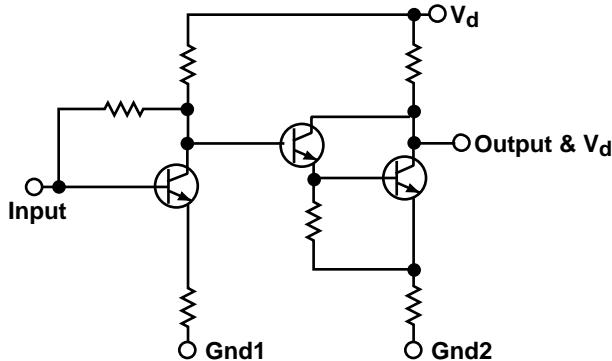


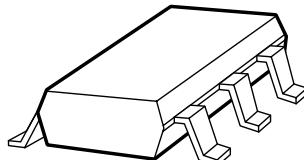
---

# DC-2.5 GHz 3 V, High Isolation Silicon RFIC Amplifier

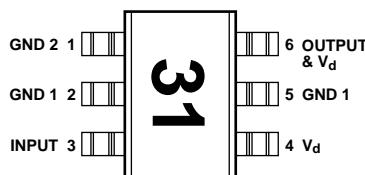
## Technical Data


### Features

- **High Reverse Isolation**  
-40 dB at 1.9 GHz
- **Single +3V Supply**
- 15 dB  $|S_{21}|^2$  at 1.9 GHz
- 200  $\Omega$  Output Impedance
- Ultra-Miniature Package
- Unconditionally Stable


### Applications

- **LO Buffer and Amplifier for Cellular, Cordless, Special Mobile Radio, PCS, ISM, Wireless LAN, DBS, TVRO, and TV Tuner**


### Simplified Schematic



### Surface Mount SOT-363 (SC-70) Package



### Pin Connections and Package Marking



**Note:** Package marking provides orientation and identification.

### INA-31063

### Description

Hewlett-Packard's INA-31063 is a Silicon RFIC amplifier that has excellent gain and isolation for applications to 2.5 GHz. Packaged in an ultra-miniature SOT-363 package, it requires half the board space of a SOT-143 package.

The INA-31063 uses a unique circuit topology that provides broadband gain and 50  $\Omega$  input and 200  $\Omega$  output impedance. With more than 35 dB of isolation to 2.5 GHz makes it an excellent candidate for LO buffer applications.

The INA-31063 is fabricated using HP's 30 GHz f<sub>MAX</sub> ISOSAT™ Silicon bipolar process which uses nitride self-alignment, submicrometer lithography, trench isolation, ion implantation, and polyimide intermetal dielectric and scratch protection to achieve superior performance, uniformity, and reliability.

## Absolute Maximum Ratings

| Symbol    | Parameter                        | Units | Absolute Maximum <sup>[1]</sup> |
|-----------|----------------------------------|-------|---------------------------------|
| $V_d$     | Device Voltage, output to ground | V     | 6.0                             |
| $P_{in}$  | CW RF Input Power                | dBm   | +7.0                            |
| $T_j$     | Junction Temperature             | °C    | 150                             |
| $T_{STG}$ | Storage Temperature              | °C    | -65 to 150                      |

### Thermal Resistance<sup>[2]</sup>:

$$\theta_{jc} = 170 \text{ °C/W}$$

#### Notes:

1. Operation of this device above any one of these limits may cause permanent damage.
2.  $T_C = 25 \text{ °C}$  ( $T_C$  is defined to be the temperature at the package pins where contact is made to the circuit board)

## INA-31063 Electrical Specifications, $T_C = 25 \text{ °C}$ , $Z_0 = 50 \Omega$ , $V_d = 3 \text{ V}$

| Symbol       | Parameters and Test Conditions                                                                                   | Units | Min.                | Typ.                 | Max.                | Std. Dev. <sup>[4]</sup> |
|--------------|------------------------------------------------------------------------------------------------------------------|-------|---------------------|----------------------|---------------------|--------------------------|
| $ S_{21} ^2$ | Gain in 50 $\Omega$ system<br>$f = 0.9 \text{ GHz}$<br>$f = 1.9 \text{ GHz}$<br>$f = 2.4 \text{ GHz}$            | dB    | 13.0 <sup>[3]</sup> | 14.0<br>15.1<br>15.0 |                     | 0.44                     |
| $NF_{50}$    | Noise Figure<br>$f = 1.9 \text{ GHz}$                                                                            | dB    |                     | 6.1                  |                     | 0.25                     |
| $P_{1dB}$    | Output Power at 1 dB Gain Compression<br>$f = 0.9 \text{ GHz}$<br>$f = 1.9 \text{ GHz}$<br>$f = 2.4 \text{ GHz}$ | dBm   |                     | -1.8<br>-2.1<br>-3.5 |                     |                          |
| $IP_3$       | Output Third Order Intercept Point<br>$f = 0.9 \text{ GHz}$<br>$f = 1.9 \text{ GHz}$<br>$f = 2.4 \text{ GHz}$    | dBm   |                     | 9.1<br>8.5<br>6.8    |                     |                          |
| $VSWR_{in}$  | Input VSWR<br>$f = 0.1 - 2.4 \text{ GHz}$                                                                        |       |                     | 1.35:1               |                     |                          |
| $VSWR_{out}$ | Output VSWR<br>$f = 0.1 - 2.4 \text{ GHz}$                                                                       |       |                     | 3.5:1                |                     |                          |
| $I_d$        | Device Current                                                                                                   | mA    |                     | 11.0                 | 13.5 <sup>[3]</sup> | 0.47                     |

#### Notes:

3. Guaranteed specifications are 100% tested in production.
4. Standard deviation number is based on measurement of a large number of parts from three non-consecutive wafer lots during the initial characterization of this product, and is intended to be used as an estimate for distribution of the typical specification.

