|首页|

 |公司简介|

|射频微波|

|仪器仪表|

|通信产品|

|客户留言|

|专家名人|

 

|技术支持|

 |资料下载|

|解决方案|

|光纤光电|

|微波论坛|

|无线世界|

|客户服务|

|内动态|

 |天线工程|

|微波EDA|

|电磁兼容|

|图书资料|

|友情连接|

|联系我们|

 

、产品分类介绍:

A、射频微波元器件

->射频模块
->
射频管
->
混频器
->
放大器
->
衰减器
->
双工器
->
功分器
->
隔离器
->
开关
->
低噪声管
->
温补晶振

->
负载电阻
->
PIN二极管
->
PLL锁相环
->
通信IC
->
介质滤波器
->
声表滤波器
->
混合耦合器
->
高频微波电容
->
高频微波电感

->特价库存微波元件

->电源系统专用元件

->高频功放模块

->特殊专用元件

->高频三极管

->无线电发射专用管

->高频场效应管

->GaAs微波功率晶体管

->MOS双极性晶体管

->微波毫米波振荡器

->频率源频率综合器

->倍频器倍频器模块

->MMIC混频器

  同轴和波导混频器

->MMIC移相器及模块

->MMIC功率放大器低噪放

->对数检波视频放大器

->MMIC KU到KA收发器

->MMIC开关及模块

->同轴及波导负载部件

->MMIC同轴及波导衰减器

->同轴定向耦合器部件

->适配器转换

->速调管、行波管检波器

->波导部件和旋转关节

->功分器合路器双工器

->毫米波测试设备

->限幅器

->高功率倍增器

-> MOTOROLA MRF系列

-> ERICSSON系列

-> PHILIPS系列

-> TOSHIBA系列

-> MITSUBISHI系列

-> M/A-COM系列

-> ASI系列

->EUDYNA/FUJITSU

-> 通信专用元器件

-> HP/AGILENT系列

-> NEC系列

-> HITACHI

-> SONY系列->
->
其它

B、光通讯元器件

->

C、二极管、三极管

->

二、产品图文介绍:

-> 产品二

公司其它部门产品

电子元器件集成电路部

电子元器件产品介绍

电子元器件目录
日本冲电子OKI资料
日本精工SEIKO资料
MODEM数据通信芯片
军工产品事业部
军工产品详细介绍
军工产品选型目录

高频微波光纤光电部

射频微波光电产品网
高频微波光电产品目录
无线收发芯片和模组

专用电路和单片机部

消费类电子专用电路网
专用电路选型目录
专用电路捷选手册
专用电路及模块详细资料

传感与控制事业部

自动控制产品介绍
传感器专家仪器仪表世界网
传感器自控产品目录
传感器变送器详细资料

工控事业部

中国工控安防科技网
工控安防产品介绍
电脑网络与系统集成部
仪器仪表与电源部
被动元件部
安防产品部
国际贸易部
汽车电子汽车用品
玩具礼品部

开发与生产部

温湿度计模块、成品
无线收发模块
系列传感器
常用电路部分封装图
其它产品

 

商运达代理经销晶振/晶体振荡器/温补晶振/射频微波晶振/特殊晶振/VCO/压控振荡器/恒温晶振

 

明明白白选择晶振

 

  硅与MEMS振荡器正在加入到高度分化的振荡器市场中石英晶体与陶瓷谐振器的行列。选择正确的应用器件不需要水晶球,不过一些相关事实会有所帮助。

  提示
  * 陶瓷谐振器的精度为1%至0.1%,与之相比石英晶振为1ppm(百万分之一)至100ppm,硅器件为1.5ppm至100ppm。
  * 与陶瓷器件相比,硅与MEMS(微机电系统)振荡器更能承受冲击,并且能装入更小的封装。
  * 石英振荡器要花较长的起动时间,不过通常功耗低于其它种类。
  * 任何一种振荡器的功耗都依赖于输出负载。

