

Step Recovery Diode Doubler

INTRODUCTION

A straightforward technique for multiplier design is presented. The input circuit is a low pass filter which allows all of the input power to be absorbed by the diode and reflects harmonic power back to the diode. The output circuit is a bandpass filter which offers a low loss path to the desired frequency while reflecting all other harmonics back to the diode.

FREQUENCY MULTIPLICATION WITH STEP RECOVERY DIODES

A step recovery diode has two operating states. With forward bias it looks like a large capacitor — a low impedance. Under reverse bias it looks like a small capacitor — a high impedance. However, the diode is a three layer device and charge can be injected and stored in one of these layers, the I (intrinsic) layer, when forward bias is applied. The change from low impedance to high impedance does not take place until reverse current flows long enough to remove the charge. The change then takes place quickly, in a time interval called the diode transition time.

This sudden change in diode resistance causes a sudden change in current through the final inductor of the low pass filter. This produces a narrow pulse of voltage which is equivalent to a number of frequencies which are multiples of the input frequency. The highest multiple is limited by the narrowness of the pulse which is determined by the transition time. The multiplier is completed by adding a bandpass filter to pass the desired multiple and reflect all others. By properly spacing the multiplier from the filter, much of the power in these unwanted frequencies can be converted to the desired output^[1].

BIAS CURRENT

For maximum efficiency the sudden change of diode resistance should occur at the negative peak of the input waveform. This is controlled by providing negative DC bias to the diode to set the time when conduction starts during the position portion of the input wave. This bias voltage may be provided by a resistor across the input circuit. Rectified current from the diode flows through the bias resistor to generate the negative bias voltage. The proper value of bias resistance is^[2]

$$R_B = \frac{2\tau}{\pi N^2 C}$$

where τ is the lifetime, 100×10^{-9} seconds, N is the multiplication factor, and C is the diode capacitance, 3 pF, so that $R_B = 5300$ ohms.

The major effect of temperature on step recovery diodes is an increase of lifetime of $0.5\%/\text{ }^{\circ}\text{C}$. This is easily compensated by using a silicon resistor, a sensistor, for the bias resistor. Sensistors with this temperature sensitivity are available.

DIODE CHOICE

The design technique will be illustrated by a doubler from 2 to 4 GHz. In the Hewlett-Packard Diode Designer's Catalog the 5082-0805 Step Recovery Diode is recommended for a 4 GHz output frequency. This fits the multiplier rule that the transition time should be equal to or less than the inverse of the output frequency. In this case the typical transition time is 250 picoseconds, the inverse of the 4 GHz output frequency.

A similar rule relates input frequency to lifetime. The lifetime should exceed the inverse of the input frequency. Since the lifetime always exceeds the transition time by a factor of several hundred, this lifetime limitation is not important for low order multipliers.

In some multiplier applications, the breakdown voltage limits the output power. However, for a CW doubler to 4 GHz, the thermal resistance, θ_{jc} , is the limiting factor.

$$P_{MAX} = \frac{200 - T}{\theta_{jc}}$$

For an ambient temperature, T , of 25°C , and $\theta_{jc} = 20^{\circ}\text{C/W}$, $P_{MAX} = 8.8$ watts. In pulse applications, where the thermal resistance is not the limiting factor, the breakdown voltage limits the power output^[3].

$$P_{MAX} = 0.4 f_{OUT} C_j V_B^2$$

For a 3 pF junction capacitance, 4 GHz output frequency, and 75 volts breakdown, power output is limited to 27 watts.

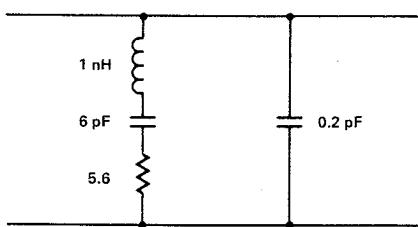


Figure 1. Diode Equivalent Circuit

DIODE EQUIVALENT CIRCUIT

The diode chip is represented by a capacitor in series with a resistor^[4]. The capacitance is double the value measured at 1 MHz with reverse voltage. In this case, $2 \times 3 \text{ pF} = 6 \text{ pF}$. The resistance is computed from the input frequency ω_{in} and the reverse bias junction capacitance C_{min} with the formula

$$\frac{0.21}{\omega_{in} C_{min}} = 5.6 \text{ ohms}$$

The rest of the diode circuit includes 1 nH package inductance and 0.2 pF package capacitance as shown in Figure 1.

