SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

FILU-50 Programming Model

Massana Inc.
51 E. Campbell Ave

Campbell, CA, 95008.

Tel: (408) 871 1414
Fax: (408) 871 2414

E-Mail: info@massana.com
WWW.massana.com

Massana Research Ltd.
5 Westland Square
Dublin 2, Ireland.

Tel: (+353 1) 602 3999
Fax: (+353 1) 602 3977

Version 1.2
15 April 1999

© Massana Research Ltd., 1999, All Rights Reserved.

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

1. FILU Programming Model 4
I I o (o Yo [o3 4 {0 o PSR 4
O O R =T o 1T = T 1= o] o 4 o] o 1SR 4

1.2 SOftWare INTEIfACEcceeeee e 5
2 R @ 1 AN o U [g [1 T 1SS 6

1.2.2 FILU RUN TIME LIBIAIY ...ttt et e e e e e e e e nnnne e e e 6

1.3 Calling a FILU Run Time Library FUNCHION.............oooooiiiiiii, 6
1.3.1 Cascading FILU FUNCLIONScooiiiiiiiiiie ettt 7

1.3.2 USING FILU FUNCHIONS.... ..ottt et e et e e st e e s naee e e snneeeeennnaeeeennneeeesnnneeeennneeas 7

1.4 Application EXamPIes........oooo i 8
1.4.1 Example of Single ROM Function call - FIR FIltercccoviiiiiii e 8

1.4.2 Example of Cascade of ROM Functions - KNOCK Detectionccccveerieeriieeiiicenieenneens 9
Appendix A: FILU API 12
AL HOST AP et e e e e e e e et e e e e e e e eaanas 12
Appendix B: FILU Run Time Library 14
B.1 CORR FURNCLIONouiiiiiie e e e e e e e aaaaes 14
B.2 FIR FUNCHION. ... e e e e e et e e e e enaaaas 14
B.3 IR _L FUNCHION ...t e e e e e e e e e e e e e e e eeeennnnns 15
B.4 IIR_2 FUNCHION ...t e e e e e e e e et e e e e e e e eeeennnnns 16
B.5 FFT FUNCHION ... e e e e e e e e e enaaaes 17
B.6 POWEISEIIES ...uuccieeie ettt e e e e e e e e e e e e e a e e e e eaaanns 18
Appendix C: Installing The FILU C-Model and API 19
C.1 Installing The FILU C-Modelcooouiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeee 19
Appendix D: Extending the FILU Run Time Library 20
D.1 Writing a new Run time Library FUNCHION..............cooo, 20
D.1.1 Adding the new funNction t0 C- MOEL............ooiiiiiii e 21

D.2 Adding RAM FUNCHIONScooiiiiiiiiiee e 21
FILU-50 Programming Model Version 1.2
15 April 1999 Massana Research Ltd. 2/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

Appendix E: FILU Instructions 22
E. L REQISTEN Set. .o 22
E.2 AdAressing MOAES........coooiiiiiiiii 23
E.3 INSITUCHION SEL... .o e eeaaaes 23
E.3.1 ArithmetiC INSTIUCTIONSoevvieiiieeeeeeeeeeeeeeeeee et ee e eeeeeeeenseeennnennnnnnes 23

G 10t I {11 T 11T S 24

G T Y (o)V ST [1=y U s £ (o] £ 25

G T = Lo [S3 (= D o SO 25

G T2 = =T 153 (T [T 1Yo ST 25

G TG T Y= 18] -1 1o o [26

G TRC B 11V 1] (o] o 26

TR T 11 o LT 4 (o £ 26

TR T B 1Y/ o [I a1 = (0] F 26

E.3.4 STAtUS REQISTEN ...oiiiiiiee ettt e e e et e e e sttt e e et e e e e st e e e snaeeeeeannaeeeennaeeeeannneennen 26
Appendix F: C Statements 28
F.1 The do...while statement...........cccooiiiiiiiiiii e e 28
F.2 The While Statement..........cooiiiiiiii e e 28
F.3The return StatemMeNtcoooviiii e 28
FILU-50 Programming Model Version 1.2
15 April 1999 Massana Research Ltd. 3/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

1. FILU Programming Model

1.1 Introduction
The FILU is a pre-programmed DSP co-processor which has a run time library of DSP functions which are
accessed by C function calls from a Host processor.

This document describes how the Host is the programmed to call these functions. Included are descriptions
of :

the Host Application Program Interface (API)
the FILU Run Time Library (RTL)
the FILU instructions and conventions
some application examples.
An appendix contains a detailed description of each of the above.

A Bit Exact C-Model of the FILU is available that supports both the API and the FILU run time
library and can be used to simulate the operation of the FILU.

1.1.1 General Description

The FILU acts as a DSP coprocessor to a Host processor, for example a micro-controller or RISC. The Host
calls DSP functions which are executed by the FILU. Communication between the HOST and the FILU is
via a shared RAM (FILU RAM). All programming information, data pointers and input / output data is
communicated to the FILU via the shared RAM. Figure 1.1 shows a block diagram of the FILU, shared
RAM, Host processor and Host RAM. The FILU RAM is memory mapped into the Host address space.

While the FILU is executing a DSP function, i.e. is busy it sets a BUSY bit in the RAM and it has control of
the RAM. The HOST must initiate a handshake to read or write the FILU RAM. It can do this at any time
even when the FILU is ‘BUSY. The FILU operation is stalled during HOST read/ write operations.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 4/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA
4 N
FiLu
RWB
Host Address Bus
ADDR BWE
DouT FILU ror - HOST

»on RAM »! Dilo

‘Host Data Bus

-

Figure 1.1 FiLu block diagram and Host Interface.