**INA-31063 Typical Performance,  $T_C = 25^\circ\text{C}$ ,  $Z_0 = 50 \Omega$ ,  $V_d = 3 \text{ V}$**

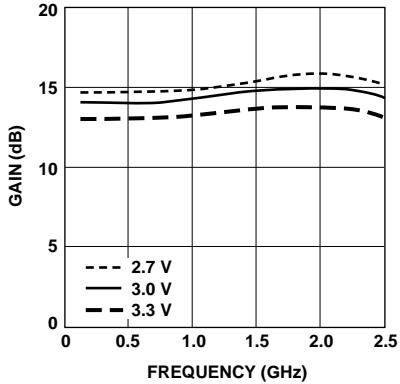



Figure 1. Gain vs. Frequency and Voltage measured in a  $50 \Omega$  system.

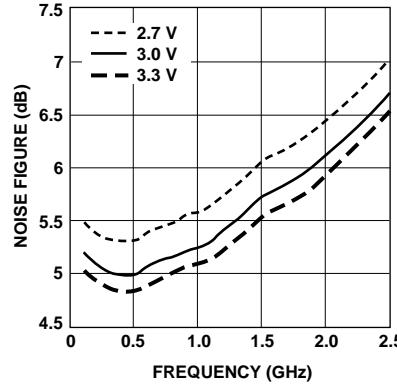



Figure 2. Noise Figure vs. Frequency and Voltage.

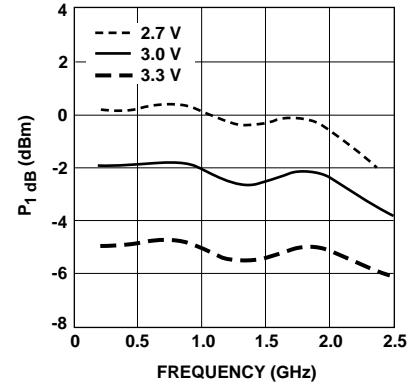



Figure 3. Output Power for 1 dB Gain Compression vs. Frequency and Voltage.

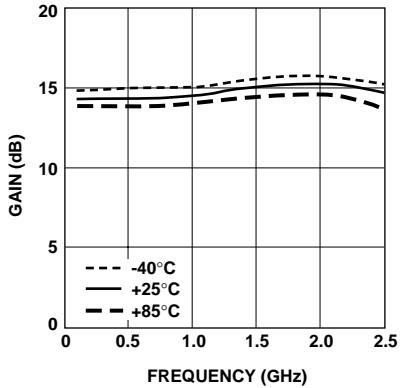



Figure 4. Gain vs. Frequency and Temperature measured in a  $50 \Omega$  system.

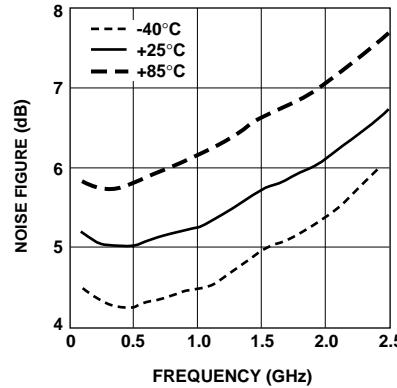



Figure 5. Noise Figure vs. Frequency and Temperature.




Figure 6. Output Power for 1 dB Gain Compression vs. Frequency and Temperature.

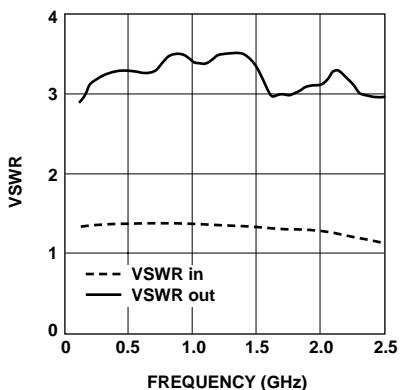



Figure 7. Input and Output VSWR vs. Frequency.

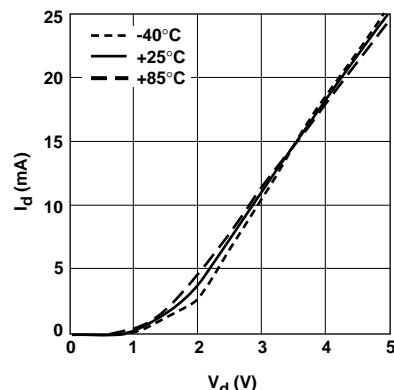



Figure 8. Supply Current vs. Voltage and Temperature.

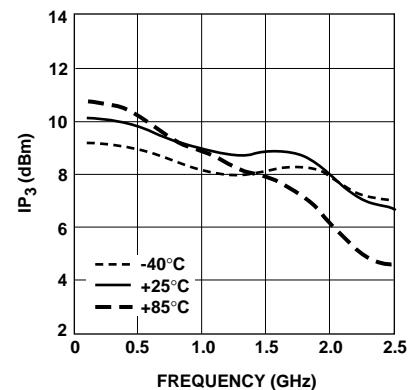



Figure 9. Third Order Intercept Point,  $\text{IP}_3$  vs. Frequency and Temperature.

