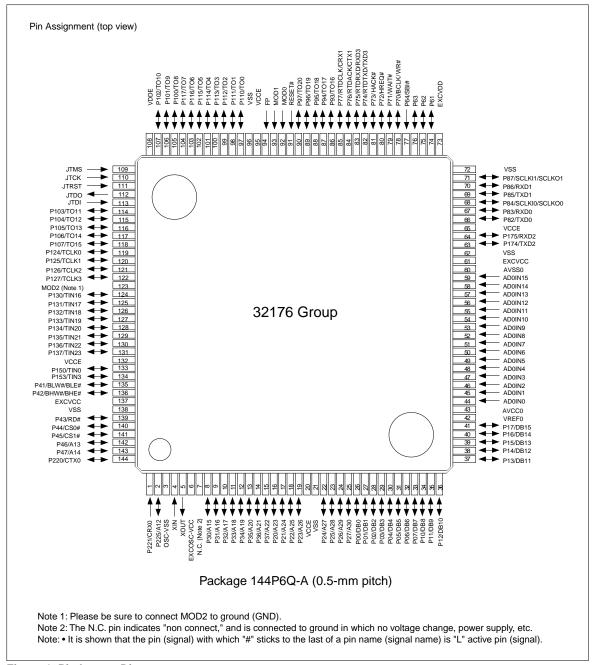


Figure 1. Pin Layout Diagram

Under Development

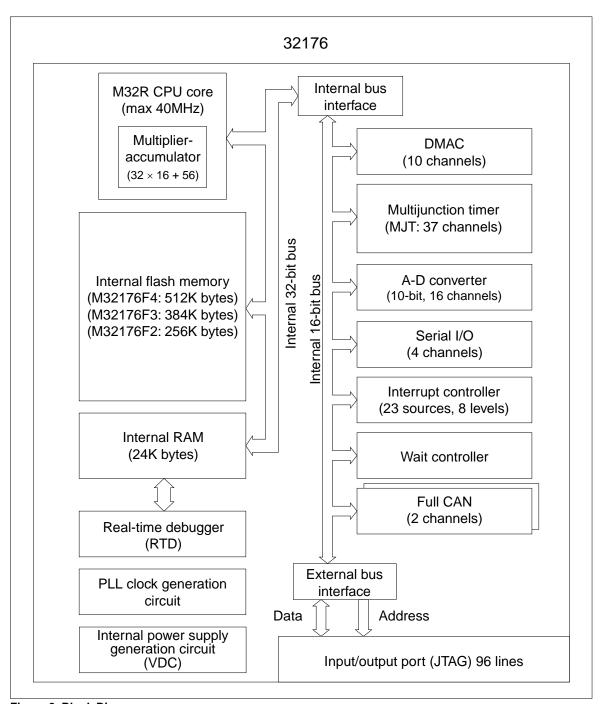


Figure 2. Block Diagram

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Table 2. Outline Performance (1/2)

Functional Block	Features
M32R CPU core	M32R family CPU core,internally configured in 32 bits
	Built-in multiplier-accumulator (32 x 16 + 56)
	Basic bus cycle: 25 ns (CPU clock frequency at 40 MHz, Internal peripheral clock frequency at 20 MHz)
	Logical address space: 4G bytes, linear
	General-purpose register: 32-bit register x 16, Control register: 32-bit register x 5
	accumulator: 56 bits
External data bus	16 bits data bus
Instruction set	16-bit/32-bit instruction formats
	83 instructions/9 addressing modes
Internal flash memory	M32176F4VFP/M32176F4TFP: 512K bytes
	M32176F3VFP/M32176F3TFP: 384K bytes
	M32176F2VFP/M32176F2TFP: 256K bytes
	Rewrite durability: 100 times
Internal RAM	24K bytes
DMAC	10 channels (DMA transfers between internal peripheral I/Os, between internal peripheral I/O and internal
	RAM, and between internal RAMs)
	Channels can be cascaded and can operate in combination with internal peripheral I/O
Multijunction timer	37 channels of multijunction timers
	• 16-bit output-related timers × 11 channels (single-shot, delayed single-shot)
	• 16-bit input/output-related timers × 10 channels (event count mode, single-shot, PWM, measurement)
	• 16-bit input-related timers x 8 channels (measurement, event count mode)
	• 32-bit input-related timers x 8 channels (measurement)
	Flexible timer configuration is possible through interconnection of channels using the event bus.
A-D converter	10-bit multifunction A-D converters
	• Input 16 channels
	• Scan-based conversion can be switched between N (N = 1-16) channels
	Capable of interrupt conversion during scan
	8-bit/10-bit readout function
	Sample & hold function
	Disconnection detector assist function
	Injection current bypass circuit
Serial I/O	4 channels (The serial I/Os can be set for synchronous serial I/O or UART. SIO2, SIO3 are UART mode only)
Real-time debugger (RTD)	1-channels dedicated clock-synchronized serial
	Entire area of internal RAM
	• Can access the internal RAM for read/rewrite from outside independently of the CPU, and also generate an
	exclusive-use interrupt.
Interrupt controller	Controls interrupts from internal peripheral I/Os
	(Priority can be set to one of 8 levels including interrupt disabled)
Wait controller	Controls wait when accessing external extended area
	(1 to 4 wait cycles inserted + prolonged by external WAIT# signal input)
CAN	Two channels, each having 16-channel message slots
CAN	

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Table 3. Outline Performance (2/2)

Function Block	Features
Clock	M32176F4VFP, M32176F3VFP, M32176F2VFP:
	CPU clock: maximum 32 MHz (for CPU, internal ROM, and internal RAM access)
	Internal peripheral clock (BCLK): maximum 16 MHz (for peripheral module access)
	External input clock (XIN): maximum 8 MHz, built-in × 4 PLL circuit
	M32176F4TFP, M32176F3TFP, M32176F2TFP:
	CPU clock: maximum 40 MHz (for CPU, internal ROM, and internal RAM access)
	Internal peripheral clock (BCLK): maximum 20 MHz (for peripheral module access)
	External input clock (XIN): maximum 10 MHz, built-in x 4 PLL circuit
Power Supply Voltage	5V (± 0.5V) or 3.3V (± 0.3V): single power supply voltage (The internal logic operates with 2.5V, however)
Operating temperature	M32176F4VFP, M32176F3VFP, M32176F2VFP:
range (Note 1)	-40 to +125°C (CPU clock 32 MHz, internal peripheral clock 16 MHz)
	M32176F4TFP, M32176F3TFP, M32176F2TFP:
	-40 to +85°C (CPU clock 40 MHz, internal peripheral clock 20 MHz)
Package	0.5mm pitches /144-pin plastic LQFP

Note 1: This does not mean that the microcomputer is guaranteed for continuous operation at 125°C. If 125°C applications are desired, please consult Mitsubishi.