1.2 Software Interface

This software interface between the HOST and the FILU DSP coprocessor is in two parts. The first part is
the Host API which allows the Host to control the FILU. The API functions are invoked using standard C
function calls and they allow the HOST to:

initialise the FILU.

read data from the FILU.

write data to the FILU.

load function parameters for the FILU DSP functions.
call FILU DSP functions using C function calls.

poll the FILU operating status.

The second part of the software interface is the run time library which is the set of DSP functions which are
stored in ROM and can be executed by the FILU. These include:

an FIR filter.

a first order IIR filter.

a second order IIR filter.

an N point in-place FFT where N is a radix-2 number and N £ 256.

a correlation function.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 5/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

a Taylor series.

1.2.1 HOST API Functions

The HOST API functions are tabulated below. The details of these functions together with the formal
parameter lists and return values are given in FILU API

Function Name Description

ResetFILU Initialises the FILU.

StartFILU Calls a FILU DSP function.
ReadFILU Reads data from the FILU RAM.
WriteFILU Writes data to the FILU RAM.

CheckFILUStatus Determines the operating status of the FILU.

LoadFILUParameters Loads the DSP function parameters into the FILU RAM.

Table 1.1 FILU Application Program Interface Functions.

1.2.2 FILU Run Time Library

The FILU has a number of DSP ROM functions which are used as a run time library and called using C
function calls. The functions are tabulated below. All these functions are included in the C-Model. These
functions are called by the HOST using the API and execute in the FILU. Details of the exact functionality of
each of these functions are given in FILU Run Time Library.

Function Parameterl Parameter 2 Parameter 3 Parameter 4
CORR X Address Y Address Data Length Output Address
FIR Input Data Address Data length Output Address Coefficient Start Address
IIR_1 Input Data Address Data Length Output Address Coefficient Start Address
IIR_2 Input Data Address Data length Output Address Coefficient Start Address
FFT Real Data Address Imaginary Data Address logoN N
PowerSeries X Coefficients Result -
Table 1.2 FILU Run Time Library Functions.

1.3 Calling a FILU Run Time Library Function

FILU functions are called using a standard C function call. The FILU API is used to pass the FILU function
name (effectively a pointer to the FILU function) and the list of arguments to the FILU. The API function
StartFILU is used to call the FILU FIR function as follows:

StartFILUfilu. FIR data_in,

N, data_out,

or to call the FILU FFT function the function call is:

coefficients);

Start FILU(filu. FFT, real _data, inaginary_data, nunber_of_stages, |ength);
FILU-50 Programming Model Version 1.2
15 April 1999 Massana Research Ltd. 6/28
SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

The function StartFILU has a variable parameter list. The first parameter is always a pointer to the function.
In the situation where a run time library function is called repeatedly there is no need to reload the
parameters every time. The StartFILU function can be a single argument - the function pointer and is called
as follows:

StartFILUfilu. FIR);

In summary, the API function StartFILU can invoke a FILU run time library function with a list of function
parameters or it can simple pass the function pointer if the parameters are already in place from a previous
call.

1.3.1 Cascading FILU Functions

Many applications will call a number of FILU ROM functions in sequence. These ROM function calls can be
cascaded into a single function call to the FILU. This is a FILU RAM function, as the constituent ROM
function calls are programmed in the FILU RAM. All of the parameters for this RAM function are passed in
one go to the FILU. The HOST can poll the FILU to determine when the RAM function is complete.

A example RAM function is shown in Figure 1.2.

void RAM_function() {
filu.FIR();
filu.FFT();
filu.CORR();
return;
}
Figure 1.2 Example RAM function.

In this example the API StartFILU function calls will be as follows:
StartFILU(RAM_function, “ 9% % 9%& % O O 9% 9% 9 9 9% I,
FI R_I NPUT_DATA ADDRESS, FI R DATA LENGTH, FI R OUTPUT ADDRESS,
FI R_CCEFFI Cl ENT_ADDRESS, FFT_REAL_DATA_ADDRESS, FFT_I MAG NARY_DATA_ ADDRESS,
FFT_LO&N, FFT_N, CORR X ADDRESS, CORR_Y_ADDRESS, CORR DATA LENGTH,
CORR_OUTPUT_ADDRESS) ;

1.3.2 Using FILU Functions
The general procedure for using a FILU ROM or RAM function is:
1. Resetthe FILU using the API function ResetFILU().
2. Load the input data / coefficients into the FILU RAM using the API function WriteFILU().
3. Call the FILU RAM function using the API function StartFILU().
4. Continue other Host processing in parallel with FILU operation
5

Poll the FILU to determine when the function has finished using the API function
CheckFILUStatus().

o

Read the results of the computation using the API function ReadFILU().
7. Repeat steps 2 to 6.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 7128

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

1.4 Application Examples

The following two simple examples illustrate how the Host can use the FILU to implement simple DSP
functions. The first example calls a single FILU run time library function while the second example shows
how FILU run time library functions are cascaded.

1.4.1 Example of Single ROM Function call - FIR Filter

The FILU can perform a FIR filtering operation on a buffer of data. Where adequate memory is available the
entire record may be filtered in one pass. In a single pass filtering operation the programmer need only
ensure that the filter memory is zero i.e. for a filter of order p the first p memory locations should be zeroed.