  振荡器就像电子系统中的电源一样无处不在,有人认为它们的重要性等同于电源,在任何需要时序信号的东西中都能发现它们的应用,从数字手表到电视和PC。由于它们在电子设备时序中扮演重要角色,它们的失效会导致整个系统的停机。例如,调查人员通过分析1972年加州Fremont火车撞车事故,发现起因是一块控制板上的晶振故障。晶振储能电容取值不当,使晶体过驱,器件跳入一种泛音振荡频率。于是,火车进站时没有减速缓行而是加速,造成了多人受伤的撞车事故。鉴于这种问题,很多工程师不再使用纯晶体作自己的振荡器。他们转而选择市售的成品,其封装中包含了放大器、储能电容和其它元件。

  一切数字设备都需要时钟源,如硅与MEMS(微机电系统)振荡器、石英晶体或陶瓷诣振器。例如,电信与服务器的一块PCB(印制电路板)上就可能需要十几种时钟。设计者实现传统时钟源时采用的是石英晶体振荡器,但MEMS和纯硅振荡器正在这个高度分化的市场中获得立足点。另外,精度不高的振荡器也采用陶瓷材料,如锆钛酸铅。应用推动着一种技术的适用性。例如,如果你需要一个精度优于1 ppb(十亿分之一)的时钟源,则必须放弃MEMS而使用原子振荡器件,如铷时钟或铯时钟源。这些器件有1ppt(万亿分之一)的精度。例如,GPS(全球定位系统)卫星需要这种精度来保持与系统其它部分的同步(图1)。
 

图1振荡器在功耗与准确度之间进行折衷因此选择取决于应用的需求


  在精度谱的另一端是简陋的陶瓷谐振器。这些器件的精度测量要用百分数,因为用十亿分之一作单位得到的数值过于庞大而难以使用。一只陶瓷谐振器的典型初始精度在0.5%至0.1%范围内,老化或温度变化所致的漂移可能改变这一区间。因此,廉价陶瓷谐振器的公差只有±1.1%,较高端的汽车与商务产品精度则分别为±0.25%和±0.3%。这些公差较严格陶瓷谐振器的目标是商用USB(通用串行总线)2.0电路及汽车CAN(控制器局域网络)总线应用,工作温度为?40°C至+125°C。频率为200 kHz至约1 GHz的低成本陶瓷谐振器适用于对时序要求不严格的嵌入系统。陶瓷器件起动较快,一般体积小于石英器件。它们也更能承受冲击与振动。提供陶瓷谐振器的制造商有Murata、Oscilent、AVX、TDK和Panasonic等。

  对于使用UART(通用同步/异步收发器)的数字系统,应对其作误差预算(error-budget)分析,以确保从谐振器频率得到的波特率符合规格要求。如果你只在代码开发期间使用UART,则能够在制造期间转而采用陶瓷谐振器,以节省成本。

  注意,有些硅振荡器要使用RC(电阻/电容)或LC(电感/电容)储能器件,而不用陶瓷或石英晶体。这些振荡器随不同的价格而有广泛的精度范围。意法半导体等公司制造的这类振荡器具备陶瓷谐振器的全部优点,而体积更小,价格更低。该公司产品营销工程师Louis Grantham称:“硅振荡器的重点在于它比脆弱晶体更健壮。此外,晶体的可制造性要比IC更困难。”

  从石英起步

  石英振荡器采用一种压电材料振荡晶体的机械共振方式,建立一个有精密频率的电信号。该频率一般用于跟踪时间,如石英手表中的频率;为数字集成电路提供稳定的时钟信号;以及稳定射频发射机与接收机的频率。自上世纪20年代起,工程师们就开始将这些晶体用于建立射频频率,当时贝尔电话实验室的AM Nicholson和Wesleyan大学的WG Cady教授一起研究酒石酸钾晶体,他们发现了一个驱动电路中石英晶片的谐振反应(参考文献1)。不过在二战以前,研究人员还没有研究出大批量制造的方法(参考文献2)。如果在一块石英晶体上以相对晶格点阵正确的角度切割出振荡器元件,则可以消除温度的效应。有些切割晶体具有零温度系数,而LC切割则用于温度计(图2)。
 

