BISS0001 红外传感信号处理器

特点

- ◆ CMOS 数模混合专用集成电路。
- ◆ 具有独立的高输入阻抗运算放大器,可与多种传感器匹配,进行信号与处理。
- ◆ 双向鉴幅器,可有效抑制干扰。
- ◆ 内设延迟时间定时器和封锁时间定时器,结构新颖,稳定可靠,调解范围宽。
- ◆ 内置参考电压。
- ◆ 工作电压范围+3V—+5V。
- ◆ 采用 16 脚 DIP 封装。 SOP16

外引线连接图

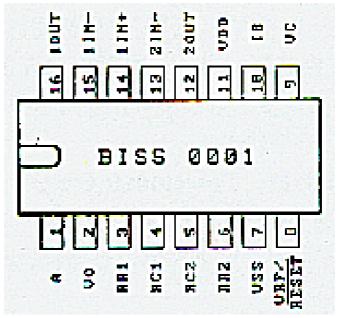


图 1 BISS0001 外引线连接图

原理框图

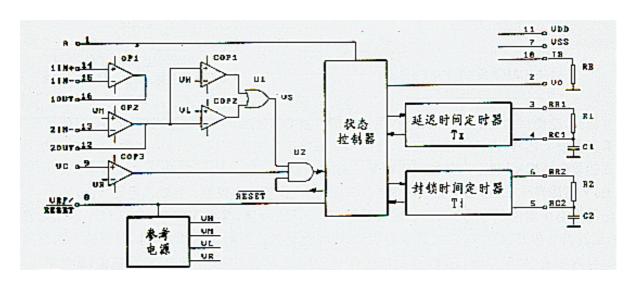


图 2 BISS0001 原理框图

工作原理

图 2 为 BIS0001 红外传感器信号处理器的原理框图。外界元件由使用者根据需要选择。 由图可见 BISS0001 时有运算放大器、电压比较器和状态控制器、延迟时间定时器、封锁时间定时器即参考电压等构成的数模混合专用集成电路。可广泛应用于多种传感器和延时控制器。

各引脚的定义和功能如下:

VDD—工作电源正端。范围为 3~5V。

Vss—工作电源负端。一般接 0V。

 I_B —运算放大器偏置电流设置端。经 R_B 接 V_{SS} 端, R_B 取值为 $1M\Omega$ 左右。

11N---第一级运放放大器的反相输入端。

11N+--第一级运放放大器的同相输入端。

1out—第一级运算放大器的输出端。

2四—第二级运算放大器的反相输出端。

2out—第二级运算放大器的输出端。

Vc—触发禁止端。当 Vc < Vr 时禁止触发;当 Vc > Vr 时允许触发。Vr 0.2Vpb。

VRF—参考电压及复位输入端。一般接 VDD。接"0"时可使定时器复位。

A—可重复触发和不可重复触发控制端。当 A= "1"时,允许重复触发,当 A= "0"时,不可重复触发。

Vo—控制信号输出端。由 Vs 上跳边沿触发使 Vo 从低电平跳变到高电平时为有效触发。 在输出延时间 Tx 之外和无 Vs 上跳变时 Vo 为低电平状态。

RR₁RC₁—输出延迟时间 Tx 的调节端。Tx 49152R₁C₁。

RR2RC2—触发封销时间 Ti 的调节端。Tx 24R2C2。

我们先以图 3 所示的不可重复触发工作方式下的各点波形,来说明 BISS0001 的工作过程。

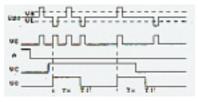


图 3 不可重复触发工作方式下各点的波形

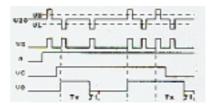


图 3 可重复触发工作方式下各点的波形

首先,由使用者根据实际需要,利用运算放大器 OP_1 组成传感信号预处理电路,将信号放大。然后耦合给运算放大器 OP_2 ,再进行第二级放大,同时将直流电位抬高位 V_M ($0.5~V_{DD}$)后,送到有比较器 COP_1 和 COP_2 组成的双向鉴幅器,剪除有效触发信号 V_S 。由于 V_H $0.7~V_{DD}$ 、 V_L $0.3~V_{DD}$,所以,当 $V_{DD}=5V$ 时,可有效地抑制±1V 的噪声干扰,提高系统的可靠性。 COP_3 是一个条件比较器。输入电压 $V_C < V_R$ ($0.2~V_{DD}$) 时, COP_3 输出为低电平封住了与门 U_2 ,禁止触发信号 V_S 向下级传递;而当 $V_C > V_R$ 时, COP_3 输出为高电平,打开与门 U_2 ,此时若有触发信号 V_S 的上跳边沿来到,则可启用延时时间定时器,同时 V_D 端输出为高电平,进入延时周期。当 A 端接"0"电平时, V_D 时间结束时, V_D 下跳回低电平,同时启动封锁时间定时器而进入封锁周期 V_D 可有效抑制负载切换过程中产生的各种干扰。