Under Development

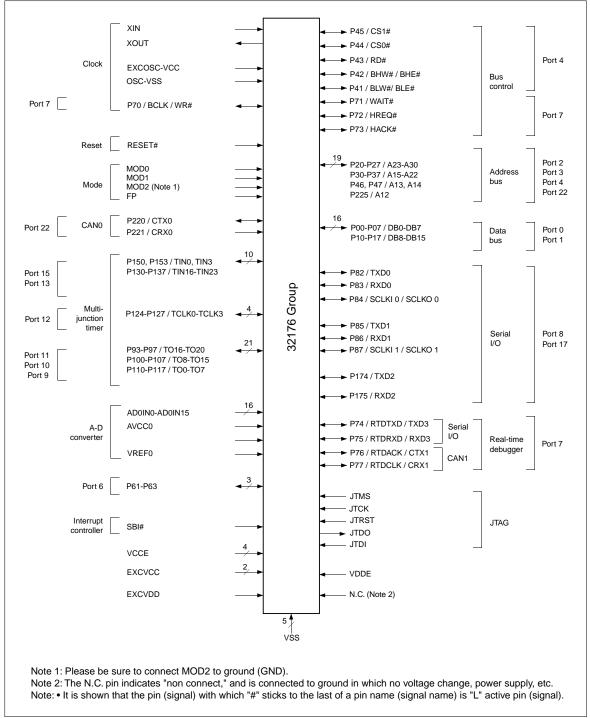


Figure 3. Pin Function Diagram

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Table 4. Description of Pin Function (1/4)

Туре	Pin	Name	Input/Output	Function		
Power	VCCE	Power supply	-	Power supp	ly (5.0V ±	± 0.5V or 3.3V ± 0.3V).
	EXCVCC	Internal power	-	External cap	acitance	connecting pin.
		supply				
	VDDE	RAM power supply	/ -	Internal RAM	√ backup	power supply (5.0V \pm 0.5V or 3.3V \pm 0.3V).
	EXCVDD	Internal power	-	Backup pow	er supply	for the internal RAM, external capacitance con
		supply of RAM		necting pin.		
	VSS	Ground	-	Connect all	VSS pins	to ground (GND).
Clock	XIN	Clock input	Input	Clock input/	output pir	ns. These pins contain a PLL-based
	XOUT	Clock output	Output	frequency m	ultiply-by-	4, so input the clock whose frequency is quarter
					g frequenc	cy. (XIN input = 10 MHz when CPU clock operates
				at 40 MHz)		
	BCLK	System clock	Output	-		the externally sourced clock frequency, XIN
				•	iternal CF	PU memory clock is 80 MHz, BCLK output = 20
				MHz).	nut when	external sync design is desired.
	EXCOSC	Internal power		External capacitance connecting pin.		
	-VCC	supply		External cap	acitarioc	connecting pin.
	OSC-VSS	Ground	-	Connect OSC-VSS to ground.		
Reset	RESET#	Reset	Input	This pin resets the internal circuits.		ternal circuits.
Mode	MOD0,	Mode	Input	These pins set an operation mode.		eration mode.
	MOD1			MOD0	MOD1	Mode
				0	0	Single-chip mode
				0	1	Expanded external mode
				1	0	Processor mode
						(Boot mode) (Note 1)
	-			1	1	(Reserved)
	MOD2	Mode	Input	Please be s	ure to cor	nnect MOD2 to ground (GND).
Flash-only	FP	Flash Protect	Input	This pin pro	tects the	flash memory against E/W in hardware.
Address	A12-A30	Address	Output	19 lines of a	ddress bu	us (A12-A30) are provided to accommodate two
bus		bus		channels of	1 MB me	mory space (max.) connected external to the
				chip. A31 is	not outpu	ut.
Data bus	DB0-DB15	Data bus	Input/output	This is a 16-	bit data bı	us connecting to an external device. During write
				cycle, the mi	crocompu	ter outputs BHW# or BLW# to indicate the valid
				byte write po	sition of t	he 16-bit data bus. During read cycle, the micro
				computer always reads the full 16-bit data bus. Transferred to the intern-		
				circuit of the	M32R, ho	owever, is the data at only the valid byte position.

Note 1: In boot mode, the FP pin must be at the high level.

Under Development

Table 5. Description of Pin Function (2/4)

Туре	Pin	Name	Input/Output	Function
Bus Control	CS0#, CS1#	Chip select	Output	Chip select signals for external devices.
	RD#	Read	Output	This signal is output when reading external devices.
	WR#	Write	Output	This signal is output when writing external devices.
	BHW#	Byte High Write	Output	When writing to an external device, this signal indicates the valid byte
	BLW#	Byte Low Write	Output	position to which data is transferred. BHW# and BLW# correspond to the upper address side (bits 0-7 are valid) and the lower address side (bits 8-15 are valid), respectively.
	BHE#	Byte High Enable	Output	During an external device access, this signal indicates that the high- order data (bits 0-7) is valid.
	BLE#	Byte Low Enable	Output	During an external device access, this signal indicates that the low-order data (bits 8-15) is valid.
	WAIT#	Wait	Input	If WAIT# input is low when the M32R accesses external devices, the wait cycle extended.
	HREQ#	Hold request	Input	This pin is used by an external device to request control of the external bus. The M32R goes to a hold state when HREQ# input is pulled low.
	HACK#	Hold acknowledge	Output	This signal indicates to the external device that the M32R has entered a hold state and relinquished control of the external bus.
Multijunction timer	TIN0, TIN3 TIN16-TIN23	Timer input	Input	Input pin for multijunction timer.
	TO0 -TO20	Timer output	Output	Output pin for multijunction timer.
	TCLK0 -TCLK3	Timer clock	Input	Clock input pin for multijunction timer.
A-D converter	AVCC0	Analog power upply	-	AVCC0 is the power supply for the A-D0 converters. Connect AVCC0 to the power supply (5V or 3.3V).
	AVSS0	Analog ground	-	AVSS0 is the analog ground for the A-D0 converters. Connect to AVSS0 ground.
	AD0IN0 -AD0IN15	Analog input	Input	16-channel analog input pin for A-D0 converter.
	VREF0	Reference voltage input	Input	VREF0 is the reference voltage input pin (5V or 3.3V) for the A-D0 converters.
Interrupt controller	SBI#	System break interrupt	Input	System break interrupt (SBI) input pin of the interrupt controller.

Under Development

Table 6. Description of Pin Function (3/4)

Туре	Pin	Name	Input/Output	Function
Serial I/O	SCLKI0/	UART transmit/	Input/output	When Channel 0 is in UART mode:
	SCLKO0	receive clock		Clock output derived from BRG output by dividing it by 2
		output or CSIO		When Channel 0 is in CSIO mode:
		transmit/receive		Transmit/receive clock input when external clock is selected
		clock input/output		Transmit/receive clock output when internal clock is selected
	SCLKI1/	UART transmit/	Input/output	When Channel 1 is in UART mode:
	SCLKO1	receive clock		Clock output derived from BRG output by dividing it by 2
		output or CSIO		When Channel 1 is in CSIO mode:
		transmit/receive		Transmit/receive clock input when external clock is selected
		clock input/output		Transmit/receive clock output when internal clock is selected
	TXD0	Transmit data	Output	Transmit data output pin of serial I/O channel 0
	RXD0	Receive data	Input	Receive data input pin of serial I/O channel 0
	TXD1	Transmit data	Output	Transmit data output pin of serial I/O channel 1
	RXD1	Receive data	Input	Receive data input pin of serial I/O channel 1
	TXD2	Transmit data	Output	Transmit data output pin of serial I/O channel 2
	RXD2	Receive data	Input	Receive data input pin of serial I/O channel 2
	TXD3	Transmit data	Output	Transmit data output pin of serial I/O channel 3
	RXD3	Receive data	Input	Receive data input pin of serial I/O channel 3
Real-time	RTDTXD	Transmit data	Output	Serial data output pin of the Real-time Debugger
Debugger	RTDRXD	Receive data	Input	Serial data input pin of the Real-time Debugger
	RTDCLK	Clock input	Input	Serial data transmit/receive clock input pin of the Real-time Debugger
	RTDACK	Acknowledge	Output	This pin outputs a low pulse synchronously with the Real-time
				Debugger's first clock of serial data output word. The low pulse width
				indicates the type of the command/data the Real-time Debugger has
				received.
CAN	CTX0, CTX1	Transmit data	Output	Data output pin from CAN module.
	CRX0, CRX1	Receive data	Input	Data input pin to CAN module.
JTAG	JTMS	Test mode	Input	Test select input for controlling the test circuit's state transition.
	JTCK	Clock	Input	Clock input to the debugger module and test circuit.
	JTRST	Test reset	Input	Test reset input for initializing the test circuit asynchronously.
	JTDO	Serial output	Output	Serial output of test instruction code or test data.
	JTDI	Serial input	Input	Serial input of test instruction code or test data.