**INA-31063 Typical Scattering Parameters<sup>[5]</sup>, T<sub>C</sub> = 25°C, Z<sub>0</sub> = 50 Ω, V<sub>d</sub> = 3.0 V**

| Freq.<br>GHz | S <sub>11</sub> |      | S <sub>21</sub> |      |      | S <sub>12</sub> |       |     | S <sub>22</sub> |      | K<br>Factor |
|--------------|-----------------|------|-----------------|------|------|-----------------|-------|-----|-----------------|------|-------------|
|              | Mag             | Ang  | dB              | Mag  | Ang  | dB              | Mag   | Ang | Mag             | Ang  |             |
| 0.1          | 0.14            | 171  | 13.6            | 4.81 | -5   | -32.5           | 0.024 | 10  | 0.49            | -3   | 3.45        |
| 0.2          | 0.15            | 167  | 13.7            | 4.84 | -11  | -37.1           | 0.014 | 11  | 0.52            | -4   | 5.37        |
| 0.3          | 0.14            | 164  | 13.7            | 4.83 | -15  | -36.0           | 0.016 | -3  | 0.51            | -4   | 4.79        |
| 0.4          | 0.15            | 163  | 13.7            | 4.86 | -20  | -37.6           | 0.013 | -39 | 0.54            | -3   | 5.60        |
| 0.5          | 0.15            | 152  | 13.8            | 4.88 | -26  | -39.8           | 0.010 | -6  | 0.53            | -5   | 7.31        |
| 0.6          | 0.14            | 152  | 13.8            | 4.88 | -30  | -37.1           | 0.014 | -18 | 0.51            | -5   | 5.38        |
| 0.7          | 0.14            | 151  | 13.9            | 4.93 | -35  | -38.6           | 0.012 | -35 | 0.53            | -5   | 6.02        |
| 0.8          | 0.15            | 147  | 14.0            | 4.99 | -40  | -41.3           | 0.009 | -46 | 0.55            | -8   | 7.66        |
| 0.9          | 0.14            | 143  | 14.0            | 5.04 | -45  | -45.5           | 0.005 | -35 | 0.56            | -11  | 13.54       |
| 1.0          | 0.14            | 138  | 14.1            | 5.06 | -51  | -45.2           | 0.005 | -4  | 0.55            | -14  | 13.71       |
| 1.1          | 0.14            | 137  | 14.2            | 5.12 | -56  | -44.1           | 0.006 | -6  | 0.54            | -17  | 11.32       |
| 1.2          | 0.13            | 136  | 14.3            | 5.20 | -61  | -45.3           | 0.005 | -16 | 0.55            | -19  | 13.20       |
| 1.3          | 0.13            | 132  | 14.4            | 5.26 | -67  | -47.3           | 0.004 | 20  | 0.55            | -24  | 16.34       |
| 1.4          | 0.13            | 129  | 14.5            | 5.33 | -73  | -46.8           | 0.005 | 40  | 0.55            | -28  | 12.92       |
| 1.5          | 0.13            | 125  | 14.6            | 5.34 | -80  | -41.9           | 0.008 | 58  | 0.53            | -35  | 8.32        |
| 1.6          | 0.12            | 128  | 14.6            | 5.36 | -85  | -41.5           | 0.008 | 30  | 0.49            | -36  | 8.84        |
| 1.7          | 0.12            | 130  | 14.8            | 5.49 | -91  | -44.3           | 0.006 | 27  | 0.50            | -37  | 11.23       |
| 1.8          | 0.12            | 130  | 14.9            | 5.57 | -97  | -45.0           | 0.006 | 31  | 0.50            | -40  | 11.18       |
| 1.9          | 0.12            | 130  | 15.1            | 5.69 | -104 | -46.4           | 0.005 | 53  | 0.51            | -44  | 12.80       |
| 2.0          | 0.11            | 128  | 15.2            | 5.77 | -111 | -45.8           | 0.005 | 61  | 0.52            | -48  | 12.59       |
| 2.1          | 0.10            | 129  | 15.3            | 5.83 | -119 | -44.7           | 0.006 | 74  | 0.53            | -54  | 10.20       |
| 2.2          | 0.08            | 130  | 15.3            | 5.79 | -127 | -43.4           | 0.007 | 78  | 0.52            | -62  | 8.94        |
| 2.3          | 0.07            | 134  | 15.1            | 5.71 | -135 | -42.4           | 0.008 | 79  | 0.50            | -68  | 8.22        |
| 2.4          | 0.05            | 144  | 15.0            | 5.63 | -143 | -41.7           | 0.008 | 76  | 0.49            | -73  | 8.42        |
| 2.5          | 0.04            | 166  | 14.8            | 5.50 | -152 | -41.8           | 0.008 | 74  | 0.49            | -80  | 8.64        |
| 2.6          | 0.04            | -176 | 14.5            | 5.29 | -160 | -42.2           | 0.008 | 76  | 0.47            | -87  | 9.24        |
| 2.7          | 0.05            | -159 | 14.1            | 5.06 | -167 | -43.2           | 0.007 | 77  | 0.44            | -93  | 11.43       |
| 2.8          | 0.06            | -151 | 13.7            | 4.84 | -174 | -43.1           | 0.007 | 85  | 0.40            | -97  | 12.34       |
| 2.9          | 0.08            | -149 | 13.3            | 4.62 | 178  | -43.3           | 0.007 | 86  | 0.39            | -100 | 13.10       |
| 3.0          | 0.10            | -150 | 12.8            | 4.36 | 172  | -44.2           | 0.006 | 96  | 0.36            | -105 | 16.46       |
| 3.1          | 0.13            | -152 | 12.3            | 4.11 | 165  | -44.0           | 0.006 | 105 | 0.34            | -108 | 17.71       |
| 3.2          | 0.15            | -153 | 11.8            | 3.89 | 159  | -43.0           | 0.007 | 115 | 0.32            | -109 | 16.22       |
| 3.3          | 0.17            | -155 | 11.3            | 3.65 | 153  | -42.0           | 0.008 | 118 | 0.30            | -111 | 15.17       |
| 3.4          | 0.19            | -158 | 10.7            | 3.42 | 147  | -42.2           | 0.008 | 125 | 0.29            | -113 | 16.23       |
| 3.5          | 0.21            | -160 | 10.1            | 3.20 | 142  | -41.3           | 0.009 | 139 | 0.27            | -115 | 15.49       |
| 3.6          | 0.22            | -161 | 9.6             | 3.02 | 137  | -38.9           | 0.011 | 143 | 0.25            | -114 | 13.50       |
| 3.7          | 0.24            | -163 | 9.1             | 2.84 | 132  | -38.0           | 0.013 | 144 | 0.24            | -114 | 12.09       |
| 3.8          | 0.25            | -165 | 8.5             | 2.66 | 128  | -37.3           | 0.014 | 151 | 0.23            | -115 | 12.00       |
| 3.9          | 0.25            | -167 | 8.0             | 2.51 | 124  | -35.5           | 0.017 | 155 | 0.21            | -113 | 10.55       |
| 4.0          | 0.26            | -169 | 7.5             | 2.37 | 120  | -34.2           | 0.019 | 153 | 0.21            | -111 | 9.98        |
| 4.1          | 0.27            | -172 | 7.0             | 2.24 | 116  | -33.2           | 0.022 | 153 | 0.20            | -109 | 9.10        |
| 4.2          | 0.27            | -175 | 6.5             | 2.12 | 112  | -32.4           | 0.024 | 154 | 0.20            | -108 | 8.83        |
| 4.3          | 0.28            | -178 | 6.1             | 2.01 | 109  | -31.3           | 0.027 | 154 | 0.19            | -105 | 8.26        |
| 4.4          | 0.29            | 180  | 5.6             | 1.90 | 105  | -30.5           | 0.030 | 154 | 0.19            | -103 | 7.82        |
| 4.5          | 0.29            | 177  | 5.1             | 1.81 | 102  | -29.7           | 0.033 | 153 | 0.19            | -101 | 7.47        |
| 4.6          | 0.30            | 174  | 4.7             | 1.72 | 98   | -28.9           | 0.036 | 152 | 0.19            | -99  | 7.17        |
| 4.7          | 0.31            | 171  | 4.3             | 1.63 | 95   | -28.3           | 0.039 | 151 | 0.19            | -98  | 6.94        |
| 4.8          | 0.32            | 169  | 3.8             | 1.55 | 92   | -27.7           | 0.041 | 151 | 0.19            | -97  | 6.89        |
| 4.9          | 0.33            | 166  | 3.4             | 1.48 | 89   | -27.0           | 0.045 | 151 | 0.19            | -95  | 6.54        |
| 5.0          | 0.33            | 164  | 3.0             | 1.41 | 87   | -26.2           | 0.049 | 150 | 0.19            | -93  | 6.30        |