图2可从一个石英晶体进行多种切割钟表制造商利用小型音叉晶体进行适当的GT切割


  因为你是从一种矿物得到石英晶体,不要假定一个石英振荡器是低技术性器件(参考文献3)。今天石英晶体的制造商都采用大型反应炉(或高压釜)作石英晶体的生长,使用高温和30000 psi(磅每平方英寸)以上的高压(参考文献4和图3)。石英晶体在一个高压釜中的生长要花数月时间,任何地震活动或加热器供电上最微小的降级或损失都会毁掉整个批次。一家日本公司NDK已有几十年制造石英晶体的历史,现在伊利诺伊州的Belvidere拥有高压釜。基于上述原因,该公司决定在中西部开设新工厂,因为那里电网的可靠性很高,并且地震发生率很低。

晶振及其选用指南一、什么是晶振?
  晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。
晶振还有个作用是在电路产生震荡电流,发出时钟信号.

  晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。

  晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。

  晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。

  晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。

  电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。

  石英晶振不分正负极, 外壳是地线,其两条不分正负

  二、晶振的使用

  晶振,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低 的频率是串联谐振,较高的频率是并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶 振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄, 所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。

  晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。

  一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。

  一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。

  晶振是为电路提供频率基准的元器件,通常分成有源晶振和无源晶振两个大类,无源晶振需要芯片内部有振荡器,并且晶振的信号电压根据起振电路而定,允许不同的电压,但无源晶振通常信号质量和精度较差,需要精确匹配外围电路(电感、电容、电阻等),如需更换晶振时要同时更换外围的电路。有源晶振不需要芯片的内部振荡器,可以提供高精度的频率基准,信号质量也较无源晶振要好。

  每种芯片的手册上都会提供外部晶振输入的标准电路,会表明芯片的最高可使用频率等参数,在设计电路时要掌握。与计算机用CPU不同,单片机现在所能接收的晶振频率相对较低,但对于一般控制电路来说足够了。

  晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。

  谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。

  晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。

  石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的振幅是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器。 其特点是频率稳定度很高。

  石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC来共同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数为:谐振电阻(RR),谐振器没有电阻要求。RR的大小直接影响电路的性能,也是各商家竞争的一个重要参数。

  三、概述

  微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;基于相移电路的时钟源,如:RC (电阻、电容)振荡器。硅振荡器通常是完全集成的RC振荡器,为了提高稳定性,包含有时钟源、匹配电阻和电容、温度补偿等。

  机械式谐振器与RC振荡器的主要区别

  基于晶振与陶瓷谐振槽路(机械式)的振荡器通常能提供非常高的初始精度和较低的温度系数。相对而言,RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率的5%至50%范围内变化。图1所示的电路能产生可靠的时钟信号,但其性能受环境条件和电路元件选择以及振荡器电路布局的影响。需认真对待振荡器电路的元件选择和线路板布局。在使用时,陶瓷谐振槽路和相应的负载电容必须根据特定的逻辑系列进行优化。具有高Q值的晶振对放大器的选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏)。影响振荡器工作的环境因素有:电磁干扰(EMI)、机械震动与冲击、湿度和温度。这些因素会增大输出频率的变化,增加不稳定性,并且在有些情况下,还会造成振荡器停振。

  振荡器模块

  上述大部分问题都可以通过使用振荡器模块避免。这些模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行。最常用的两种类型是晶振模块和集成硅振荡器。晶振模块提供与分立晶振相同的精度。硅振荡器的精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当的精度。