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Table 7. Description of Pin Function (4/4)

Туре	Pin	Name	Input/Output	Function
Input/output	P00-P07	Input/output port 0	Input/output	Programmable input/output port.
Port (Note 1)	P10-P17	Input/output port 1	Input/output	Programmable input/output port.
	P20-P27	Input/output port 2	Input/output	Programmable input/output port.
	P30-P37	Input/output port 3	Input/output	Programmable input/output port.
	P41-P47	Input/output port 4	Input/output	Programmable input/output port.
	P61-P63	Input/output port 6	Input/output	Programmable input/output port.
	P70-P77	Input/output port 7	Input/output	Programmable input/output port.
	P82-P87	Input/output port 8	Input/output	Programmable input/output port.
	P93-P97	Input/output port 9	Input/output	Programmable input/output port.
	P100-P107	Input/output port 10	Input/output	Programmable input/output port.
	P110-P117	Input/output port 11	Input/output	Programmable input/output port.
	P124-P127	Input/output port 12	Input/output	Programmable input/output port.
	P130-P137	Input/output port 13	Input/output	Programmable input/output port.
	P150, P153	Input/output port 15	Input/output	Programmable input/output port.
	P174, P175	Input/output port 17	Input/output	Programmable input/output port.
	P220, P221	Input/output port 22	Input/output	Programmable input/output port.
	P225			(However, P221 is an input-only port)

Note 1: Input/output port 5 is reserved for future use. Input/output ports 14, 16, 18, 19, 20 and 21 do not exist.

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Outline of the CPU core

The M32176 Group uses the M32R RISC CPU core, and has an instruction set which is common to all microcomputers in the M32R family.

Instructions are processed in five pipelined stages consisting of instruction fetch, decode, execution, memory access, and write back. Thanks to its "out-of-order-completion" mechanism, the M32R CPU allows for clock cycle efficient, instruction execution control.

The M32R CPU internally contains sixteen 32-bit general-purpose registers. The instruction set consists of 83 discrete instructions, which come in either 16-bit or 32-bit instruction format. Use of the 16-bit instruction format helps to reduce the program code size. Also, the availability of 32-bit instructions facilitates programming and increases the performance at the same clock speed, as compared to architectures with segmented address spaces.

Multiply-Accumulate instructions comparable to DSP

The M32R CPU contains a multiplier/accumulator that can execute 32-bit × 16-bit in one cycle. Therefore, it executes a 32-bit × 32-bit integer multiplication instruction in three cycles. Also, the M32R CPU supports the following four multiply-Accumulate instructions (or multiplication instructions) for DSP function use.

- (1) 16 high-order register bits x 16 high-order register bits
- (2) 16 low-order register bits x 16 low-order register bits
- (3) All 32 register bits x 16 high-order register bits
- (4) All 32 register bits x 16 low-order register bits

Furthermore, the M32R CPU has instructions for rounding the value stored in the accumulator to 16 or 32-bit, and instructions for shifting the accumulator value to adjust digits before storing in a register. Because these instructions also can be executed in one cycle, DSP comparable data processing capability can be obtained by using them in combination with high-speed data transfer instructions such as Load & Address Update or Store & Address Update.

Three operation modes

The M32176 Group has three operation modes: single-chip mode, external extended mode, and processor mode. These operation modes are changed from one to another by setting the MOD0 and MOD1 pins.

Address space

The 32176 Group's logical address is always handled in width of 32-bit, providing a linear address space of up to 4G bytes. The 32176's address space is divided into the following spaces.

User space

A 2G-byte area from H'0000 0000 to H'7FFF FFFF is the user space. Located in this space are the user ROM area, external extended area, internal RAM area, and SFR (Special Function Register) area (internal peripheral I/O registers). Of these, the user ROM area and external extended area are located differently depending on mode settings.

System space

A 2G-byte area from H'8000 0000 to H'FFFF FFFF is the system area. This space is reserved for use by development tools such as an in-circuit emulator and debug monitor, and cannot be used by the user.