INPUT FILTER

The initial design of the input filter is based on a low pass impedance transforming network using a lumped element prototype^[5] shown in Figure 2. The diode impedance at 2 GHz is $5.61 - j 0.77$. The prototype is normalized to unity generator impedance so the load conductance g_5 is

$$r = \frac{50}{5.6} = 8.9$$

The series element g_4 will be modified later to include the load reactance.

The number of filter elements is determined by the impedance transformation ratio r (8.9), the bandwidth, and the desired passband ripple.

A bandwidth from 1.9 GHz to 2.1 GHz was chosen with a ripple less than 0.04 dB (SWR = 1.2). Table 2 in the Matthaei article shows that a four element filter as shown in Figure 2 will easily satisfy these requirements. Table 7 provides $g_1 = 1.54$ and $g_2 = 0.61$. The other elements are $g_3 = g_2$, $r = 5.4$ and

$$g_4 = \frac{g_1}{r} = 0.17$$

This prototype assumes a center angular frequency of unity as well as a one ohm generator. Normalization is removed by changing generator and load to 50 ohms and 5.6 ohms, dividing g_1 and g_3 by 50, multiplying g_2 and g_4 by 50 and dividing all elements by the center frequency $\omega = 2\pi \times 2 \times 10^9$. The lumped element filter now consists of:

$$C_1 = \frac{g_1}{50\omega} = 2.45 \text{ pF} \quad C_3 = \frac{g_3}{50\omega} = 8.6 \text{ pF}$$

$$L_2 = \frac{50 g_2}{\omega} = 2.43 \text{ nH} \quad L_4 = \frac{50 g_4}{\omega} = 0.68 \text{ nH}$$

Since the diode impedance at 2 GHz is $5.61 - j 0.77$, the value of L_4 must be increased by 0.06 nH to cancel the diode reactance.

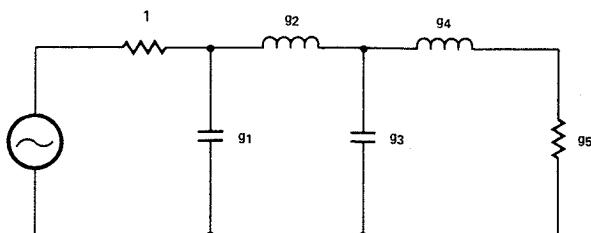


Figure 2. Low Pass Prototype for Input Filter

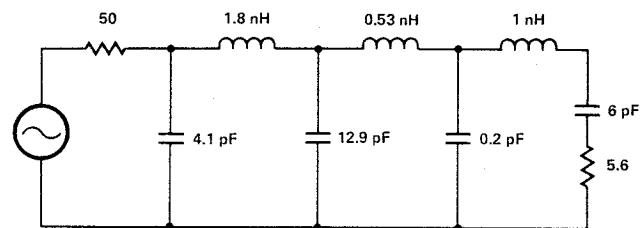


Figure 3. Optimized Lumped Element Low Pass Filter

When this modified filter is used with the diode equivalent circuit of Figure 1 the maximum SWR is 1.3 because the modification of L_4 is valid only at the center frequency. Figure 3 shows the filter optimized by the Compact^[6] computer program to reduce the maximum SWR to 1.09.

LUMPED ELEMENTS TO SERIES TRANSMISSION LINES

It is often possible to transform lumped elements to equivalent series transmission lines which are easier to realize in microstrip circuits. However, the validity of this substitution depends on the size of the load impedance and the size of the lumped element.