  功耗

  选择振荡器时还需要考虑功耗。分立振荡器的功耗主要由反馈放大器的电源电流以及电路内部的电容值所决定。CMOS放大器功耗与工作频率成正比,可以表示为功率耗散电容值。比如,HC04反相器门电路的功率耗散电容值是90pF。在4MHz、5V电源下工作时,相当于1.8mA的电源电流。再加上20pF的晶振负载电容,整个电源电流为2.2mA。

  陶瓷谐振槽路一般具有较大的负载电容,相应地也需要更多的电流。

  相比之下,晶振模块一般需要电源电流为10mA至60mA。

  硅振荡器的电源电流取决于其类型与功能,范围可以从低频(固定)器件的几个微安到可编程器件的几个毫安。一种低功率的硅振荡器,如MAX7375,工作在4MHz时只需不到2mA的电流。

  时钟电路晶振与时钟IC芯片

  主板时钟芯片电路提供给CPU,主板芯片组和各级总线(CPU总线,AGP总线,PCI总线,PCIE总线等)和主板各个接口部分基本工作频率,有了它,计算机才能在CPU控制下,按步就班,协调地完成各项功能工作:

   1.晶振的工作原理: 主板时钟芯片即分频器的原始工作振荡频率,由石英晶体多谐振荡器的谐振频率来产生,晶振其实是一个频率产生器,他主要把传进去的电压转化为频率信号。提供给分频率一个基准的14.318MHZ的振荡频率,它是一个多谐振荡器的正回馈环电路,也就是说它把输入作为输出,把输出作为输入的回馈频率,象这样一个永无休止的循环自激过程。
  ⒉在主板上常见的时钟晶振:有14.318M(主时钟)与32.768HZ(南桥 旁边的时钟)
  ⒊时钟IC芯片简介:他主要起着放大频率和缩小频率的作用,他和晶振组合后才能在主板上起作用。我们把他称做为时钟发生器(晶振+时钟IC芯片)
  ⒋时钟发生器的工作原理:时钟我们可以把他定义为各个部件的总线频率速度,他起着分配给各个部件的频率使他们能够正常工作。当晶振通电后发出的频率送入时钟IC芯片,它的各脚会传出相对应的频率通个时钟IC芯片旁边的电阻(时钟IC芯片旁边左右两边一排的小电阻基本为220=22欧,330=33欧).而内存,与AGP这些高速的时钟是由北桥内部提供给它的,(注有些主板AGP时钟不是由北桥提供的)将频率信号分配到主板各个部件,如(PCI 33M,CPU 100M133M200M I/O 48M和14M,南桥33M &14M北桥100M7&133M&200M
时钟IC芯片
  上面讲到了时钟的产生,那他是如何工作的接下来我给大家讲解一下时钟IC芯片.时钟IC芯片的工作条件:
  ①.供电→他的供电基本上都经过个子较大的贴片电感进入时钟IC芯片(贴片电感时钟IC芯片附近就可以找到 因为他比其它帖片要胖一点)。时钟IC芯片早期的供电有2组到3组:2组供电为2.5V与3.3V 3组供电为2.5V与2.8V时钟IC芯片后期的供电有1组到2组:1组为+3.3V 2组为3.3V与2.5V
  ②PG信号是在启动时输出电压都稳定后再给电脑一个启动信号,让电脑正式启动,而在意外断电时也能及时地送出关机信号让电脑马上停止工作,对电脑的稳定和外设起了很大的保护作用。PG信号基本是通过时钟IC芯片旁边的阻值较大的电阻(10K、4.7K电阻)进入时钟IC芯片内部的(PG要高于1.5V)当供电与PG都正常后时钟IC芯片内部才能正常工作,和晶体一起产生振荡,在晶体的两脚均可以看到波形。晶体的两脚之间的阻值在450---700欧之间。在它的两脚各有1V左右的电压,由分频器提供。他才能把14.318晶振送来的时钟频率放大或缩小后输给主板的各个部件.
  时钟电路构架
  上面大家知道了它的各个主成部分后,再来看看它的整个构架图
  PLL是Phase-Locked Loop的缩写,中文含意为锁相环。PLL基本上是一个闭环的反馈控制系统,它可以使PLL的输出可以与一个参考信号保持固定的相位关系。PLL一般由鉴相器、电荷放大器(Charge Pump)、低通滤波器、压控振荡器、以及某种形式的输出转换器组成。为了使得PLL的输出频率是参考时钟的倍数关系,在PLL的反馈路径或(和)参考信号路径上还可以放置分频器。PLL的功能示意图如下图所示:
压控振荡器产生周期性的输出信号,如果其输出频率低于参考信号的频率,鉴相器通过电荷放大器改变控制电压使压控振荡器就的输出频率提高。如果压控振荡器的输出频率高于参考信号的频率,鉴相器通过电荷放大器改变控制电压使压控振荡器就的输出频率降低。低通滤波器的作用是平滑电荷放大器的输出,这样在鉴相器进行微小调整的时候,系统趋向一个稳态。