Under Development

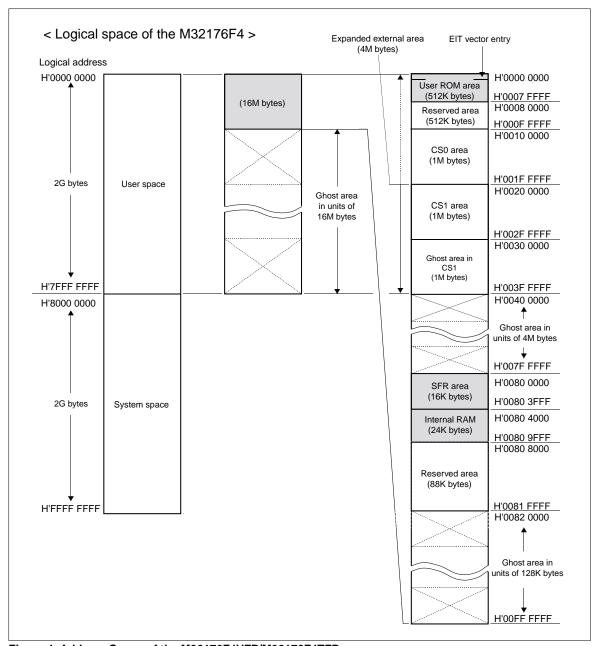


Figure 4. Address Space of the M32176F4VFP/M32176F4TFP

Under Development

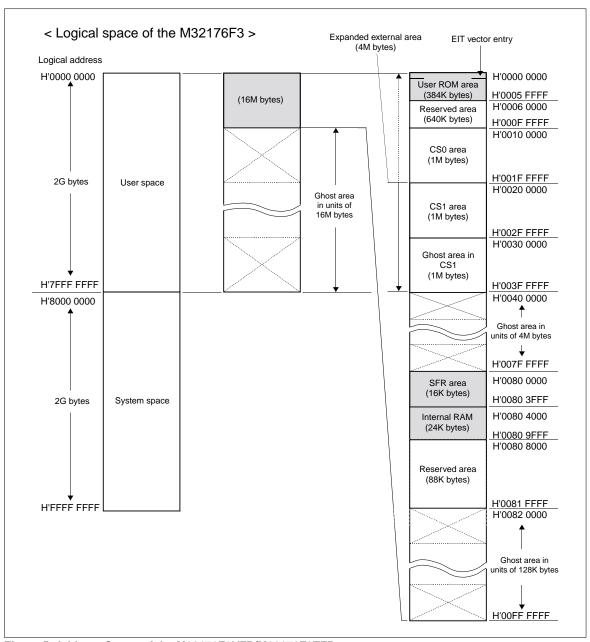


Figure 5. Address Space of the M32176F3VFP/M32176F3TFP

Under Development

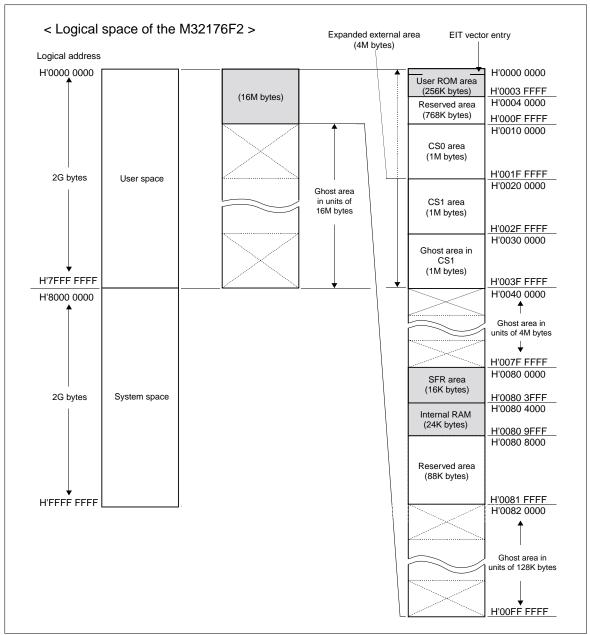


Figure 6. Address Space of the M32176F2VFP/M32176F2TFP

Under Development

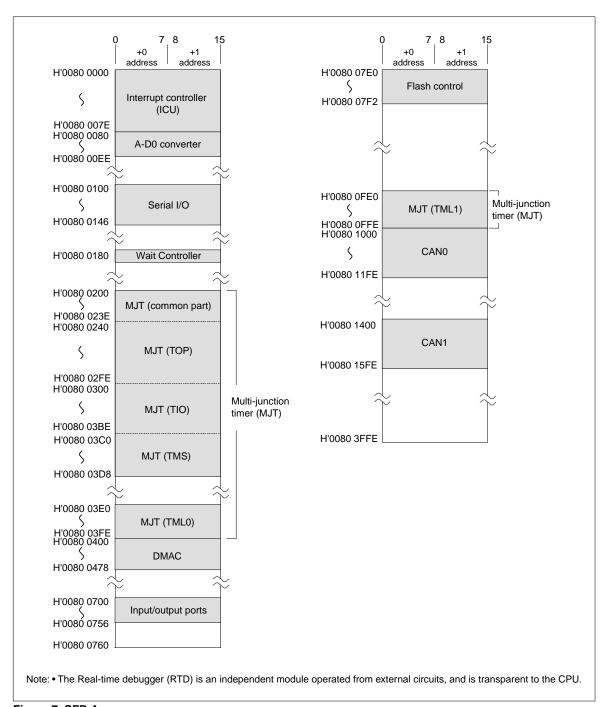
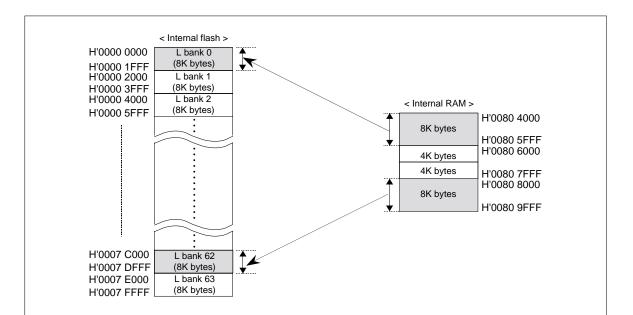


Figure 7. SFR Area

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Built-in flash memory and RAM


The M32176F4VFP/M32176F4TFP contains 512K bytes flash memory and 24K bytes RAM, the M32176F3VFP/M32176F3TFP contains 384K bytes flash memory and 24K bytes RAM, the M32176F2VFP/M32176F2TFP contains 256K bytes flash memory and 24K bytes RAM.

The internal flash memory can be programmed while being mounted on the printed circuit board (on-board programming). Use of flash memory allows the same chip as those used in mass production to be used beginning with the development stage. This means that system development can be proceeded without having to change the printed circuit boards during the entire course, from prototype to mass production.

Built-in Virtual-Flash Emulation Function

Internal flash memory, which is divided from the first address in units of 8K bytes (L banks), can be replaced in 8K bytes blocks (H'0080 4000-H'0080 5FFF, H'0080 8000-H'0080 9FFF) from the beginning of the internal RAM. And also the internal flash memory, which is divided from the first address in units of 4K bytes area (All S banks), can be replaced within two 4K bytes areas (H'0080 6000-H'0080 7FFF).

This function allows parts of the program which are frequently changed during development to be altered or evaluated without having to reset the microcomputer each time. What's more, when combined with the realtime debugger, this function helps to reduce the program evaluation period, because data in the RAM can be rewritten without requiring any CPU load.

Notes: • If the same bank area is set in multiple virtual-flash bank registers and the virtual-flash emulation enable bit is enabled, the corresponding internal RAM area is assigned to either bank register according to the priority FELBANK0 > FESBANK1 > FELBANK1.

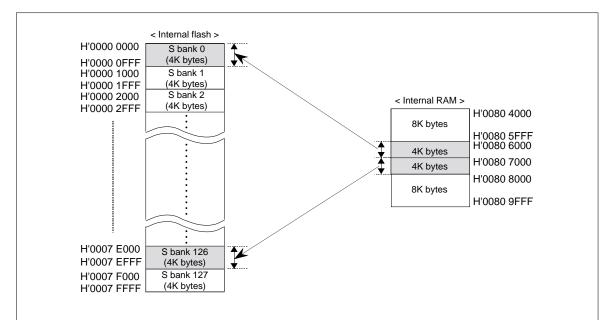

When access is made to the 8K bytes area (L bank) specified with virtual-flash bank register 0, the internal RAM area is
accessed. During virtual-flash emulation mode, RAM data can read and written to and from both the internal RAM area and
the virtual-flash setup area.

Figure 8. Virtual-Flash Emulation Areas of the M32176F4VFP/M32176F4TFP (Replaced in Units of 8K bytes)

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

- Notes: If the same bank area is set in multiple virtual-flash bank registers and the virtual-flash emulation enable bit is enabled, the corresponding internal RAM area is assigned to either bank register according to the priority FELBANK0 > FESBANK0 > FESBANK1 > FELBANK1.
 - When access is made to the 4K bytes area (S bank) specified with virtual-flash bank register 0 and 1, the internal RAM area is accessed. During virtual-flash emulation mode, RAM data can read and written to and from both the internal RAM area and the virtual-flash setup area.

Figure 9. Virtual-Flash Emulation Areas of the M32176F4VFP/M32176F4TFP (Replaced in Units of 4K bytes)

Virtual-Flash Emulation Areas of M32176F4VFP/M32176F4TFP, M32176F3VFP/M32176F3TFP, and M32176F2VFP/M32176F2TFP are shown as follows.

Table 8. Virtual-Flash Emulation Areas

Type Name	Virtual-Flash Emulation Areas
M32176F4VFP/M32176F4TFP	H'0000 0000-H'0007 FFFF
M32176F3VFP/M32176F3TFP	H'0000 0000-H'0005 FFFF
M32176F2VFP/M32176F2TFP	H'0000 0000-H'0003 FFFF

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Input/output Ports

The microcomputer has a total of 96 input/output ports P0-P22. (However, P5 is reserved for future use, P14, P16, and P18-P21 do not exist.) The input/output ports can be used as input ports or output ports by setting uptheir direction registers.

Each input/output port is a dual-function pin shared with otherinternal peripheral I/O or external extended bus signal lines. These pin functions are selected by using the chip operation mode select or the input/output port operation mode registers.

Table 9. Outline of Input/output Ports

Item	Specification	
Number of Port	Total 96 ports	
	P0 : P00-P07 (8 lines)	
	P1 : P10-P17 (8 lines)	
	P2 : P20-P27 (8 lines)	
	P3 : P30-P37 (8 lines)	
	P4 : P41-P47 (7 lines)	
	P6 : P61-P63 (3 lines)	
	P7 : P70-P77 (8 lines)	
	P8 : P82-P87 (6 lines)	
	P9 : P93-P97 (5 lines)	
	P10 : P100-P107 (8 lines)	
	P11 : P110-P117 (8 lines)	
	P12 : P124-P127 (4 lines)	
	P13 : P130-P137 (8 lines)	
	P15 : P150, P153 (2 lines)	
	P17: P174, P175 (2 lines)	
	P22 : P220, P221, P225 (3 lines)	
Port function	The input/output ports can be set for input or output mode bitwise by using the input/output port di	rection
	control register. (However, P221 is CAN input-only port.)	
Pin function	Dual-functions shared with peripheral I/O or external extended signals (or multi-functions shared w	ith periph
	eral I/Os which have multiple functions.)	
Pin function	P0-P4: Changed by setting CPU operation mode (MOD0 and MOD1 pins)	
changeover	P6-22: Changed by setting the input/output port operation mode register.	
	(However, peripheral I/O pin functions are selected using the peripheral I/O register.)	

Note: Input/output ports P14, P16, and P18-P21 do not exist.

Table 10. CPU Operation Modes and P0-P4 Pin Functions

MOD0	MOD1	Operation mode	Pin functions of P0-P4
VSS	VSS	Single-chip mode	Input/output port pin
VSS	VCCE	External extended mode	External extended signal pin
VCCE	VSS	Processor mode (FP pin = VSS)	Zixioniai dixeneda digital pin
VCCE	VCCE	Reserved (use inhibited)	-

Notes: • VCCE connects to power supply, and VSS connects to GND.