**Note:**

5. Reference plane per Figure 19 in Applications Information section.

## INA-31063 Applications Information

### Introduction

The INA-31063 is a +3 volt silicon RFIC amplifier that is designed with a two stage internal network to provide a broadband gain and  $50\ \Omega$  input and  $200\ \Omega$  output impedance. With a  $-1\text{ dB}$  compressed output power of  $-3\ \text{dBm}$  and high isolation of  $40\ \text{dB}$ , the INA-31063 is well suited for LO buffer amplifier applications in mobile communication systems.

The  $200\ \Omega$  output impedance of the amplifier allows easy connections to additional RFICs and some filters.

In addition to use in buffer applications in the cellular market, the INA-31063 will find many applications in battery operated wireless communication systems.

### Operating Details

The INA-31063 is a voltage biased device that operates from a +3 volt power supply with a typical current drain of 11 mA. All bias regulation circuitry is integrated into the RFIC. Figure 10 shows a typical implementation of the INA-31063. The supply voltage for the INA-31063 must be applied to two terminals, the  $V_d$  pin and the RF Output pin.

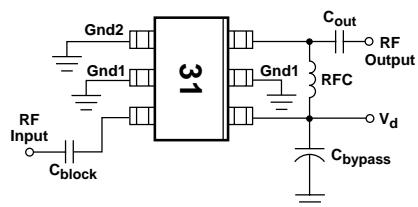



Figure 10. Basic Amplifier Application.

The  $V_d$  connection to the amplifier is RF bypassed by placing a capacitor to ground near the  $V_d$  pin of the amplifier package. The power supply connection to the RF Output pin is achieved by means of a RF choke (inductor). The value of the RF choke must be large relative to  $50\ \Omega$  in order to prevent loading of the RF Output. The supply voltage end of the RF choke is bypassed to ground with a capacitor. If the physical layout permits, this can be the same bypass capacitor that is used at the  $V_d$  terminal of the amplifier. Blocking capacitors are normally placed in series with the RF Input and the RF Output to isolate the DC voltages on these pins from circuits adjacent to the amplifier. The values for the blocking and bypass capacitors are selected to provide a reactance at the lowest frequency of operation that is small relative to  $50\ \Omega$ . Since the gain of the INA-31063 extends down to DC, the frequency response of the amplifier is limited only by the values of the capacitors and choke.

### RF Layout

An example for the RF layout for the INA-31063 is shown in Figure 11.