Where a very long record must be filtered and inadequate memory is available the record must be filtered in
blocks. The FILU automatically adjusts the filter memory on subsequent passes of the filter so that no action
is required on the part of the programmer. The method is illustrated in Figure 1.3.

This example illustrates how the FILU can filter a data record of length 5120 in blocks of 512. It is
assumed that the HOST input and output buffers are provided separately.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 8/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

/1 define the coefficients for the FIRfilter
#define NO_BLOCKS 10 /'l nunber of blocks of data
short coefficients[] = {FILTER LENGIH, 127, -2125, -5546, -3095, 5444, 10415,
5444, -3095, -5546, -2125, 127};

void FirFilter(short *A D Buffer, short *Host_Buffer) {

short j;

/1l reset the FILU
ResetFILU();

/'l 1oad the coefficients into the FILU menory
WriteFILU(coefficients, FIR _COEFFI Cl ENT_ADDRESS, FILTER LENGTH+1);

/1 load the first data block into the FILU data nenory
WriteFILU(A D Buffer, FIR _DATA ADDRESS, DATA RECORD _LENGTH);

[/l filter the data
for (j=0; j<NOBLOCKS; j++) {

/1l call the FIR function
StartFILU(filu. FIR " %% % %", FI R _DATA ADDRESS, DATA RECORD LENGTH,
FI R_OUTPUT_ADDRESS, FI R_COEFFI Cl ENT_ADDRESS) ;

/1 Qher Host processing can go here

/'l Check has FILU finished processing bl ock
whi | e (CheckFILUStatus());

/1l read data fromFILU to HOST nenory
ReadFILU(FI R_OQUTPUT_ADDRESS, Host Buffer+j * DATA RECORD_LENGTH,
DATA RECORD LENGTH) ;

/1 wite the NEXT block of data to FILU from HOST nenory
WriteFILU(A_D Buffer+(j+1)*DATA RECORD LENGTH, FI R_DATA ADDRESS,
DATA RECORD LENGTH) ;

}

return;

}

Figure 1.3 FIR filter example.

1.4.2 Example of Cascade of ROM Functions - Knock Detection

Engine knock is a phenomenon where the fuel-air mixture in an internal combustion engine is detonated too
soon due to poor quality fuel with catastrophic consequences for the engine. Knock can be detected by an
energy detection method. A data stream from an accelerometer mounted on the engine block is filtered
using a FIR filter and frequency content determined using an FFT. Finally, the energy content in a number
of frequency ranges is determined by a sum-of-squares procedure. The FILU is ideally suited to an
application like this.

The knock detection algorithm running on the HOST filters a data stream from an analog-digital (A-D)
converter in blocks of length 256, performs an FFT on the filter output and then calculates the sum-of-

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 9/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

squares of the FFT output returning a double precision result to the HOST. This double precision result is
used as a knock index. The HOST maintains the A-D buffer.

The above sequences of function calls can be implemented as a RAM function which is implemented as
follows.

void KnockDetect() {
Filu.FIR(); /1 call the FIR function
Filu.FFT(); /1 call the FFT function
Filu.CORR(); /1 call the Correlation function
return;
}
Figure 1.4 Example RAM function for Knock detection.

All the parameters are passed in one go by the API. Hence the Knock detect function is called as follows.

StartFILU(KnockDet ect, “ % % 9% 9%& 9 % O%& 9% 9% 9% % 9%”, FI R_DATA ADDRESS,
RECORD_LENGTH, FI R_OUTPUT ADDRESS, FI R_COEFFI Cl ENT_ADDRESS, FI R OUTPUT ADDRESS,
FI R_OUTPUT_ADDRESS+256, 8, 256, FI R OUTPUT ADDRESS, FI R OUTPUT ADDRESS, 256,
CORR_OUTPUT_ADDRESS) ;

The above pointers have been chosen so that the output of the FIR function provides the input to the FFT
function which in turn provides the input to the CORR function.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 10/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

Function Knock_I nit()

Initialises the FILu prior to calling knock detection al gorithm

* % X X X F X

/
void Knock Init() {

/1 reset the FILU
ResetFILU();

/1 1oad the FIR filter coefficients into the FILU menory
WriteFILU(coefficients, FIR _COEFFI Cl ENT_ADDRESS, FILTER LENGTH+1);

return;

}

/*

*

* Function Knock_Process()

*

* Inplements the Knock Detection Al gorithm
*

*

voi d Knock_Process(short *A D Buffer, short * Host_Buffer, short *Knock_Result) {

/1 load the A/D buffer into the FILU data nenory
WriteFILU(A D Buffer, FI R _DATA ADDRESS, 256);

/] start knock detection algorithm
StartFILU(KnockDet ect, " & I 9 O 9% 9%& & X I I O IX",
FI R_DATA ADDRESS, 256, FI R_OUTPUT_ADDRESS,
FI R_COEFFI Cl ENT_ADDRESS, FI R_OUTPUT_ADDRESS,
FI R_OQUTPUT_ADDRESS+256, 8, 256, FI R_OUTPUT_ADDRESS,
FI R_OUTPUT_ADDRESS, 256, CORR_OUTPUT ADDRESS);

/1 Qher Host processing can go here

/'l Check has FILU finished processing bl ock
whi | e(CheckFILUStatus());

/1l read data fromFILU to HOST nenory
ReadFILU(CORR_OUTPUT_ADDRESS, Knock_Result, 3);

return;

}
Figure 1.5 Knock detection example.
FILU-50 Programming Model Version 1.2
15 April 1999 Massana Research Ltd. 11/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

Appendix A: FILU API

MASSANA

A.1 HOST API

The Application Program interface is a set of C functions used to control the FILU i.e. call a FILU ROM

function, write data to the FILU, read results from the FILU, etc.