• MOD2 connects to GND.

Under Development

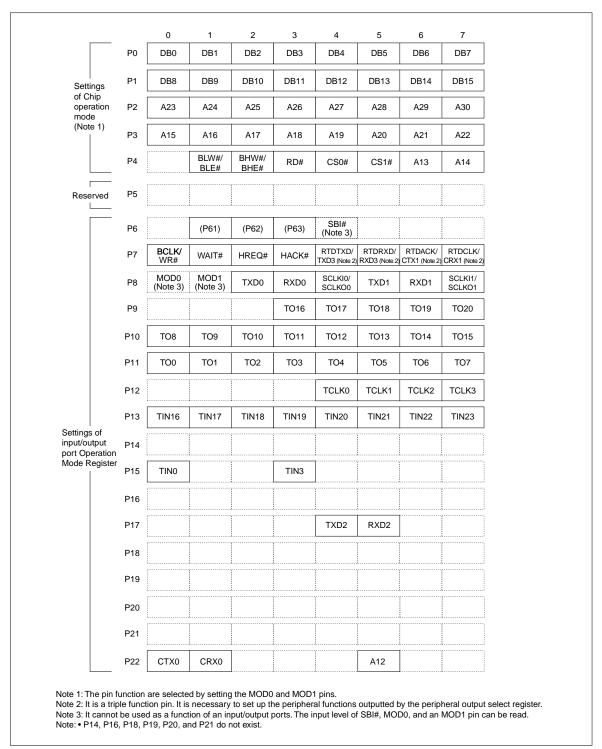


Figure 10. Input/output Ports and Pin Function Assignments

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Built-in 10-Channel DMAC

The microcomputer contains 10 channels of DMAC, allowing for data transfer between internal peripheral I/Os, between internal RAM and internal peripheral I/O, and between internal RAMs.

DMA transfer requests can be issued from the user-created software, as well as can be triggered by a signal generated by the internal peripheral I/O (A-D converter, timer, or serial I/O).

The microcomputer also supports cascaded connection between DMA channels (starting DMA transfer on a channel at end of transfer on another channel). This makes advanced transfer processing possible without causing any additional CPU load.

Table 11. Outline of the DMAC

Item	Content
Number of channels	10 channels
Transfer request	Software trigger
	• Request from internal peripheral I/O: A-D converter, timer, or serial I/O (reception completed,
	transmit buffer empty)
	Cascaded connection between DMA channels possible (Note 1)
Maximum number of times transferred	256 times
Transferable address space	• 64K bytes (address space from H'0080 0000 to H'0080 FFFF)
	• Transfers between internal peripheral I/Os, between internal RAM and internal peripheral IO,
	and between internal RAMs are supported
Transfer data size	16-bit or 8-bit
Transfer method	Single transfer DMA (control of the internal bus is relinquished for each transfer performed), dual-
	address transfer
Transfer mode	Single transfer mode
Direction of transfer	One of three modes can be selected for the source and destination of transfer:
	Address fixed
	Address increment
	32-channel ring buffer
Channel priority	DMA 0 > DMA 1 > DMA 2 > DMA 3 > DMA 4 > DMA 5 > DMA 6 > DMA 7 > DMA 8 > DMA 9
	(Fixed priority)
Maximum transfer rate	13.3M bytes per second (when internal peripheral clock = 20 MHz)
Interrupt request	Group interrupt request can be generated when each transfer count register underflows
Transfer area	64K bytes from H '0080 0000 to H '0080 FFFF (Transfer is possible in the entire internal RAM/
	SFR area)

Note 1: The following DMA channels can be cascaded.

DMA transfer on channel 1 started at end of one DMA transfer on DMA 0

DMA transfer on channel 2 started at end of one DMA transfer on DMA 1

DMA transfer on channel 0 started at end of one DMA transfer on DMA 2

DMA transfer on channel 4 started at end of one DMA transfer on DMA 3

DMA transfer on channel 6 started at end of one DMA transfer on DMA 5

DMA transfer on channel 7 started at end of one DMA transfer on DMA 6

DMA transfer on channel 5 started at end of one DMA transfer on DMA 7

DMA transfer on channel 9 started at end of one DMA transfer on DMA 8

DMA transfer on channel 5 started at end of all DMA transfers on DMA 0 (underflow of transfer count register)

Under Development

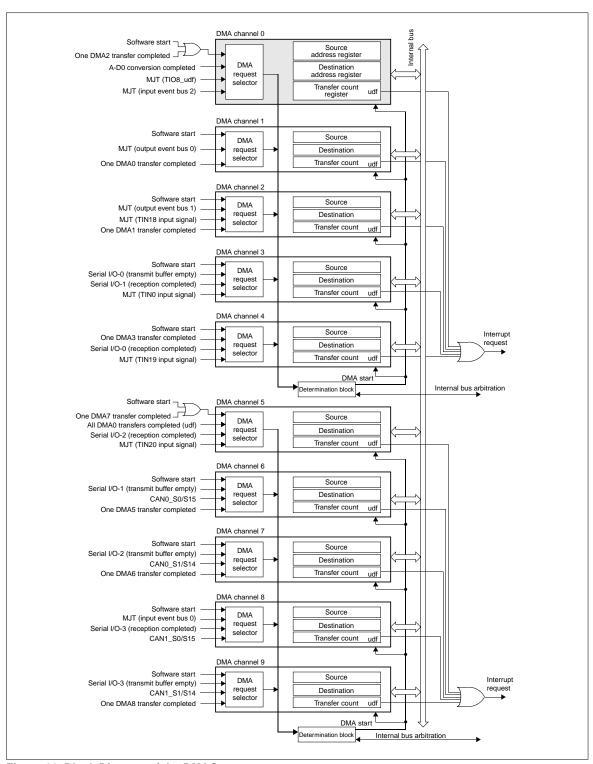


Figure 11. Block Diagram of the DMAC

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Built-in 37-channel multijunction timers (MJT)

The microcomputer contains a total of 37 channels of multijunction timers consisting of 11 channels of 16-bit output related timers, 10 channels of 16-bit input/output related timers, 8 channels of 16-bit input related timers, 8 channels of 32-bit input related timers. Each timer has multiple operation modes to choose from, depending on the purposes of use.

Also, the multijunction timers internally have a clock bus, input event bus, and an output event bus, so that multiple timers can be used in combination allowing for a flexible timer configuration. The output related timers have a correcting function that allows the timer's count value to be incremented or decremented as necessary while count is in progress, making real-time output control possible.

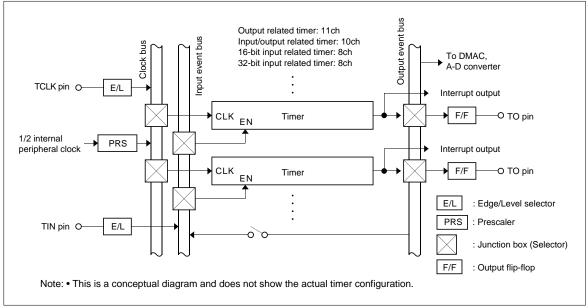


Figure 12. Conceptual Diagram of the Multijunction Timer (MJT)

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Table 12. Outline of the MJT

Name	Туре	Number of channels	Contents
TOP	Output related	11	One of three output modes is selected in software.
(Timer Output)	16-bit timer		<with correcting="" function=""></with>
	(down-counter)		Single-shot output mode
			Delayed single-shot output mode
			<without correcting="" function=""></without>
			Continuous output mode
TIO	Input/output related	10	One of three input modes and four output modes is selected in soft
(Timer Input	16-bit timer		ware.
Output)	(down-counter)		<input mode=""/>
			Measure clear input mode
			Measure free-run input mode
			Noise processing input mode
			<output correcting="" function="" mode="" without=""></output>
			PWM output mode
			Single-shot output mode
			Delayed single-shot output mode
			Continuous output mode
TMS	Input related	8	16-bit input measure timer.
(Timer Measure	16-bit timer		
Small)	(up-counter)		
TML	Input related	8	32-bit input measure timer.
(Timer Measure	32-bit timer		
Large)	(up-counter)		