Consider the possibility of substituting a length, θ , of transmission line of characteristic impedance Z_0 for a series inductance L which is followed by a load impedance Z_L . This is valid when

$$Z_0 \frac{Z_L + jZ_0 \tan \theta}{Z_0 + jZ_L \tan \theta} = Z_L + j\omega L$$

If $Z_L \tan \theta \ll Z_0$ and θ is small so that $\tan \theta = \theta = \frac{\omega \ell}{v}$, then this expression simplifies to

$$Z_0 \frac{\omega \ell}{v} = \omega L$$

$$\ell = \frac{L v}{Z_0}$$

where ω = angular frequency

ℓ = length of transmission line

and v = velocity of propagation

The requirement that $\tan \theta = \theta$ assures that the substitution is valid over a range of frequencies. This means that the transmission line must be short, θ less than 0.5 radian. The other equation limits the size of the load impedance.

$$Z_L \theta \ll Z_0$$

If we accept 80 ohms as the largest reasonable characteristic impedance, then $Z_L\theta$ should be no more than 8 ohms so that $Z_L\theta << 80$. In the worst case $\theta = 0.5$, Z_L should be less than 16 ohms.

Consider $L_4 = 0.53$ nH terminated with the diode impedance $5.6 - j 0.8$. Since the load impedance is small we can replace L_4 with an 80 ohm microstrip line with length in alumina

$$(\nu = \frac{c}{\sqrt{\epsilon}} = \frac{30}{2.45} \text{ cm/ns})$$

$$\ell = \frac{L\nu}{Z_0} = \frac{0.53 \times 30}{80 \times 2.45} = 0.081 \text{ cm (.032 inch)}$$

or 4.8 degrees.

Similarly the load seen by L_2 is small so L_2 can be replaced by an 80 ohm line of length

$$\frac{1.8 \times 30}{80 \times 2.45} = 0.28 \text{ cm (0.11 inch)}$$

or 16.1 degrees.

Similar analysis of the shunt elements leads to the requirement

$$Y_L << Y_0/\theta$$

The admittance of the diode plus L_4 is $0.085 - j 0.089$ at 2 GHz. The largest reasonable value of Y_0 , corresponding to 20 ohms characteristic impedance, is 0.05 so this condition is not satisfied unless the line length is extremely short, about 3° .

The equivalent line requires $1000 Y_0 \ell = C\nu$. For $C = 12.9$ pF

$$\ell = \frac{12.9 \times 30 \times 20}{1000 \times 2.75} = 2.81 \text{ cm}$$

or 3.2 radians. This is much longer than 0.5 radian so a series length of line is not a good approximation for this shunt capacitor.

OPEN LINES FOR CAPACITORS

Each shunt capacitor may be represented by a pair of shunt open lines with the relationship

$$Y_0 \tan \theta = \frac{\omega C}{2}$$

Use a large Y_0 , 0.05, to keep θ as small as possible. For $C = 12.9$ pF

$$\tan \theta = \frac{20 \times 4 \pi \times 12.2}{2000} = 1.62$$

$$\theta = 58.3^\circ$$

For $C = 4.1$ pF, $\theta = 27.3^\circ$.

Replacing lumped elements with distributed elements has little effect on maximum SWR. Optimization of the open lengths results in less than 10% change and a maximum SWR of 1.09.

EFFECT OF INPUT FILTER ON DESIGN OF OUTPUT FILTER

Before proceeding with the output filter design, we should compute the effect of this low pass filter on the diode impedance at the output frequency.

At 4 GHz the input filter from the diode looks like 0.66 nH. This changes the diode impedance from $6.8 + j20$ to $1.4 +$

$j9.8$. An unsuccessful attempt was made to modify the filter elements to provide an open circuit at 4 GHz while maintaining a match to the diode at the input frequency band. However, this was successfully accomplished by adding shunt open lines at the diode to resonate the filter at 4 GHz. These lines are 30° long at 4 GHz with 20 ohm characteristic impedance. The effect at the input frequency is small. Maximum SWR for 1900 MHz to 2100 MHz goes up from 1.09 to 1.10.

OUTPUT FILTER DESIGN

A parallel coupled line filter is used at the output. In order to have a symmetrical filter the generator impedance is first changed to 50 ohms. The 20.6 ohm reactance is resonated with a 2 pF series capacitor. Then the 6.8 ohm generator is transformed to 50 ohms with a quarter wave line of 18.5 ohm characteristic impedance.

The number of filter elements is determined by the requirement that the filter attenuation be high at the input frequency. For $n = 3$ the isolation at 2 GHz is 37 dB. For $n = 2$ isolation is under 20 dB^[7].