The following are the details of the API functions.

ResetFILU

Description Initialises the FILU.

Function Call short * ResetFILU()

Parameters None

Remarks Resets the FILU to a known condition. The Program Counter is cleared, BUSY bit in
the status register is cleared.

Returns No return value.

CheckFILUStatus

Description Determines the FILU status.

Function Call short CheckFILUStatus()

Parameters None

Remarks Determines the FILU operating status i.e. BUSY or IDLE. This function polls the
BUSY bit. If BUSY = 1 then the FILU is executing a run time library function or user
defined function. If BUSY = 0 the FILU has completed a function.

Returns FILU status, 1 = BUSY, 0 = IDLE.

LoadFILUParameters

Description Loads a function parameter list into the FILU parameter space

Function Call void LoadFILUParameters(short *parameter_address, ...)

Parameters Variable list of parameters corresponding to FILU function parameters. At least 1
parameter must be provided.

Remarks Loads a list of parameters into the FILU parameter space. Pointers passed are
converted into offsets from the base address of the FILU RAM. The list of
parameters is variable.

Returns no return value

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 12/28

SUNSTAR http://ww.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://ww.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szS$$20@163.com
MASSANA
StartFILU

Description Calls a FILU Run Time Library function or user function.

Function Call void StartFILU (short *function_pointer, const char *format_string,...)

Parameters This function passes a pointer to a run time library function and a list of parameters
for a run time library function to the FILU. The list of parameters is variable and the
types of the parameters are defined in format_string. The format specifiers are the
same as those used in the C run time library function scanf() but are limited to the
types x, d, o and i.

This function can be invoked with a single argument which must be a pointer to a
function. In this case the parameters must be in place prior to the call.

Remarks Loads the function pointer and the list of parameters into the FILU. The FILU
function is started. The BUSY flag is set when the function is started and cleared
when the function exits.

Returns no return value
ReadFILU

Description Reads data from the FILU memory.

Function Call void ReadFILU (short filu_offset, short *host_memory, short N)

Parameters Copies N data points from the FILU RAM to the HOST RAM.

Remarks The shared RAM handshaking is also implemented in this function.

Returns no return value
WriteFILU

Description Writes data to the FILU memory.

Function Call void WriteFILU (short *host_memory, short filu_offset, short N)

Parameters Copies N data points from the HOST RAM to the FILU RAM.

Remarks The shared RAM handshaking is also implemented in this function.

Returns no return value

FILU-50 Programming Model Version 1.2
15 April 1999 Massana Research Ltd. 13/28
SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

Appendix B: FILU Run Time
Library

The run time library is a suite of ROM based DSP functions. The operation of the run time library functions
is given below. The library can be extended by the user. Details are given later.

B.1 CORR Function

The FILU can compute a cross-correlation of two data records, X and Y according to (B.1) where N is the
correlation length. The cross-correlation can be of arbitrary length. An auto-correlation function can be
computed by setting the X and Y address pointers to the same location. Note that the full 40 bit accumulator
is written to memory in three successive write operations. The least significant word is written first.

-1

N
ry=a Vi (B.1)
i=0

The Correlation Command requires 4 parameters:
1. X Address : This is the address in the FILU RAM of record X.
2. Y Address : This is the address in the FILU RAM of record Y.

3. Data Length N: This is the correlation length.

»

Output Address : This is the address in the FILU RAM of the result.

B.2 FIR Function

The FIR filter command can implement a FIR filter of arbitrary order according to (B.2) where P is the order
of the filter, i.e. there are p+1 coefficients. The number of coefficients must be at least 2.

yn:g‘akxn_k forOEnEN-1 (B.2)
k=0

The FIR filter command requires 4 parameters:

1. Input Data Address. This is the address in the FILU where the input data to the filter and
filter memory are stored.

2. Data Length N. This is the number of data points to filter.
3. Output Address. The address where the filtered data is stored.

4. Coefficient Start Address. This is the address in the FILU RAM where the FIR Filter
coefficients are stored. The first element in the list must be the number of filter

coefficients. The coefficients are stored in the order { p+1, &,, &, ... ap} where P is

the number of coefficients and a, are the coefficients.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 14/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com
MASSANA

The first time the function is called the user should ensure that the first p points of the data record
correspond to the filter memory, i.e. X, ® X_,. These are the p memory locations prior to the
input data address as shown in Figure B.1. At the end of the function the last p locations of the
data record are copied down to the p locations prior to the input data address. This ensures that

this function can be used to process an array of data larger than the available FILU RAM by
filtering it in blocks of data without the user having to manage the filter memory.

The diagram below shows the arrangement in RAM.

1
X p
a Filter
Memory
X1 Y
Input Data Address —» X, L
Xy
Input
= Data
Xy-2
Xn-1 Y
Figure B.1 Organisation of filter memory in RAM for FIR function.

B.3 IIR_1 Function

The IIR_1 implements a first order IIR filter according to (B.3) . The IIR_1 filter has two coefficients, i.e. a
feed-forward and a feedback coefficient.

y,=bx,-ay,, forOEnEN-1 (B.3)
The IIR filter command requires 4 parameters:

1. Input Data Address. This is the address in the FILU RAM where the input data to the filter
is stored.

2. Data Length. This is the number of data points to filter.
3. Output Address. The address where the filtered data is stored.

4. Coefficient Start Address. This is the address in the FILU RAM where the IIR Filter
coefficients are stored. The coefficients are stored in the order {b,a} .