Under Development

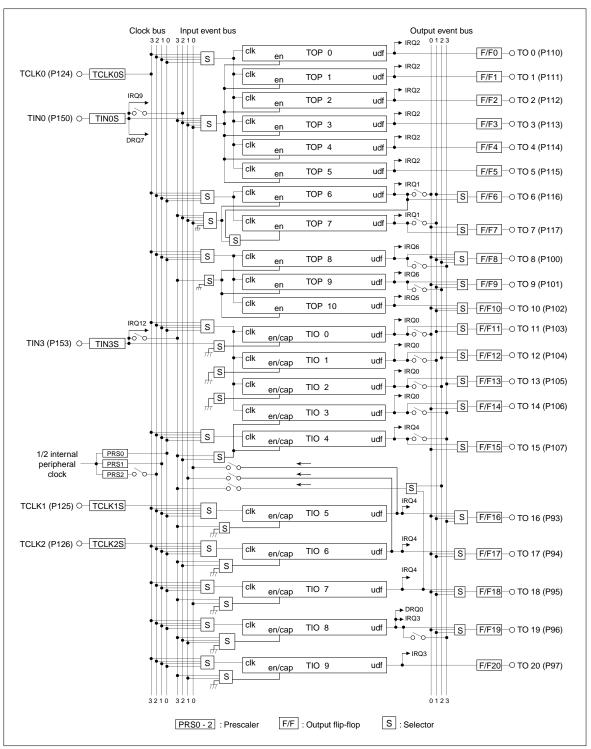


Figure 13. Block Diagram of Multijunction Timers (MJT) (1/3)

Under Development

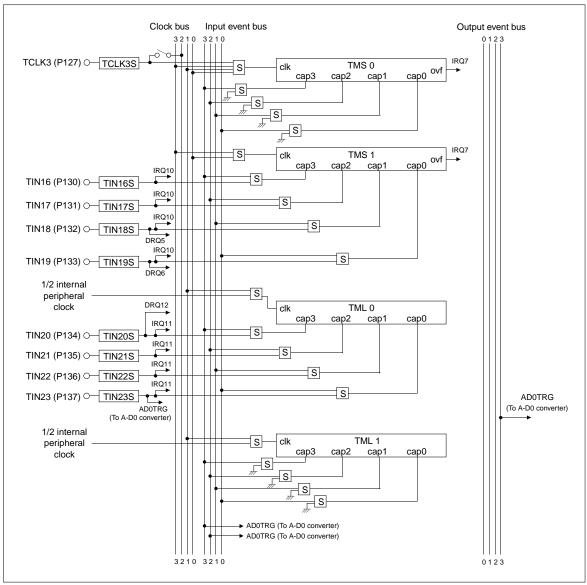


Figure 14. Block Diagram of Multijunction Timers (MJT) (2/3)

Under Development

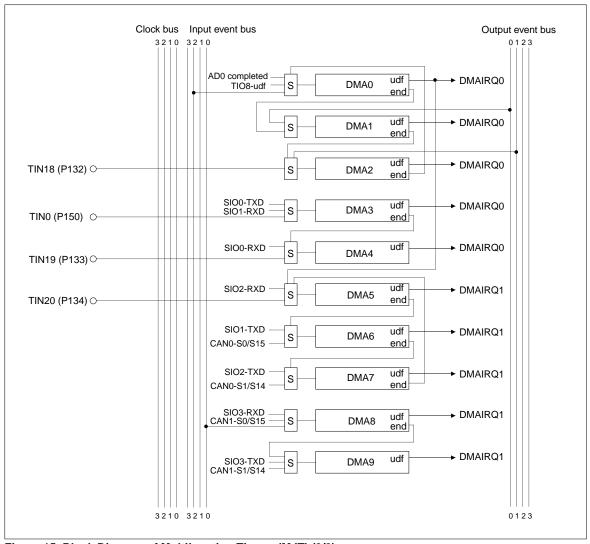


Figure 15. Block Diagram of Multijunction Timers (MJT) (3/3)

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

16-channel A-D Converters

The microcomputer contains 16-channel A-D0 converters with 10-bit resolution. In addition to single conversion on each channel, continuous A-D conversion on a combined group of N (N = 1-16) channels is possible. The A-D converted value can be read out in either 10-bit or 8-bit. In addition to ordinary A-D conversion, the converters support comparator mode in which the set value and A-D converted value are compared to determine which is larger or smaller than the other.

Moreover, there is also Sample & hold function, input voltage is sampled, when A-D conversion is started, and the A-D conversion of the sampling voltage is carried out.

Since there is no invalid domain near [which becomes a problem by the external operational amplifier etc.] VCCE/VSS, conversion by the full range is possible in this sample & hold circuit.

When A-D conversion is finished, the converters can generate a DMA transfer request, as well as an interrupt.

Table 13. Outline of the A-D Converters

Item	Content					
Analog input	16-channel					
A-D conversion method	Successive approximation method					
Resolution	10-bit (Conversion results can be read out in either 10 or 8-bit)					
Absolute accuracy (Note 1)	During low speed mode: Norm	al mode: ± 2 LSB, double speed mode: ± 2 LSB				
(conditions: Ta = 25°C,	During high speed mode: Norm	al mode: ± 3 LSB, double speed mode: ± 3 LSB				
AVCC0, 1 = VREF0, 1 = 5.12V)) Note: The performance is the same during sample & hold function.					
Conversion mode	A-D conversion mode, compara	itor mode				
Operation mode	Single mode, single-shot scan	mode, continuous scan i	mode			
Conversion start trigger	Software start Started by setting A-D conversion start bit to 1					
	Hardware start MJT input ev	ent bus 2, MJT input eve	ent bus 3, MJT outpu	t event bus 3, and	MJT (TIN23S	
Conversion Speed	During single mode	Low-speed mode	Normal	299 BCLK	14.95 μs	
f(BCLK): Internal peripheral	(Unavailable for Sample & Hold		Double speed	173 BCLK	8.65 μs	
clock operating frequency	Available for Normal	High-speed mode	Normal	131 BCLK	6.55 μs	
(Note 2)	Sample & Hold)		Double speed	89 BCLK	4.45 μs	
	During single mode	Low-speed mode	Normal	191 BCLK	9.55 μs	
	(Available for High-speed		Double speed	101 BCLK	5.05 μs	
	Sample & Hold)	High-speed mode	Normal	95 BCLK	4.75 μs	
			Double speed	53 BCLK	2.65 μs	
	During comparator mode	Low-speed mode	Normal	47 BCLK	2.35 μs	
			Double speed	29 BCLK	1.45 μs	
		High-speed mode	Normal	23 BCLK	1.15 µs	
			Double speed	17 BCLK	0.85 μs	
Sample & hold function	Validity/invalidity selectable					
A-D disconnection detection	Influences of the analog input v	oltage wrapping around	from the preceding	channel are suppi	ressed when	
assist function	operating scan mode.					
Interrupt request generation	When A-D conversion is finished, when comparate operation is finished					
	When single-shot scan is finish	<u> </u>		TINISNEO		
DMA transfer	When A-D conversion is finishe			finiahad		
request generation	When single-shot scan is finish	-				

Note 1: The rated value of conversion accuracy here is that of the microcomputer's own as a single unit which can be exhibited when themicrocomputer is used in an environment where it may not be affected by the power supply wiring or noise on the board.