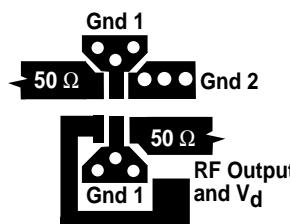



Figure 11. RF Layout

This example uses a microstripline design (solid groundplane on the backside of

the circuit board). The circuit board material is 0.031-inch thick FR4. Plated through holes (vias) are used to bring the ground to the top side of the circuit where needed. The performance of INA-31063 is sensitive to ground path inductance. The two-stage design creates the possibility of a feedback loop being formed through the ground returns of the stages, Gnd 1 and Gnd 2.

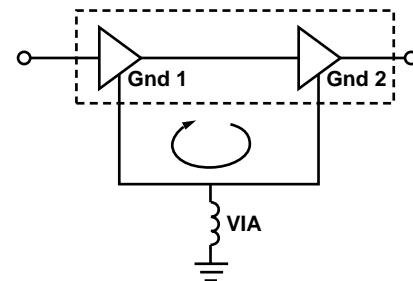



Figure 12. INA-31063 Potential Ground Loop.

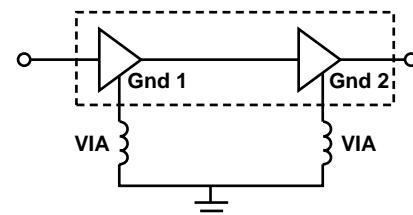



Figure 13. INA-31063 Suggested Layout.

At least one ground via should be placed adjacent to each ground pin to assure good RF grounding. Multiple vias are used to reduce the inductance of the path to ground and should be placed as close to the package terminals as practical.

The effects of the potential ground loop shown in Figure 12 may be observed as a "peaking" in the gain versus frequency response, an increase in input VSWR, or even as return gain at the input of the INA-31063.

Figure 14 shows an assembled  $50\ \Omega$  amplifier. The +3 volt supply is fed directly into the  $V_d$  pin of the INA-31063 and into the RF Output pin through the RF choke (RFC). Capacitor  $C_3$  provides RF bypassing for both the  $V_d$  pin and the power supply end of the RFC. Capacitor  $C_4$  is optional and may be used to add additional bypassing for the  $V_d$  line. A well-bypassed  $V_d$  line is especially necessary in cascades of amplifier stages to prevent oscillation that may occur as a result of RF feedback through the power supply lines.

### 900 MHz $50\ \Omega$ Matched Example

The use of a simple impedance matching network will typically increase both gain and output power by 1.5 dB and 1.5 dBm, respectively. The values that were chosen for the two tuning elements were a 12 nF series inductor and a 1.0 pF shunt capacitor. The RF choke was a 56 nH (Coilcraft 1008CS-221, TOKO LL2012-F or equivalent). The two

blocking capacitors were 100 pF and the bypass capacitor was 1000 pF.

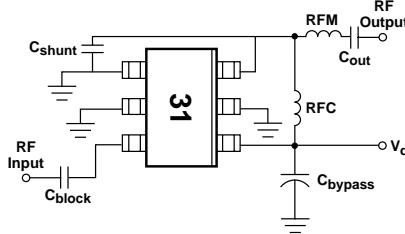



Figure 15. Impedance Matched Output Amplifier Circuit.

These values provide excellent amplifier performance at 900 MHz. Larger values for the choke and capacitors can be used to extend the lower end of the bandwidth. A convenient method for making RF connection to the demonstration board is to use a PCB mounting type of SMA connector (Johnson 142-0701881, or equivalent). These connectors can be slipped over the edge of the PCB and the center conductor soldered to the input and output lines. The ground pins of the connectors can be soldered to the ground plane on the backside of board.

| Frequency | RFC    | RFM    | Cshunt |
|-----------|--------|--------|--------|
| 400 MHz   | 120 nH | 27 nH  | 2.7 pF |
| 900 MHz   | 56 nH  | 12 nH  | 1.0 pF |
| 1900 MHz  | 33 nH  | 4.7 nH | None   |
| 2400 MHz  | 27 nH  | 1.8 nH | None   |

Figure 16. Suggested Matching Elements for Common Frequency Bands.

The test results for the INA-31063 were measured on the  $50\ \Omega$  input and output impedance matched amplifier described above.



Figure 17. Measured Input Power vs. Output Power on Assembled  $50\ \Omega$  Amplifier at 900 MHz and 1900 MHz.

An important specification when selecting a LO buffer amplifier is reverse isolation under  $P_{1dB}$  input conditions. Figure 18 shows the measured reverse isolation with -10 dBm applied to the input of the device.

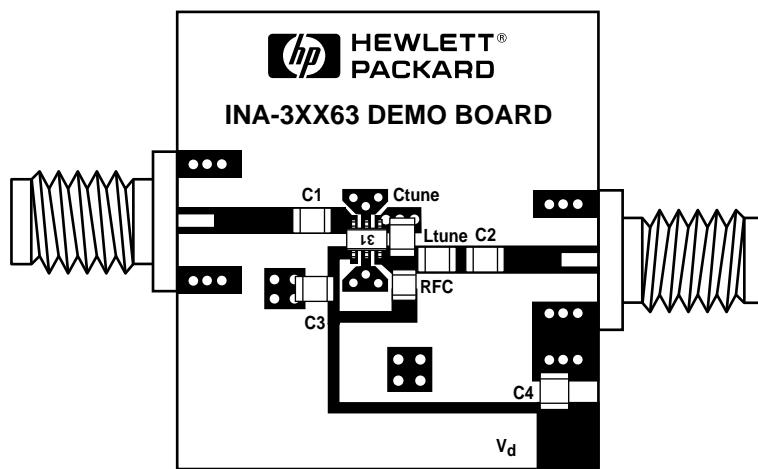



Figure 14. Assembled Amplifier.