The first time the function is called the user should ensure that the memory location prior to the output data
address corresponds to the output filter memory, i.e. Y_;. At the end of the function the last location of

output data record is copied down to the memory location prior to the output data address. This ensures
that this function can be used to process an array of data larger than the available FILU RAM by filtering it
in blocks of data without the user having to manage the filter memory.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 15/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

SUNSTAR http://www.rfoe.net/ TEL:0755-83396822 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA
The diagram below shows the arrangement in RAM.
Input Data Address —»| X, 4
X
Input
= Data
Xy-2
Xn-1 Y
Y4 Output Filter Memory
Output Address —»| Yo 1
Y1
Output
= Data
Yn-2
Yn-1 Y
Figure B.2 Organisation of filter memory in RAM for IIR_1 function.

B.4 IIR_2 Function

The 1IR_2 function implements a second order IIR filter according to (2.4). The IIR_1 filter has two
coefficients, i.e. a feed-forward and a feedback coefficient.

Y, =bX, +bXx, - ay,,- ay,, forOEnEN-1 (B.4)

The 1IR_2 filter command requires 4 parameters:

1. Input Data Address. This is the address in the FILU RAM where the input data to the filter
is stored.

2. Data Length. This is the number of data points to filter.
3. Output Address. The address where the filtered data is stored.

4. Coefficient Start Address. This is the address in the FILU RAM where the filter
coefficients are stored. The coefficients are stored in the order {b,,b,,a,,a,} .

The first time the function is called the user should ensure that the memory location prior to the
input data address corresponds to the input filter memory, i.e. X_; and that the two memory

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 16/28

SUNSTAR http://www.rfoe.net/ TEL:0755-83397033 FAX:0755-83376182 E-MAIL:szss20@163.com

MASSANA

locations prior to the output data address correspond to the output filter memory, i.e. y_, and

Y_, . At the end of the function the last location of the input data record is copied down to memory

location prior to the input data address and the last 2 locations of the output data record are
copied down to the two memory locations prior to the output data address. This ensures that this
function can be used to process an array of data larger than the available FILU RAM by filtering it
in blocks of data without the user having to manage the filter memory. The diagram below shows
the arrangement in RAM.

X1 Input Filter Memory
Input Data Address —»| Xo 1
X
Input
> Data
Xy-2
Xn-1 Y
4 .
y. 2 N Output Filter
Y, ! Memory
Output Address —»| Yo 4
Y1
Output
> Data
Yn-2
Yn-1 Y
Figure B.3 Organisation of filter memory in RAM for IIR_2 function.

B.5 FFT Function

The FILU executes an N point, complex, in-place FFT according to (B.5) . The length of the FFT is limited
to 256 complex points. Where only a real FFT is needed the imaginary data record should be zeroed. The
start addresses of the real and imaginary data sequences must be provided as parameters to this function.

N-1
X, =a XxWS for OEKEN-1 where W =g/2¥/N (B.5)

n=0
The parameter list is as follows:

1. Real Data Address. The address at which the real input data is stored.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 17/28

MASSANA

2. Imaginary Data Address. The address where the imaginary input data is stored. For a
real FFT the imaginary data is zeroed.

3. The number of stages in the FFT i.e. log,N.
4. The length of the FFT, N. N must be a radix-2 number.

B.6 PowerSeries

The PowerSeries function implements a generalized N™-order real power series.

-
y=aax

n=0 .
=a,+ xda1 +x(a, + xba3+- : ghl
=a, +a X +a,x° +ax’+

A 2"Lscaled version is output by the function.

g=2"1ty, M31
The input X is passed directly in the parameter list.

The number of coefficients less 1 (N+1-1 = N) of the series to be computed is passed as the first element of
the coefficient list.

The scale factor M is passed as the second element of the coefficients’ file. When M = 1, the scale factor is
1, when M = 4, the scale factor is 8, etc.

Hence the coefficient list should be {N, M, a,,a, ;,...,8,}.
The parameter list is as follows:

1. InputX. This is the input.

2. Coefficient Start Address. This is the address in the FILU RAM where the power series
coefficients are stored. The first element of the list must be the number of coefficients
less 1. The second element of the list must be the scale factor.

3. Result address. The address where the result is stored.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 18/28

MASSANA

Appendix C: Installing The FILU C-
Model and API

C.1 Installing The FILU C-Model

The C- Model requires Microsoft Developer Studio 97a, Visual C++ V5.0 (or V6.0) to run. The model is
provided as a .zip file which contains a series of header files and a library file.

The installation procedure is as follows:
1. Unzip the files using WinZip.
2. Install MicroSoft Development Studio V5.0 (or V6.0)
3. Start a new project in MSD Studio. You should choose a WIN32 Console Application.
4. Add the header files and the library file to your project directory.
5. Include the list of header files in your source code files.
6. Add the library file filuModel.lib' to the list of Source Files in your project workspace.
7. Write your own program to call the FILU functions.
8. Compile, Link and Run
The list of header files provided is as follows:
1. defines.h
2. accum.h
3. addr.h
4. macreg.h
5. ctrreg.h
6. filu.h
7. external.h
These header files should be included in any of your application programs in the order shown above.