Note 2: Conversion time at the time of f(BCLK) = 20 MHz operation (1 BCLK = 50 ns)

Under Development

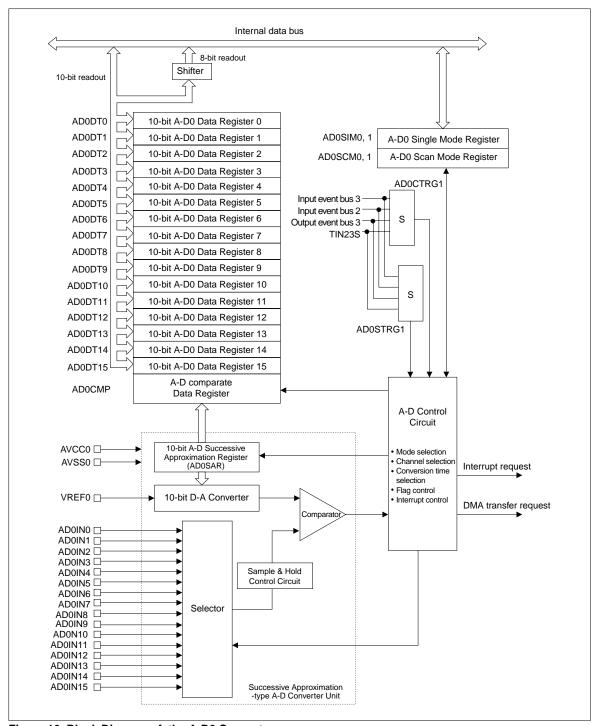


Figure 16. Block Diagram of the A-D0 Converter

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

4-channel High-speed Serial I/Os

The microcomputer contains 4 channels of serial I/Os consisting of four channels that can be set for CSIO mode (clock-synchronized serial I/O) or UART mode (asynchronous serial I/O) and two other channels that can only be set for UART mode.

The SIO has the function to generate a DMA transfer request when data reception is completed or the transmit register becomes empty, and is capable of high-speed serial communication without causing any additional CPU load.

Table 14. Outline of Serial I/O

Item	Content	
Number of channels	CSIO/UART : 2 channels (SIO0, SIO1)	
	UART only : 2 channels (SIO2, SIO3)	
Clock	During CSIO mode : Internal clock /external clock, selectable (Note 1)	
	During UART mode : Internal clock only	
Transfer mode	Transmit half-duplex, receive half-duplex, transmit/receive full-duplex (Transfer clock inverted mode)	
BRG count sourcef	f(BCLK), f(BCLK)/8, f(BCLK)/32, f(BCLK)/256 (When internal clock is selected) (Note 2)	
Data format	CSIO mode : Data length = Fixed to 8 bits	
	Order of transfer = Fixed to LSB first	
	UART mode : Start bit = 1 bit	
	Character length = 7, 8, or 9 bits	
	Parity bit = Added or not added (When added, selectable between odd and even parity)	
	Stop bit = 1 or 2 bits	
	Order of transfer = Fixed to LSB first	
Baud rate	CSIO mode : 152 bits per second to 2 Mbits per second (when operating with f(BCLK) = 20 MHz)	
	UART mode : 19 bits per second to 156 Kbits per second (when operating with f(BCLK) = 20 MHz)	
Error detection	CSIO mode : Overrun error only	
	UART mode: Overrun, parity, and framing errors	
	(The error-sum bit indicates which error has occurred)	
Fixed cycle clock	When using SIO0 and SIO1 as UART, this function outputs a divided-by-2 BRG clock from the SCLK pin.	
output function		

Note 1: During CSIO mode, the maximum input frequency of an external clock is f(BCLK) divided by 16.

Note 2: When f(BCLK) is selected for the BRG count source, the BRG set value is subject to limitations.

Under Development

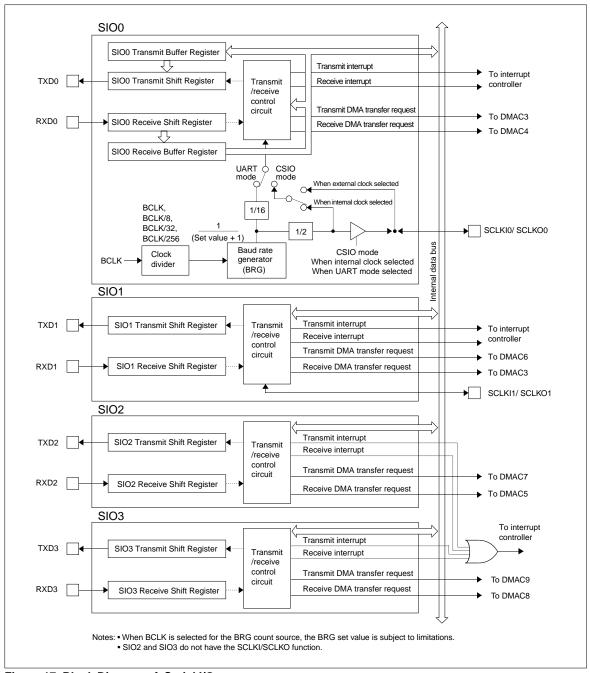


Figure 17. Block Diagram of Serial I/O

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

CAN Modules

The M32176 Group contains two blocks of Full-CAN modules compliant with CAN Specification V2.0B active.

The CAN modules each have 16-channel message slots and three mask registers.

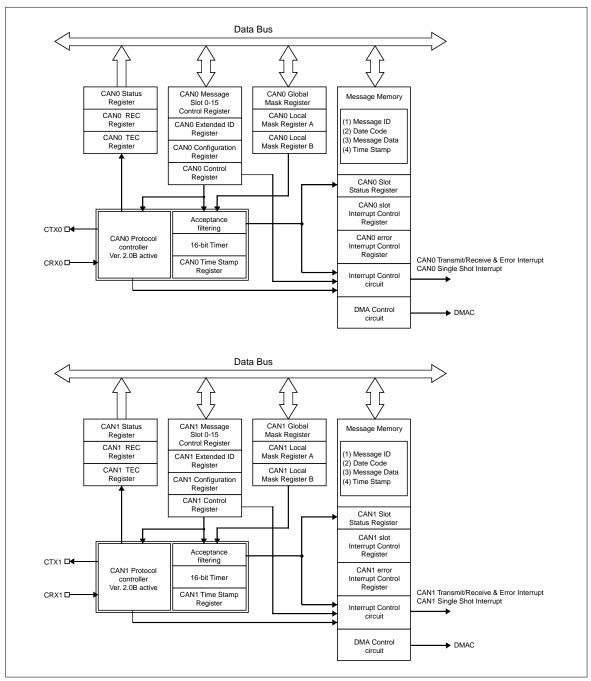


Figure 18. Block Diagram of CAN Modules

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

8-level Interrupt Controller

The Interrupt Controller controls interrupt requests from each internal peripheral I/O (23 sources) by using eight priority levels assigned to each interrupt source, including interrupts prohibition. In addition to these interrupts, it handles System Break Interrupt (SBI), Reserved Instruction Exception (RIE), and Address Exception (AE) as nonmaskable interrupts.

Wait Controller

The Wait Controller supports access to external devices. For access to an external extended area of up to 1Mbytes (during external extended or processor mode), the Wait Controller controls bus cycle extension by inserting one to four wait cycles and using external WAIT# signal input.

Real-time Debugger (RTD)

The Real-time Debugger (RTD) provides function for accessing directly from the outside to the internal RAM. It uses a dedicated clock-synchronized serial I/O to communicate with the outside.

Use of the RTD communicating via dedicated serial lines allows the internal RAM to be read out and rewritten without having to halt the CPU.

Port input threshold level select function

The port input level switch function sets the port threshold value to 3 different voltage levels (Schmidt ON/OFF selection also available).