下面再以图 4 所示可重复触发工作方式下各点的波形,来说明 BISS0001 在此状态下的工作过程。

SUNSTAR自动化 http://www.sensor-ic.com/ TEL: 0755-83376489 FAX:0755-83376182 E-MAIL:szss20@163.com

BISS0001 DATESHEET

在 Vc="0"、 A="0" 期间,Vs 不能触发 Vo 为有效状态。在 Vc="1"、 A="1" 时,Vs 可重复触发 Vo 为有效状态,并在 Tx 周期内一直保持有效状态。在 Tx 时间内,只要有 Vs 得上跳变,则 Vo 将从 Vs 上跳变时刻算起继续延长一个 Tx 周期;若 Vs 保持为 "1"状态,则 Vo 一直保持有效状态;若 Vs 保持为 "0"状态,则在 Tx 周期结束后 Vo 恢复为无效状态,并且在封锁时间 Ti 时间内,任何 Vs 的变化都不能触发 Vo 为有效状态。

通过以上分析,我们已对 BISS0001 的电路结构和工作过程有了全面的了解,可以看出该期间的结构设计新颖,功能强,可在广阔的领域得到应用。

极限参数(Vss=0V)

电源电压: -0.5V~6V

输入电压范围: -0.5V~+6V(Vpp=6V) 隔引出断最大电流:±10mA(Vpp=5V)

工作温度: -10 ~+70 存放温度: -65 ~+150

电参数 (TA=25 Vss=0V)

符号	参数	○ ・		:	参数值		单位
				最	小	最大	
V _{DD}	工作电压范围			3		5	V
Idd	工作电流	输 出	V _{DD} =3V			50	μA
		空载	V _{DD} =5V			100	
Vos	输入失调电压	V _{DD} =5V				50	mV
Ios	输入失调电流	V _{DD} =5V				50	nA
Avo	开环电压增益	V _{DD} =5V		60			dB
CMRR	共模抑制比	V _{DD} =5V		60			dB
V_{YH}	运放输入高电平	$V_{DD}=5V$		4.2	25		V
$V_{\rm YL}$	运放输出低电平					0.75	
V_{RH}	Vc 端输入高电平	V _{DD} =5V		1.1	1		V
V_{RL}	Vc 端输入低电平					0.9	
Voн	Vo 端输入高电平	V _{DD} =5V		4			V
Vol	Vo 端输入低电平	V _{DD} =5V				0.4	V
Vah	A 端输入高电平	V _{DD} =5V		3.5	5		V
Val	A 端输入高电平	V _{DD} =5V				1.5	V

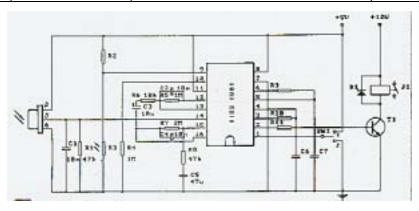


图 5 热释电红外开关电路原理图

应用

图 5 所示为 BISS0001 应用于热释电红外开关的电路原理图。

热释电红外开关是 BISS0001 配以热释电红外传感器和少量外接元器件构成的被动式红外开关。它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗衣机等装置,是一种高技术产品。特别适用于企业,宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。

热释电红外传感器是一种新型敏感元件、它是由高热电系数材料,配以滤光镜片和阻抗匹配用场效应管组成。它能以非接触方式检测出来自人体发出的红外辐射,将其状化成电信号输出,并可有效抑制人体辐射波长以外的外干扰辐射,如阳光、灯光、及其反射光。

此例中 BISS0001 的运算放大器 OP1 作为热释电红外传感器的前置放大。由 C3 耦合给运算放大器 OP2 进行第二级放大。再经由电压比较器 COP1 和 COP2 构成的双向鉴幅器处理后,检出有效触发信号去启动延迟时间定时器。输出信号经晶体管 T1、驱动继电器去接通负载。R3 为光敏电阻,用来检测环境照度。当作为照明控制时,若环境较明亮,R3 的电阻值会降低,使 9 脚输入为低电平而封锁触发信号,节省照明用电。若应用于其他方面,则可用遮光物将其罩住而不受环境影响。SW1 是工作方式选择开关,当 SW1 与 1 端连通时,红外开关处于可重复触发工作方式;当 SW1 与 2 端连通时,红外开关则处于不可重复触发工作方式。