C code for the application examples are included with the release.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 19/28

MASSANA

Appendix D: Extending the FILU
Run Time Library

The FILU C-Model can be extended to include new run time library functions. The procedure is:

1. Write the new run time library function.

2. Add this function to the model.

D.1 Writing a new Run time Library Function

Consider the run time library function CORR as an example. This function is written as follows:

voi d FILU::CORR() {
RO = *PP++; /1 Load X data pointer
Rl = *PP++; /1 Load y data pointer
DO = *PP++; /1 Load correlation width
R2 = *PP++; /1 1 oad output data pointer
A = 0L; /'l clear A
X = *RO++; /1 load X data point
Y = *Rl++; /1 load Y data point
do {
A=A+ XY, /] multiply- accumul ate
X = *RO++;
Y = *Rl++;
}
while (DO--);
*R2++ = A AOQ; /1 save LSP
*R2++ = A Al; /1l save NMSP
*R2++ = A A2; /1l save XP
return;
}
Figure D.1 ROM function CORR.

All the operations are standard C/C++ syntax. All new functions are defined as member functions of the
class FILU. There are some points to note about writing a new function:

1. FILU functions will in general require a list of parameters. The parameters are written to
the FILU RAM and the ROM function must then load them from RAM. When the list and
order of parameters is known the programmer must then load the FILU pointer and
counter registers from the parameter list. This is done via the Parameter Pointer Register
(PP). The Parameter Pointer will point to the first parameter in the list at entry to the
function. In the example above the Correlation function requires four parameters as
detailed in B.1.

2. Standard C statements can be used to implement control loops but there are some
restrictions as detailed in C Statements

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 20/28

MASSANA

D.1.1 Adding the new function to C- Model

To add the new run time library function to the model:

1. Add the function declaration, in this case void CORR(), to the member function
declaration section of the class FILU in the header file <filu.h>

2. Add the new function to your project.

3. Compile and link.

D.2 Adding RAM Functions

RAM functions can be added to the model and executed by the FILU. A user defined RAM functions can
call FILU run time library functions in cascade without intervention by the HOST. The FILU API passes all
the parameters for the cascade of functions in a single call to the user defined RAM based function. A
example RAM function is shown in Figure D.2.

void RAM_function() {
filu.FIR();
filu.FFT();
filu.CORR();
return;
}
Figure D.2. Example RAM function.

In this example the API StartFILU function calls will be as follows:

StartFILU(RAM_function, “ & 9 9 9% %% X X 9 & 9%& I X",

FI R_| NPUT_DATA ADDRESS, FI R_DATA LENGTH, FI R _OUTPUT_ADDRESS,

FI R_CCEFFI Cl ENT_ADDRESS, FFT_REAL_DATA ADDRESS, FFT_| MAG NARY_DATA ADDRESS,
FFT_LO&N, FFT_N, CORR _X_ADDRESS, CCRR_Y_ADDRESS, CORR DATA LENGTH,
CORR_QUTPUT_ADDRESS) ;

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 21/28

MASSANA

Appendix E: FILU Instructions

E.1 Register Set

The FILU register set consists of:

a single 40 bit Accumulator A which can also be viewed as an 8 bit register A.A2 and 16 bit
registers A.A1, A.A0.

2 X 16 bit MAC Input Registers X, Y.

4 X 12 bit Address Registers, RO, R1, R2, R3.

1 X 12 bit Index Register N.

1 X 12 bit parameter pointer register PP (effectively an address register).
3 X 12 bit loop Counter Registers, DO, D1, D2.

The organisation of the 40 bit Accumulator is shown below. The Accumulator register consists of three
sections:

1. AAO = least significant fractional portion (16 bits)
2. AAl = most significant fractional portion (16 bits)
3. AA2 = an 8 hit extension register
. (<= 5| >
[39:32] [31:16] [15:0]
+“+—> <« > < >
XP MSP LSP
+—r <« > < >
A2=A[39:32] Al = A[31:16] A0 = A[15:0]
Figure E.1 Organisation of the Accumulator register.
FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 22/28

E.2 Addressing Modes

The addressing modes available are:

register direct.

register-indirect with or without post-increment or decrement.

register-indexed, i.e. post increment/decrement by register N.

immediate addressing limited to A = 0.

E.3 Instruction Set

E.3.1 Arithmetic Instructions

Arithmetic instructions operate on the MAC input registers X and Y and store the result in Accumulator

register A. All operations are 2’compliment using fractional 1.15 arithmetic.

The allowable arithmetic instructions are:

MASSANA

FILU-50 Programming Model

Version 1.2

15 April 1999

Massana Research Ltd.

23/28

MASSANA

Instruction Operation
A=XY Multiply.
A=- XY Multiply Minus.
A= X*Y + R\D Multiply with rounding.
A=-XY + R\ND Multiply Minus with rounding.
A=A+ XY Multiply & Accumulate.
A=A- XY Multiply & Minus Accumulation.
A=A+ XY + R\D Multiply & Accumulate with rounding.
A=A- XY + R\D Multiply & Minus Accumulation with rounding.
A=A+ R\D Round Accumulator
A=A+Y Add Y to Accumulator (add 16 bit Y to A[39:16]).
A=A-Y Subtract Y from Accumulator (sub 16 bit Y from A[39:16]).
A << 1L Arithmetic shift A left 1 bit with, A[0] = 0.
A >> 1L Arithmetic shift A right 1 bit, A[39] = A[38].
A = 0L Clear accumulator.
A=Y Load A with Y. A[31:16] = Y, A[39:32] = Y[15], A[15:0] = 0
A=-Y A =Minus Y. A[31:16] = -Y, A[39:32] = ~Y[15], A[15:0] = O
A = neg(A) Negation of A. A[39:16] = -1*A[39:16], A[15:0] =0
A = abs(A) Absolute value of A. A[39:16] = abs(A[39:16]), A[15:0] =0
A=AlY Divide primitive. See E.3.3 Division.
Table E.1 Arithmetic Instructions.