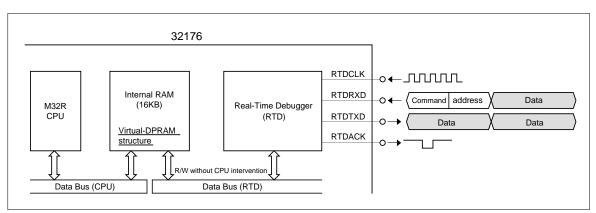


Figure 19. Conceptual Diagram of Real-time Debugger (RTD)

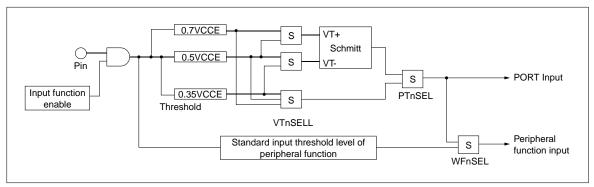


Figure 20. Port input threshold level select function

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

CPU Instruction Set

The M32R employs a RISC architecture, supporting a total of 83 discrete instructions.

(1) Load/store instructions

Perform data transfer between memory and registers.

Load LDB Load byte LDUB Load unsigned byte Load halfword T-DH LDUH Load unsigned halfword LOCK Load locked ST Store STB Store byte Store halfword STH

Store unlocked

(2) Transfer instructions

UNLOCK

Perform register to register transfer or register to immediate transfer.

LD24 Load 24-bit immediate
LDI Load immediate
MV Move register
MVFC Move from control register
MVTC Move to control register
SETH Set high-order 16-bit

(3) Branch instructions

Used to change the program flow.

BC	Branch on C-bit
BEQ	Branch on equal
BEQZ	Branch on equal zero
BGEZ	Branch on greater than or equal zero
BGTZ	Branch on greater than zero
BL	Branch and link
BLEZ	Branch on less than or equal zero
BLTZ	Branch on less than zero
BNC	Branch on not C-bit
BNE	Branch on not equal
BNEZ	Branch on not equal zero
BRA	Branch
JL	Jump and link
JMP	Jump
NOP	No operation

(4) Arithmetic/logic instructions

Perform comparison, arithmetic/logic operation, multiplication/division, or shift between registers.

Comparison

CMP Compare
CMPI Compare immediate
CMPU Compare unsigned

CMPUI Compare unsigned immediate

Logical operation

AND AND AND 3-operand
NOT Logical NOT
OR OR
OR3 OR 3-operand
XOR Exclusive OR
XOR3 Exclusive OR 3-operand

Arithmetic operation

ADD Add ADD3 Add 3-operand ADDI Add immediate ADDV Add (with overflow checking) ADDV/3 Add 3-operand ADDX Add with carry NEG Negate SUB Subtract SUBV Subtract (with overflow checking) SUBX Subtract with borrow

Multiplication/division

DIV Divide
DIVU Divide unsigned
MUL Multiply
REM Remainder
REMU Remainder unsigned

Shift

Shift left logical SLL SLL3 Shift left logical 3-operand Shift left logical immediate SLLI SRA Shift right arithmetic SRA3 Shift right arithmetic 3-operand SRAI Shift right arithmetic immediate SRL Shift right logical Shift right logical 3-operand SRL3 SRLI Shift right logical immediate

(5) Instructions for the DSP function

Perform 32-bit x 16-bit or 16-bit x 16-bit multiplication or multiply-Accumulate calculation. These instructions also perform rounding of the accumulator data or transfer between accumulator and general-purpose register.

MACHI Multiply-accumulate high-order halfwords MACLO Multiply-accumulate low-order halfwords MACWHI Multiply-accumulate word and high-order halfword MACWLO Multiply-accumulate word and low-order halfword
MACLO Multiply-accumulate low-order halfwords MACWHI Multiply-accumulate word and high-order halfword MACWLO Multiply-accumulate word and
halfwords MACWHI Multiply-accumulate word and high-order halfword MACWLO Multiply-accumulate word and
halfwords MACWHI Multiply-accumulate word and high-order halfword MACWLO Multiply-accumulate word and
high-order halfword MACWLO Multiply-accumulate word and
high-order halfword MACWLO Multiply-accumulate word and
MACWLO Multiply-accumulate word and
10w-order Hallword
MULHI Multiply high-order halfwords
MULLO Multiply low-order halfwords
MULWHI Multiply word and high-order
halfword
MULWLO Multiply word and low-order half word
MVFACHI Move from accumulator high-order word
MVFACLO Move from accumulator low-order word
MVFACMI Move from accumulator middle-order
word
·· + = +-
MVTACHI Move to accumulator high-order word
MVTACLO Move to accumulator low-order word
RAC Round accumulator
RACH Round accumulator halfword

(6) EIT related instructions

Start trap or return from EIT processing.

RTE Return from EIT
TRAP Trap

Under Development

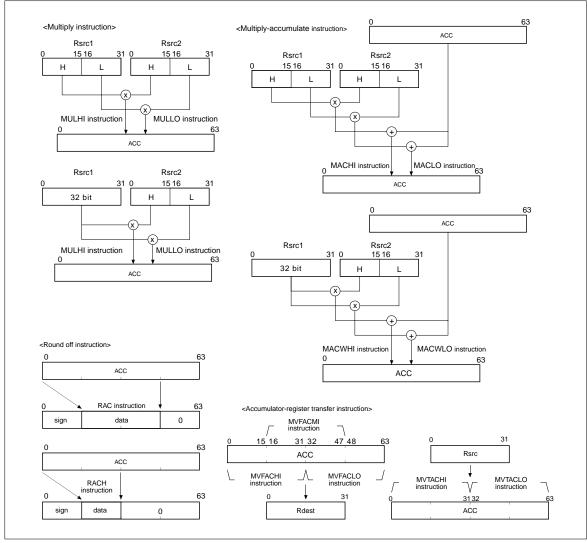
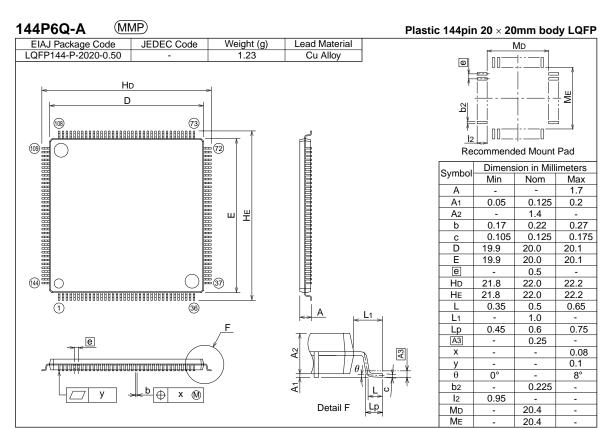



Figure 21. Instructions for the DSP Function

Under Development

SINGLE-CHIP 32-BIT CMOS MICROCOMPUTER

Package Dimensions Diagram

Renesas Technology Corp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

Misubshi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any matfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Mitsubish isemiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubish iElectric Corporation or a third party.

 Mitsubish iElectric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubish iElectric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contained in these materials, and are subject to change by Mitsubish iElectric Corporation or an authorized Mitsubish iElectric Corporation or an authorized Mitsubish iElectric Corporation or an authorized mitsubish is microparation or product distributor for the latest product information there purchasing a product listed hereiners. Mitsubish iElectric Corporation with product information described here may contain technical inaccuracies or typographical errors. Mitsubish iElectric Corporation by training and product is an authorized mitsubish is a product in the product is a product is a product in the product is a product in the product is a product is a product is a product is a product in the product is a product is an authorized mitsubish ielectric Corporation or an authorized b

- Composition or an authorized missubstri Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medic aeriospace, nuclear, or undersea repeater use.

 The prior written approval of Missubshi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exponted under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- destination.
 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein

REVISION HISTORY

32176 Group Data Sheet

Rev.	Date		Description	
		Page	Summary	
1.3	Oct. 15, 02	-	First edition	
1.4	Jan. 30, 03	P2, P6	The "VCNT pin" is altered to "N.C. pin".	
		P2	In Figure 1, "Pin Layout Diagram," name of the pins are corrected.	
		P6	In Figure 3, "Pin Function Diagram," the numbers of the VCCE and VSS are corrected.	
		P31	In Figure 18, "Block Diagram of CAN Modules," DMA control circuit is added to CAN1.	