For $n = 3$ the prototype element values for a Chebyshev filter with 0.01 dB ripple are $g_1 = 0.629$, $g_2 = 0.970$, $g_3 = g_1$, $g_4 = 1 = g_0$ ^[8]. For our normalized bandwidth of

$$\frac{4200-3800}{4000} = 0.1$$

these element values transform to the following impedance values^[9] for a parallel coupled line filter operating between 50 ohm source and load.

$$(Z_{0e})_{01} = (Z_{0e})_{34} = 87.5 \text{ ohms}$$

$$(Z_{0o})_{01} = (Z_{0o})_{34} = 37.5 \text{ ohms}$$

$$(Z_{0e})_{12} = (Z_{0e})_{23} = 62 \text{ ohms}$$

$$(Z_{0o})_{12} = (Z_{0o})_{23} = 42 \text{ ohms}$$

From this data the width (W) and separation (S) of the coupled line filter can be computed^[10].

$$W_{01} = W_{34} = 14 \text{ mils}$$

$$S_{01} = S_{24} = 4.8 \text{ mils}$$

$$W_{12} = W_{23} = 22.5 \text{ mils}$$

$$W_{12} = S_{23} = 16 \text{ mils}$$

When analyzed between 50 ohm generator and load, maximum SWR is 1.04. However, when the load is the resonated diode, the maximum SWR rises to 1.9. Optimizing the circuit elements reduces this maximum SWR to 1.6.

Since the load for the input and output filters is not simply the diode but includes the other filter behind the diode, the reflection coefficient doubles at some frequencies. Maximum input SWR over the 10% band is 1.17. Maximum output SWR is 2.92. Figure 4 shows the computer output for the complete multiplier.

Figure 5 is a sketch of the multiplier on 0.025 inch alumina microstrip.

CONCLUSION

Multiplier design techniques have been illustrated by a doubler to 4 GHz using Hewlett-Packard 5082-0805 step recovery diode. Using similar techniques a doubler with power output of 4 watts has been reported^[11]. Bandwidth exceeded 10%. The procedure for higher order multipliers is similar, but the formula for equivalent diode resistance uses different constants^[4].

COMPACT
 COMMAND FILE ==> MULT
 OST AA PA 20.00 -27.1 2000.
 CAS AA AA
 TRL BB SE 80.00 -15.10 2000.
 OST CC PA 20.00 -58.1 2000.
 CAS CC CC
 TRL DD SE 80.00 -4.6 2000.
 OST EE PA 20.00 -30. 4000.
 CAS EE EE
 CAP FF PA .2000
 SRX GG PA 5.630 1.000 6.000
 CAP HH SE 2.000
 TRL II SE -21.6 90.00 4000.
 CPL KK MS -10.5 -2.9 289.0 9.600 25.00
 CPL LL MS -21.4 -8.1 289.0 9.600 25.00
 CON KK T4 1.000 2.000 3.000 4.000
 CON LL T4 3.000 5.000 6.000 7.000
 CON LL T4 6.000 8.000 9.000 10.000
 CON KK T4 9.000 11.00 12.000 13.00
 DEF JJ T2 1.000 12.00
 CAX AA JJ
 PRI AA S1 50.00
 END
 1800 2200 50
 3600 4400 100
 END

FREQUENCY	S_{11}	S_{21}	S_{12}	S_{22}		
1800.00	.23< 49	.00<- 94.5	.001<- 97.4	1.00<- 78	-63.54	
1850.00	.14< 25	.00<-101.4	.001<- 84.1	1.00<- 81	-62.70	
1900.00	.08<- 13	.00<-107.8	.001<-107.8	1.00<- 84	-61.83	
1950.00	.07<- 63	.00<-113.8	.001<-107.1	1.00<- 87	-60.87	
2000.00	.06<- 96	.00<-119.8	.001<-119.8	1.00<- 90	-59.78	
2050.00	.04<-103	.00<-126.3	.001<-126.3	1.00<- 94	-58.51	
2100.00	.04<- 28	.00<-134.0	.001<-137.5	1.00<- 97	-57.10	
2150.00	.13<- 10	.00<-143.3	.002<-146.9	1.00<-100	-55.60	
2200.00	.28<- 20	.00<-154.9	.002<-154.0	1.00<-104	-54.17	
3600.00	1.00<-155	.02<- 9.0	.020<- 9.0	.91<- 16	-33.94	
3700.00	1.00<-157	.04<- 49.4	.036<- 49.4	.74<- 48	-28.87	
3800.00	1.00<-158	.05<-101.0	.052<-101.0	.42<-140	-25.72	
3900.00	1.00<-160	.06<-150.0	.058<-150.0	.23<-102	-24.74	
4000.00	1.00<-161	.06<-166.5	.061<-166.5	.14<- 15	-24.35	
4100.00	1.00<-162	.06<-122.5	.061<-122.5	.18<-179	-24.24	
4200.00	1.00<-163	.06<- 77.2	.055<- 77.2	.49<- 87	-25.18	
4300.00	1.00<-164	.04<- 37.3	.043<- 37.3	.74<- 24	-27.42	
4400.00	1.00<-165	.03<- 6.8	.031<- 6.8	.87<- 23	-30.04	