  负载电容及反馈电阻

  可能有些初学者会对晶振的频率感到奇怪,12M、24M之类的晶振较好理解,选用如11.0592MHZ的晶振给人一种奇怪的感觉,这个问题解释起来比较麻烦,如果初学者在练习串口编程的时候就会对此有所理解,这种晶振主要是可以方便和精确的设计串口或其它异步通讯时的波特率。

  问: 我发现在使用晶振时会和它并一个电阻,一般1M以上,我把它去掉,板子仍可正常工作,请问这个电阻有什么用?可以不用吗? 我有看到过不用的!不理解~

  答: 这个电阻是反馈电阻,是为了保证反相器输入端的工作点电压在VDD/2,这样在振荡信号反馈在输入端时,能保证反相器工作在适当的工作区。虽然你去掉该电 阻时,振荡电路仍工作了。但是如果从示波器看振荡波形就会不一致了,而且可能会造成振荡电路因工作点不合适而停振。所以千万不要省略此电阻。 这个电阻是为了使本来为逻辑反相器的器件工作在线性区, 以获得增益, 在饱和区是没有增益的, 而没有增益是无法振荡的. 如果用芯片中的反相器来作振荡, 必须外接这个电阻, 对于CMOS而言可以是1M以上, 对于TTL则比较复杂, 视不同类型(S,LS...)而定. 如果是芯片指定的晶振引脚, 如在某些微处理器中, 常常可以不加, 因为芯片内部已经制作了, 要仔细阅读DATA SHEET的有关说明.

  和晶振并联的电阻作为负载,一般1M欧。也有和晶振串联的电阻为谐振电阻。.

  问:晶振的参数里有配用的谐振电容值。比如说32.768K的是12.5pF;4.096M的是20pF. 这个值和实际电路中晶振上接的两个电容值是什么关系?像DS1302用的就是32.768K的晶振,它内部的电容是6pF的

  答: 你所说的是晶振的负载电容值。指的是晶振交流电路中,参与振荡的,与晶振串联或并联的电容值。晶振电路的频率主要由晶振决定,但既然负载电容参与振荡,必 然会对频率起微调作用的。负载电容越小,振荡电路频率就会越高4.096MHz的负载电容为20pF,说明晶振本身的谐振频率<4.096MHz, 但如果让20pF的电容参与振荡,频率就会升高为4.096MHz。或许有人会问为什么这么麻烦,不如将晶振直接做成4.096MHz而不用负载电容?不 是没有这样的晶振,但实际电路设计中有多种振荡形式,为了振荡反馈信号的相移等原因,也有为了频率偏差便于调整等原因,大都电路中均有电容参与振荡。为了 准确掌握晶振电路中该用多大的电容,只要把握晶体负载电容应等于振荡回路中的电容+杂散电容就可以了。你所说的IC中6pF的电容就可看作杂散电容