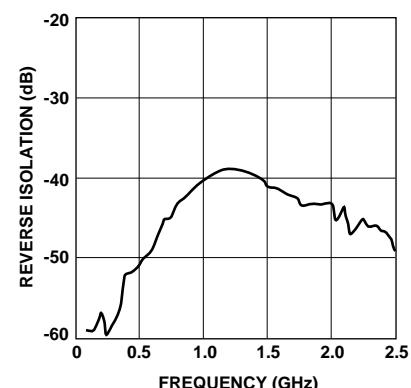



Figure 18. Measured Isolation.

## PCB Materials

Typical choices for PCB material for low cost wireless applications are FR-4 or G-10 with a thickness of 0.025 (0.636 mm) or 0.031 inches (0.787 mm). A thickness of 0.062 inches (1.574 mm) is the maximum that is recommended for use with this particular device. The use of a thicker board material increases the inductance of the plated through vias used for RF grounding and may deteriorate circuit performance. Adequate grounding is needed not only to obtain maximum amplifier performance but also to reduce any possibility of instability.

## Phase Reference Planes

The positions of the reference planes used to measure S-Parameters for this device are shown in Figure 19. As seen in the illustration, the reference planes are located at the point where the package leads contact the test circuit.

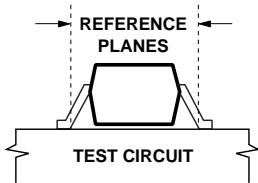



Figure 19. Phase Reference Planes.

## SOT-363 PCB Layout

The INA-31063 is packaged in the miniature SOT-363 (SC-70) surface mount package. A PCB pad layout for the SOT-363 package is shown in Figure 20 (dimensions are in inches). This layout provides ample allowance for package placement by automated assembly equipment without adding pad parasitics that could impair the high frequency

performance of the INA-31063. The layout that is shown with a nominal SOT-363 package footprint superimposed on the PCB pads for reference.

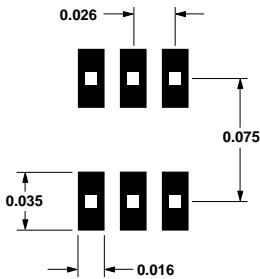



Figure 20. PCB Pad Layout for INA-31063 (dimensions in inches).

## Statistical Parameters

Several categories of parameters appear within this data sheet. Parameters may be described with values that are either "minimum or maximum," "typical," or "standard deviations." The values for parameters are based on comprehensive product characterization data, in which automated measurements are made on a large number of parts taken from 3 non-consecutive process lots of semiconductor wafers. The data derived from product characterization tends to be normally distributed, e.g., fits the standard "bell curve." Parameters considered to be the most important to system performance are bounded by minimum or maximum values. For the INA-31063, these parameters are: Power Gain ( $|S21|^2$ ), and the Device Current ( $I_d$ ). Each of these guaranteed parameters is 100% tested. Values for most of the parameters in the table of Electrical Specifications that are described by typical data are the mathematical mean ( $\mu$ ), of the normal distribution taken from

the characterization data. For parameters where measurements or mathematical averaging may not be practical, such as S-parameters or Noise Parameters and the performance curves, the data represents a nominal part taken from the "center" of the characterization distribution. Typical values are intended to be used as a basis for electrical design.

To assist designers in optimizing not only the immediate circuit using the INA-31063, but to also optimize and evaluate trade-offs that affect a complete wireless system, the standard deviation ( $\sigma$ ) is provided for three of the Electrical Specifications parameters (at 25°C) in addition to the mean. The standard deviation is a measure of the variability about the mean. It will be recalled that a normal distribution is completely described by the mean and standard deviation. Standard statistics tables or calculations provide the probability of a parameter falling between any two values, usually symmetrically located about the mean. Referring to Figure 21 for example, the probability of a parameter being between  $\pm 1\sigma$  is 68.3%; between  $\pm 2\sigma$  is 95.4%; and between  $\pm 3\sigma$  is 99.7%.

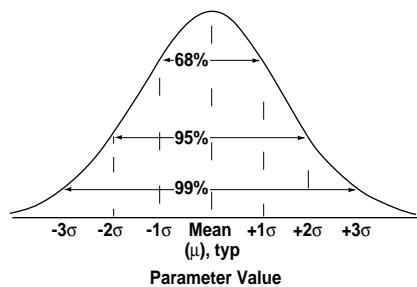



Figure 21. Normal Distribution.

## SMT Assembly

Reliable assembly of surface mount components is a complex process that involves many material, process, and equipment factors, including: method of heating (e.g., IR or vapor phase reflow, wave soldering, etc.) circuit board material, conductor thickness and pattern, type of solder alloy, and the thermal conductivity and thermal mass of components. Components with a low mass, such as the SOT-363 package, will reach solder reflow temperatures faster than those with a greater mass.

The INA-31063 has been qualified to the time-temperature profile shown in Figure 22. This profile is representative of an IR reflow type of surface mount assembly process. After ramping up from room temperature, the circuit

board with components attached to it (held in place with solder paste) passes through one or more preheat zones. The preheat zones increase the temperature of the board and components to prevent thermal shock and begin evaporating solvents from the solder paste. The reflow zone briefly elevates the temperature sufficiently to produce a reflow of the solder.

The rates of change of temperature for the ramp-up and cool down zones are chosen to be low enough to not cause deformation of the board or damage to components due to thermal shock.

These parameters are typical for a surface mount assembly process for the INA-31063. As a general guideline, the circuit board and components should only be exposed to the minimum

temperatures and times necessary to achieve a uniform reflow of solder.