Figure 4. Computer Analysis of Multiplier

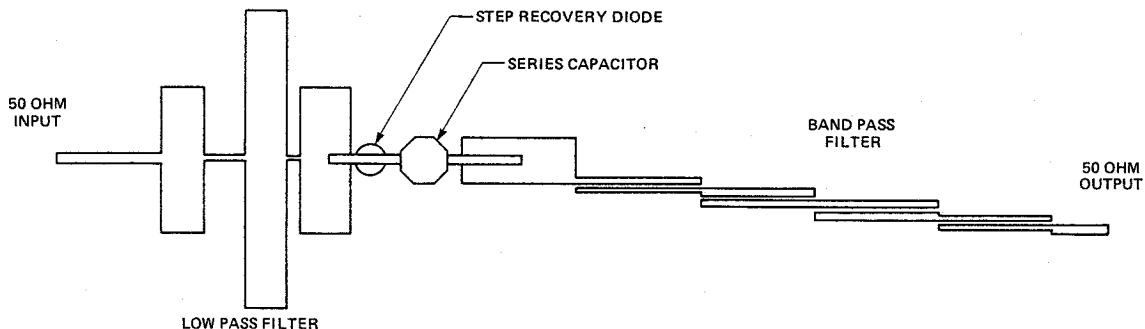


Figure 5. Microstrip Doubler

REFERENCES

1. Hewlett-Packard Application Note 983, "Comb Generator Simplifies Multiplier Design".
2. S. Hamilton and R. Hall, "Shunt Mode Harmonic Generation Using Step Recovery Diodes", *Microwave Journal*, April 1967, p.77.
3. R. M. Scarlett, "Harmonic Generation with a Capacitor Exhibiting an Abrupt Capacitance Change", *Proc. I.E.E.E.*, May, 1964, pp. 612-613.
4. C. B. Burkhardt, "Analysis of Varactor Frequency Multipliers for Arbitrary Capacitance Variation and Drive Level", *Bell System Technical Journal*, pp. 675-692, April, 1965.

5. G. L. Matthaei, "Table of Chebyshev Impedance — Transforming Networks of Low Pass Filter Form", *Proc. I.E.E.E.*, vol. 52, no. 8, pp. 930-963, August, 1964.
6. Compact Division of CGIS, Palo Alto, CA 94303.
7. G. Matthaei, L. Young, and E. Jones, "Microwave Filters, Impedance — Matching Networks, and Coupling Structures", McGraw-Hill Book Company, 1964, p.89.
8. *ibid*, p. 100
9. *ibid*, p. 473
10. Gunston, M.A.R. "Microwave Transmission-Line Impedance Data" Van Nostrand Reinhold Company, London, 1972.
11. Faysal H. Ghoul, Les Besser, and Chi Hsieh, "Design a High Power S-Band Doubler". *Microwaves*, June, 1974, pp. 58-65.

Hewlett-Packard assumes no responsibility for the use of any circuits described herein and makes no representations or warranties, express or implied, that such circuits are free from patent infringement. For more information call your local HP Sales Office or East (301) 948-6370 — Midwest (312) 255-9800 — South (404) 955-1500 — West (213) 970-7500. Or write: Hewlett-Packard Components, 350 West Trimble Road, San Jose, California 95131. In Europe, Hewlett-Packard GmbH, P.O. Box 250, Herrenberger Str. 110, D-7030 Boeblingen, West Germany. In Japan, YHP, 3-29-21, Takaido-Higashi, Suginami Ku, Tokyo 168.