  石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本结构大致是从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚 上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。
  石英晶体的压电效应:若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。注意,这种效应是可逆的。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。


  晶振在电气上可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率为串联谐振,较高的频率为并联谐振。由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
  晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
  一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
  一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。
  晶体振荡器也分为无源晶振和有源晶振两种类型。无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。  
  石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率的一种电子器件。石英晶体振荡器是利用石英晶体的压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC共同作用来工作的。振荡器直接应用于电路中,谐振器工作时一般需要提供3.3V电压来维持工作。振荡器比谐振器多了一个重要技术参数:谐振电阻(RR),谐振器没有电阻要求。RR的大小直接影响电路的性能,因此这是各商家竞争的一个重要参数。


  四、无源晶体与有源晶振的区别、应用范围及用法:

   1、无源晶体——无源晶体需要用DSP片内的振荡器,在datasheet上有建议的连接方法。无源晶体没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶体可以适用于多种电压,可用于多种不同时钟信号电压要求的DSP,而且价格通常也较低,因此对于一般的应用如果条件许可建议用晶体,这尤其适合于产品线丰富批量大的生产者。无源晶体相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷警惕。
  2、有源晶振——有源晶振不需要DSP的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。对于时序要求敏感的应用,个人认为还是有源的晶振好,因为可以选用比较精密的晶振,甚至是高档的温度补偿晶振。有些DSP内部没有起振电路,只能使用有源的晶振,如TI 的6000系列等。有源晶振相比于无源晶体通常体积较大,但现在许多有源晶振是表贴的,体积和晶体相当,有的甚至比许多晶体还要小。
  几点注意事项:
1、需要倍频的DSP需要配置好PLL周边配置电路,主要是隔离和滤波;
2、20MHz以下的晶体晶振基本上都是基频的器件,稳定度好,20MHz以上的大多是谐波的(如3次谐波、5次谐波等等),稳定度差,因此强烈建议使用低频的器件,毕竟倍频用的PLL电路需要的周边配置主要是电容、电阻、电感,其稳定度和价格方面远远好于晶体晶振器件;
3、时钟信号走线长度尽可能短,线宽尽可能大,与其它印制线间距尽可能大,紧靠器件布局布线,必要时可以走内层,以及用地线包围;
4、通过背板从外部引入时钟信号时有特殊的设计要求,需要详细参考相关的资料。
此外还要做一些说明:
  总体来说晶振的稳定度等方面好于晶体,尤其是精密测量等领域,绝大多数用的都是高档的晶振,这样就可以把各种补偿技术集成在一起,减少了设计的复杂性。试想,如果采用晶体,然后自己设计波形整形、抗干扰、温度补偿,那样的话设计的复杂性将是什么样的呢?我们这里设计射频电路等对时钟要求高的场合,就是采用高精度温补晶振的,工业级的要好几百元一个。
  特殊领域的应用如果找不到合适的晶振,也就是说设计的复杂性超出了市场上成品晶振水平,就必须自己设计了,这种情况下就要选用晶体了,不过这些晶体肯定不是市场上的普通晶体,而是特殊的高端晶体,如红宝石晶体等等。
  更高要求的领域情况更特殊,我们这里在高精度测试时采用的时钟甚至是原子钟、铷钟等设备提供的,通过专用的射频接插件连接,是个大型设备,相当笨重。
  晶振:即所谓石英晶体谐振器和石英晶体时钟振荡器的统称。不过由于在消费类电子产品中,谐振器用的更多,所以一般的概念中把晶振就等同于谐振器理
解了。后者就是通常所指钟振。
  2、 分类。首先说一下谐振器。
  谐振器一般分为插件(Dip)和贴片(SMD)。插件中又分为HC-49U、HC-49U/S、音叉型(圆柱)。HC-49U一般称49U,有些采购俗称 “高型”,而HC-49U/S一般称49S,俗称“矮型”。音叉型按照体积分可分为3*8,2*6,1*5,1*4等等。贴片型是按大小和脚位来分类。例如7*5(0705)、6*3.5(0603),5*3.2(5032)等等。脚位有4pin和2pin之分。
  而振荡器也是可以分为插件和贴片。插件的可以按大小和脚位来分。例如所谓全尺寸的,又称长方形或者14pin,半尺寸的又称为正方形或者8pin。不过要注意的是,这里的14pin和8pin都是指振荡器内部核心IC的脚位数,振荡器本身是4pin。而从不同的应用层面来分,又可分为OSC(普通钟振), TCXO(温度补偿),VCXO(压控),OCXO(恒温)等等。
  3、 基本术语。我想这也是很多采购同学比较模糊的地方。这里我选了一些常用的谐振器术语拿来做一下解释。
Frequency Tolerance(调整频差):在规定条件下,在基准温度(25±2℃)与标称频率允许的偏差。一般用PPm(百万分之)表示。
Frequency Stability(温度频差):指在规定的工作温度范围内,与标称频率允许的偏差。用PPm表示。
Aging(年老化率):在规定条件下,晶体工作频率随时间而允许的相对变化。以年为时间单位衡量时称为年老化率。
Shunt Capacitance(静电容):等效电路中与串联臂并接的电容,也叫并电容,通常用C0表示。
Load Capacitance(负载电容):与晶体一起决定负载谐振频率fL的有效外界电容,通常用CL表示。
  一般最关注的参数有2个,即调整频差,负载电容。有一部分对温度频差有要求。如果工作温度范围比较广,则会对工作温度范围有所要求,即所谓宽温。
  4、选用。主要讲讲谐振器。理论上来说,只要参数确定,选任何一种型号都是可以正常使用的。例如49U和49S替换,49S和圆柱以及和贴片替换,都是没有问题的。但在实际选择中会根据电路特点,成本以及便利性来考量和选择。一般来说,简单的应用中主要都是从成本在考虑。但是有些产品或者电路会对晶振的等效电阻,激励功率等等提出要求,所以就会在不同的型号中加以选择。另外,贴片则主要是为了适应产品日益小型化和提高生产效率的要求。听到有些采购朋友说,只能选49S而不能用49U或者反之,这是一个小误区。呵呵。
而钟振的选择则主要决定产品电路的特性的要求,一般来说钟振在精密性以及需要达到相关应用的要求会更好。例如手机,通信机站,卫星等等