For more information on mounting considerations for packaged microwave semiconductors, please refer to Hewlett-Packard application note AN-A006.



## Electrostatic Sensitivity

RFICs are electrostatic discharge (ESD)

sensitive devices. Although the INA-31063 is robust in design, permanent damage may occur to these devices if they are subjected to high-energy electrostatic discharges. Electrostatic charges as high as several thousand volts (which readily accumulate on the human body and on test equipment) can discharge without degradation in performance, reliability, or failure. Electronic devices may be subjected to ESD damage in any of the following areas:

- Storage & handling
- Inspection & testing
- Assembly
- In-circuit use

The INA-31063 is an ESD Class 1 device. Therefore, proper ESD precautions are recommended when handling, inspecting, testing, assembling, and using these devices to avoid damage.

For more information on Electrostatic Discharge and Control refer to Hewlett-Packard application note AN-A004R.

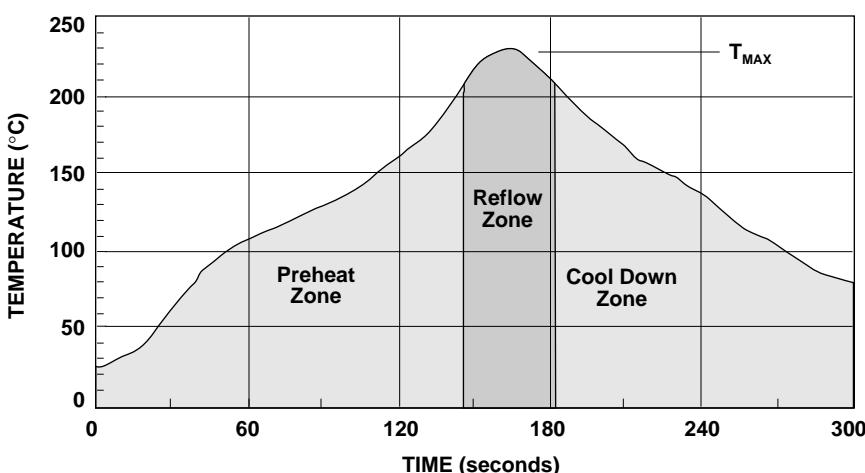
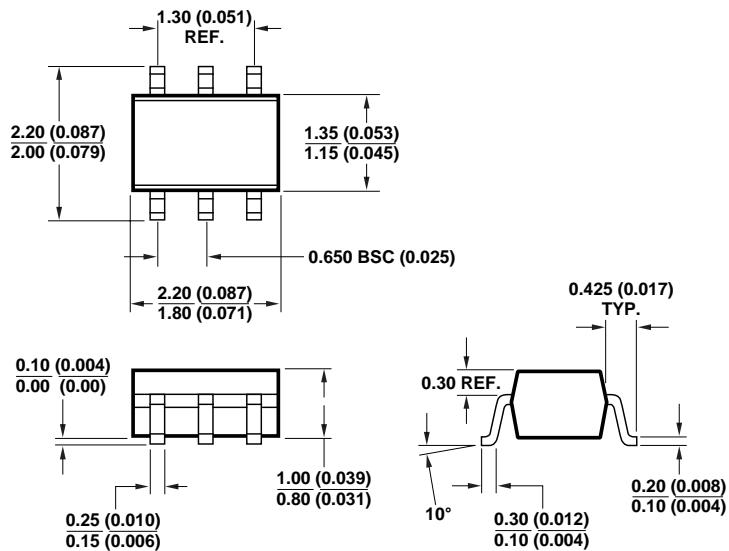
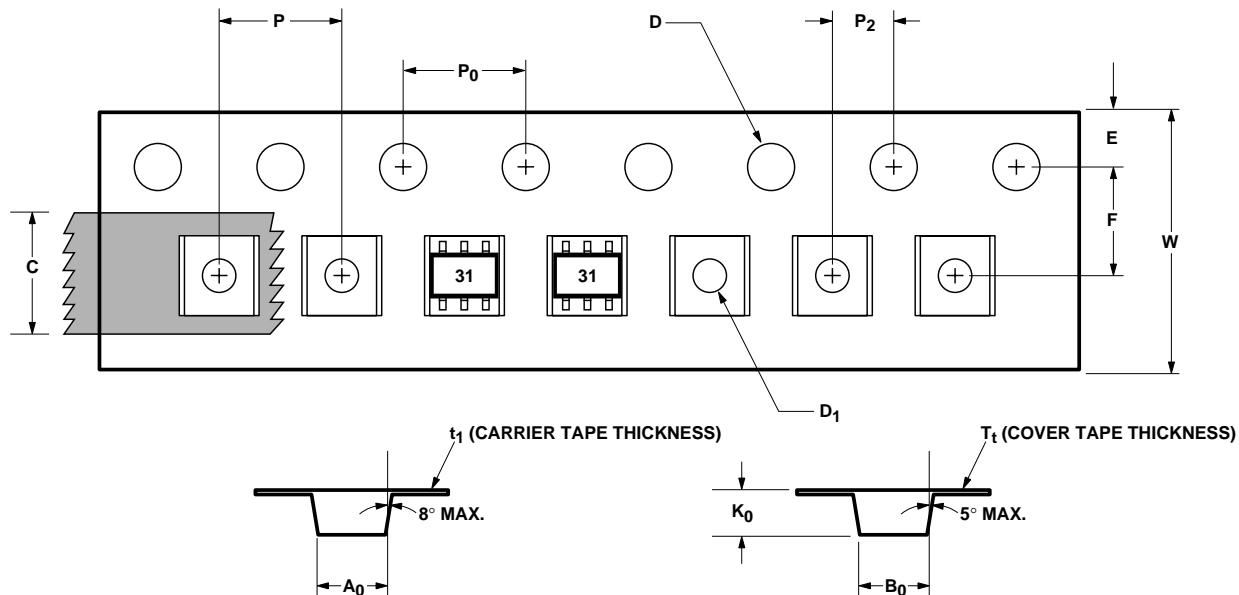




Figure 22. Surface Mount Assembly Profile.