SUNSTAR 商斯达实业集团是集研发、生产、工程、销售、代理经销、技术咨询、信息服务等为一体的高科技企业，是专业高科技电子产品生产厂家，是具有 10 多年历史的专业电子元器件供应商，是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一，是一家专业代理和分销世界各大品牌 IC 芯片和电子元器件的连锁经营综合性国际公司，专业经营进口、国产名厂名牌电子元件，型号、种类齐全。在香港、北京、深圳、上海、西安、成都等全国主要电子市场设有直属分公司和产品展示展销窗口门市部专卖店及代理分销商，已在全国范围内建成强大统一的供货和代理分销网络。我们专业代理经销、开发生产电子元器件、集成电路、传感器、微波光电元器件、工控机/DOC/DOM 电子盘、专用电路、单片机开发、MCU/DSP/ARM/FPGA 软件硬件、二极管、三极管、模块等，是您可靠的一站式现货配套供应商、方案提供商、部件功能模块开发配套商。商斯达实业公司拥有庞大的资料库，有数位毕业于著名高校——有中国电子工业摇篮之称的西安电子科技大学（西军电）并长期从事国防尖端科技研究的高级工程师为您精挑细选、量身订做各种高科技电子元器件，并解决各种技术问题。

微波光电部专业代理经销高频、微波、光纤、光电元器件、组件、部件、模块、整机；电磁兼容元器件、材料、设备；微波 CAD、EDA 软件、开发测试仿真工具；微波、光纤仪器仪表。欢迎国外高科技微波、光纤厂商将优秀产品介绍到中国、共同开拓市场。长期大量现货专业批发高频、微波、卫星、光纤、电视、CATV 器件：晶振、VCO、连接器、PIN 开关、变容二极管、开关二极管、低噪晶体管、功率电阻及电容、放大器、功率管、MMIC、混频器、耦合器、功分器、振荡器、合成器、衰减器、滤波器、隔离器、环行器、移相器、调制解调器；光电子元器件和组件：红外发射管、红外接收管、光电开关、光敏管、发光二极管和发光二极管组件、半导体激光二极管和激光器组件、光电探测器和光接收组件、光发射接收模块、光纤激光器和光放大器、光调制器、光开关、DWDM 用光发射和接收器件、用户接入系统光光收发器件与模块、光纤连接器、光纤跳线/尾纤、光衰减器、光纤适配器、光隔离器、光耦合器、光环行器、光复用器/转换器；无线收发芯片和模组、蓝牙芯片和模组。

更多产品请看本公司产品专用销售网站：

商斯达中国传感器科技信息网：<http://www.sensor-ic.com/>

商斯达工控安防网：<http://www.pc-ps.net/>

商斯达电子元器件网：<http://www.sunstare.com/>

商斯达微波光电产品网：<HTTP://www.rfoe.net/>

商斯达消费电子产品网：<http://www.icasic.com/>

商斯达实业科技产品网：<http://www.sunstars.cn/> 微波元器件销售热线：

地址：深圳市福田区福华路福庆街鸿图大厦 1602 室

电话：0755-82884100 83397033 83396822 83398585

传真：0755-83376182 (0) 13823648918 MSN：SUNS8888@hotmail.com

邮编：518033 E-mail：szss20@163.com QQ：195847376

深圳赛格展销部：深圳华强北路赛格电子市场 2583 号 电话：0755-83665529 25059422

技术支持：0755-83394033 13501568376

欢迎索取免费详细资料、设计指南和光盘；产品凡多，未能尽录，欢迎来电查询。

北京分公司：北京海淀区知春路 132 号中发电子大厦 3097 号

TEL：010-81159046 82615020 13501189838 FAX：010-62543996

上海分公司：上海市北京东路 668 号上海赛格电子市场 D125 号

TEL：021-28311762 56703037 13701955389 FAX：021-56703037

西安分公司：西安高新区 20 所(中国电子科技集团导航技术研究所)

西安劳动南路 88 号电子商城二楼 D23 号

TEL：029-81022619 13072977981 FAX:029-88789382