Note that the instructions A = OL, A << 1L and A >> 1L must include the string literal suffix “L” to denote
that the constant is a long value. This must be done to maintain compatibility with C. A warning is issued if a
shift value is greater than one and no shifting will take place.

E.3.1.1 Rounding

Rounding to 16 bits is implemented using convergent rounding. This is achieved by adding the RND bit to
the Accumulator. For example to round the result of a multiply & accumulate operation the syntax is:

A=A+ XY + R\D

FILU-50 Programming Model

Version 1.2

15 April 1999

Massana Research Ltd.

24/28

MASSANA

E.3.2 Move Instructions

E.3.2.1 Register Direct

Instruction Operation
[Rn, Dn, N] = [Rm, Dm N| Move Address Register Rm to Address Register Rn
Table E.2 Register Direct Move Instructions.

Register direct moves are only supported between address registers.

E.3.2.2 Register Indirect

Instruction Operation
[X Y, Al = *Rn Register-indirect (write register).
[X Y, A = *Rn++ Register-indirect post increment (write register).
[X Y, Al = *Rn-- Register-indirect post decrement (write register).
[X, Y, Al = *(R+=N) Register-indexed post increment (write register).
[X, Y, Al = *(Rn-=N) Register-indexed post decrement (write register).
*Rn = [A A A2, A Al, A A0] Register-indirect (read register).
*Rn++ = [A, A A2, A Al, A AQ] Register-indirect post increment (read register).
*Rn-- = [A, A A2, A AL, A A0] Register-indirect post decrement (read register).

*(Rn+=N) = [A, A A2, A Al, A AQ] Register-indexed post increment (read register).

*(Rn-=N) = [A, A A2, A Al, A AQ] Register-indexed post decrement (read register).

Rn++ Increment Address Register

Rn- - Decrement Address Register

Rn+=N Add Index Register to Address Register

Rn- =N Subtract Index Register from Address Register
Dn- - Decrement Counter Register

Table E.3 Register indirect addressing move instructions.

The accumulator register A can be read or written. The accumulator registers A.A2, A.A1 & A.AO can only
be read. The X and Y registers can only be written.

When the accumulator register A is written (from RAM or by via A = Y) the 16 bit number is sign extended
and zero filled to 40 bits, i.e. A.AQ is set to all zeros and A.A2 is set to the sign bit.

! Rn, Rm is one of the address registers R0, R1, R2, R3

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 25/28

MASSANA

E.3.2.3 Saturation

The FILU supports saturation of the Accumulator output on the 32 bit boundary when writing the
Accumulator to memory. When the Accumulator is saved to memory i.e. in a write operations like:

*Rn++ = A;

the contents of the Accumulator are checked for overflow beyond bit 31 and if overflow is detected then a
16 bit saturated value i.e. the largest representible positive 16 bit integer or the smallest representible
negative 16 bit integer is written to memory. The contents of the Accumulator are unchanged.

Where the register A.Al is cited explicitly in the write instruction such as in the instruction:
*Rn=A.Al

no saturation takes place.

E.3.3 Division.

A non-restoring division algorithm is implemented in the FILU. The division operation produces a single
quotient bit per cycle. The divisor must be in the Y register with the 32 bit dividend in A. The quotient is
returned in AO and the 32 bit remainder (least significant 16 bits of) in Al. The syntax is:

A=AY
or, equivalently
Al=Y.

Sixteen cycles are required to produce a full precision result. A full 16 bit division can be implemented as
follows:

do {
A =AY,
}while(Do-- > 1);
E.3.3.1 Divide Errors.

Non restoring division algorithm gives rise to some errors when the divisor is negative which the
programmer must correct.

In signed division where the divisor is negative the quotient will usually be 1 LSB less than the true result;
the only exception is the case where the quotient is 0x8000 when it will be correct. This error can only be
avoided by first taking the absolute value of the signed divisor. No compensation is provided in the FILU for
this error; it has to be handled explicitly by the programmer.
E.3.3.2 Divide Limitations.
The division algorithm is limited in the following ways:

1. The FILU handles only two complement numbers.

2. In fractional arithmetic the absolute value of the numerator must be less than the absolute
value of the denominator in order to return a fractional quotient. Otherwise it may not be
clear where the binary point is located after the division.

E.3.4 Status Register

The status register stores information about the accumulator, which is used for certain ALU functions. The
bits defined in this register are

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 26/28

MASSANA

1. Z: Zero. This bit is set high if the contents of the upper 24 bits of the accumulator
(A2:A1) are zero. It is used internally by the DIV iteration.

2. N: Negative. This bit is set if the most significant bit of the accumulator is set, else it is
cleared.

3. C: Carry. This bit is the carry out of the accumulator.
4. V: Overflow. This bit is set if there is an overflow in the 40-bit result, it is cleared
otherwise.

5. L: Limit. This bit is set if the overflow bit is set. It is cleared when the Busy bit is set,
i.e. when the FILU starts processing.

6. E: Extension. This bit is cleared if the Carry bit, A2 and the MSB of Al are all zeros or all
ones.

The values of the status bits reflect the current state of the accumulator. The status bits are updated with
a data move operation into the accumulator. Some DSPs only update the status bits on arithmetic or
logical operations.

The status bits can be read by the Host at RAM address zero. The status bits are read only.