 

 

欢迎来电洽购我司产品或索取免费详细资料、设计指南和光盘

传感器专家仪器仪表世界网:HTTP//WWW.SENSOR-IC.COM/

智能工控公共安全网:HTTP//WWW.PC-PS.NET/

消费电子专用电路网:HTTP://WWW.SUNSTARE.COM/

地址: 深圳市福田区福华路福庆街鸿图大厦1602    E-MAILszss20@163.com

电话:0755-83397033 83396822

传真:0755-83376182  83338339   邮编:518033  手机:(0)13902971329

E-MAIL:xjr5@163.com  MSN: SUNS8888@hotmail.com  QQ: 195847376
  技术支持: 0755-83394033 1350156837

深圳展销部:深圳华强北路赛格电子市场2583  TEL/FAX0755-83665529  13823648918

北京分公司:北京海淀区知春路132号中发电子大厦3097

TEL4006579498  18927445855  13823791822  FAX010-62543996 

上海分公司:上海市北京东路668号上海賽格电子市场地下一层D25号

TEL4006571586  56703037  13823676822  FAX021-56703037

西安分公司:西安高新开发区20(中国电子科技集团导航技术研究所           西安劳动南路88号电子商城二楼D23 

TEL4006572198  13072977981  FAX:029-88789382

Copyright 2003 本网站由商运达实业制作维护