Bit 15| 14 | 13 | 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Name r r E L \Y C N Z r r r r r R M B

Table E.4 Location of status bits in RAM address zero.

Bits marked r are reserved. The bits R, M & B are Reset, Master and Busy control bits for the Host
interface.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 27128

MASSANA

Appendix F:. C Statements

Standard C statements can be used in FILU programs but there are a number of restrictions. The allowable
statements are:

1. do <statement> while (condition true);
2. while (condition true) <statement>;
3. return;

The loop control parameters are limited to a subset of the FILU register set.

F.1 The do...while statement

There are restrictions on the use of the do..while statement in that only the counter registers DO, D1 and
D2 can be used in evaluating the loop conditions. An example of a do...while loop used in the FILU is
given below:

do {
A=A+ XY, X=*RO++ Y = *Rl++

}
while (DO-- > 1);

Note that the FILU implements loops exactly in accordance with the C syntax above. The loop counter DO is
tested and the condition evaluated following which evaluation the counter is decremented; so it is a true
post-decrement operation.

F.2 The while statement

There are restrictions on the use of the while statement in that only the counter registers DO, D1 and D2
can be used in evaluating the loop conditions. An example of a while loop used in the FILU is given below:

while (DO-- > 1)

{
A=A+ XY, X = *RO+H = *RL++;

}

F.3 The return statement

The return statement is used to terminate a function. The return is always of type void.

FILU-50 Programming Model Version 1.2

15 April 1999 Massana Research Ltd. 28/28

SUNSTAR R s s AE R EM A 2677, TRE . . RS « HoREW. FRMESEN
— M AR AN, TR R AT, R 10 247 L oA Rt
VRS, Ao R AR KRG it OB B A KISk G il PR i i 2 —, B— K%
MPARERFL 73 81 tH S K 1C &5 7 Ve ot EB A B & G rEE PR A], B & B
FE= 2] AW ootE, 85, Msra. adis, doats I Bilg. Page, R AR A R
L 11T e A LR 40 2 W R ity SR s A o 1 1) T o S B A RIS B i, A 4 S L P s ok
PRI AR BN 4 . FRATT R MARER GRS . TP AR T oodeth. k. Lk
e SO HITA . LEEHL/DOC/DOM HE AL B L. B AL . MCU/DSP/ARM/FPGA %
PRAEAE AR SRR BEHREE, REETTERE—u I RO N R . O PR R R
BT RO o 7 Wk SOl 20 w40 A DE R I B R, A6 2 Hek T35 44 i AP EB T
VR W 2 R PG 22 HL R R A% (P ZE D) K AN S5 L Bl S s BRI 1) v 9 LRI Ay S8R 4k
ML BT R SR oA, RS R AR)

TP IR TN AR B S, . eh. JeHiTnAER . 4LpE. AR B, BN Wl
WA TCAAT . BB, 8% Tl CADL EDA #fF FRRMNGADTE TR Sk, e sk,
Ml [Ah s B . GEFT RS A HEBIP E SE TR T . KRR Tkt k
R BB, TURLL JGET. . CATV 2344 SR, VCO. MEHERS. PINJFOG. WA “ME . JF
RIME . AR SR . DR M SIS JBORAS . DhFRE . MMIC, VRS, &4, Do,
P AIAS s DR BB FMTE. BARES . WHIMRA A Jel T ooa R A
PR LUANROVE . AAMENCE . GBI IG. DB . ROCTAE ARG AE AR RO
THERBOCAR AL L RIS OGS DRI A EOGAR DGO L
WA JEIFIE. DWDM FHOGAIR R AR E . R N RGO # A SR . S ehdedieds
JCETBRER/ R AT JREIAs . JLTIE Fias. DGRBS, SR G A JGIMTA SCE A/ it
TCLRMUR S B RS, 28 0 i FIAR A
B2 P i AN A FL P L PR Rk
T8 Wk e e L= S R HTTP : / /www. rfoe. net/

T s v B RS B S B http://www. sensor—ic. com/
FIHE T2 iR : http://www. pc—ps. net/
WA T CEs M http://www. sunstare. com/
R S LT PR S L/ /www. icasic. com/
P ik SEME R = 5 9 2/ /www. sunstars. en/ GBI TG #5 FFHT B2 -
Huhk: ERYNTH AR HH DX AR A 2% 4 DA 8K 1602 =
HLi%: 0755-83396822 83397033 83398585 82884100
EH.: 0755-83376182 (0) 13823648918 MSN: SUNS8888@hotmail. com
ME%k: 518033 E-mail:szss20@163. com QQ: 195847376
TEINFERS RS0 RYIEsAL s T84 ti 111735 2583 %5 HLif: 0755-83665529 25059422
BARZH: 0755-83394033 13501568376
WA AR R A Pk VO RRADEE 5 L, RERISS, WOk .
e oy Aw]: ARt iE X AN 132 5ok i1 KR 3097 5
TEL: 010-81159046 82615020 13501189838 FAX: 010-62543996
AT BT R 668 5 il ek HL T 113 D125 5
TEL: 021-28311762 56703037 13701955389 FAX: 021-56703037
PO oy ol P m T RIX 20 B 1 L R AR P SRS T)
P27 5 i 88 5 L TRk D23
TEL: 029-81022619 13072977981 FAX:029-88789382

http://www.rfoe.net/
http://www.sensor-ic.com/
http://www.sensor-ic.com/
http://www.pc-ps.net/
http://www.sunstare.com/
http://www.icasic.com/
http://www.sunstars.cn/
mailto:suns8888@hotmail.com
mailto:szss20@163.com