## Package Dimensions

Outline 63 (SOT-363/SC-70)




DIMENSIONS ARE IN MILLIMETERS (INCHES)

## INA-31063 Part Number Ordering Information

| Part Number   | Devices per Container | Container                    |
|---------------|-----------------------|------------------------------|
| INA-31063-BLK | 100                   | tape strip in antistatic bag |
| INA-31063-TR1 | 3,000                 | 7" reel                      |
| INA-31063-TR2 | 10,000                | 13" reel                     |

## Tape Dimensions and Product Orientation

For Outline 63



| DESCRIPTION  |                                             | SYMBOL         | SIZE (mm)     | SIZE (INCHES)    |
|--------------|---------------------------------------------|----------------|---------------|------------------|
| CAVITY       | LENGTH                                      | A <sub>0</sub> | 2.24 ± 0.10   | 0.088 ± 0.004    |
|              | WIDTH                                       | B <sub>0</sub> | 2.34 ± 0.10   | 0.092 ± 0.004    |
|              | DEPTH                                       | K <sub>0</sub> | 1.22 ± 0.10   | 0.048 ± 0.004    |
|              | PITCH                                       | P              | 4.00 ± 0.10   | 0.157 ± 0.004    |
|              | BOTTOM HOLE DIAMETER                        | D <sub>1</sub> | 1.00 ± 0.25   | 0.039 ± 0.010    |
| PERFORATION  | DIAMETER                                    | D              | 1.55 ± 0.05   | 0.061 ± 0.002    |
|              | PITCH                                       | P <sub>0</sub> | 4.00 ± 0.10   | 0.157 ± 0.004    |
|              | POSITION                                    | E              | 1.75 ± 0.10   | 0.069 ± 0.004    |
| CARRIER TAPE | WIDTH                                       | W              | 8.00 ± 0.30   | 0.315 ± 0.012    |
|              | THICKNESS                                   | t <sub>1</sub> | 0.255 ± 0.013 | 0.010 ± 0.0005   |
| COVER TAPE   | WIDTH                                       | C              | 5.4 ± 0.10    | 0.205 ± 0.004    |
|              | TAPE THICKNESS                              | T <sub>t</sub> | 0.062 ± 0.001 | 0.0025 ± 0.00004 |
| DISTANCE     | CAVITY TO PERFORATION<br>(WIDTH DIRECTION)  | F              | 3.50 ± 0.05   | 0.138 ± 0.002    |
|              | CAVITY TO PERFORATION<br>(LENGTH DIRECTION) | P <sub>2</sub> | 2.00 ± 0.05   | 0.079 ± 0.002    |



[www.hp.com/go/rf](http://www.hp.com/go/rf)

For technical assistance or the location of  
your nearest Hewlett-Packard sales  
office, distributor or representative call:

**Americas/Canada:** 1-800-235-0312 or  
408-654-8675

**Far East/Australasia:** Call your local HP  
sales office.

**Japan:** (81 3) 3335-8152

**Europe:** Call your local HP sales office.

Data subject to change.  
Copyright © 1998 Hewlett-Packard Co.

Obsoletes 5967-5770E  
Printed in U.S.A. 5967-????E (7/98)

SUNSTAR 商斯达实业集团是集研发、生产、工程、销售、代理经销、技术咨询、信息服务等为一体的高科技企业，是专业高科技电子产品生产厂家，是具有 10 多年历史的专业电子元器件供应商，是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一，是一家专业代理和分销世界各大品牌 IC 芯片和电子元器件的连锁经营综合性国际公司，专业经营进口、国产名厂名牌电子元件，型号、种类齐全。在香港、北京、深圳、上海、西安、成都等全国主要电子市场设有直属分公司和产品展示展销窗口门市部专卖店及代理分销商，已在全国范围内建成强大统一的供货和代理分销网络。我们专业代理经销、开发生产电子元器件、集成电路、传感器、微波光电元器件、工控机/DOC/DOM 电子盘、专用电路、单片机开发、MCU/DSP/ARM/FPGA 软件硬件、二极管、三极管、模块等，是您可靠的一站式现货配套供应商、方案提供商、部件功能模块开发配套商。商斯达实业公司拥有庞大的资料库，有数位毕业于著名高校——有中国电子工业摇篮之称的西安电子科技大学（西军电）并长期从事国防尖端科技研究的高级工程师为您精挑细选、量身订做各种高科技电子元器件，并解决各种技术问题。

微波光电部专业代理经销高频、微波、光纤、光电元器件、组件、部件、模块、整机；电磁兼容元器件、材料、设备；微波 CAD、EDA 软件、开发测试仿真工具；微波、光纤仪器仪表。欢迎国外高科技微波、光纤厂商将优秀产品介绍到中国、共同开拓市场。长期大量现货专业批发高频、微波、卫星、光纤、电视、CATV 器件：晶振、VCO、连接器、PIN 开关、变容二极管、开关二极管、低噪晶体管、功率电阻及电容、放大器、功率管、MMIC、混频器、耦合器、功分器、振荡器、合成器、衰减器、滤波器、隔离器、环行器、移相器、调制解调器；光电子元器件和组件：红外发射管、红外接收管、光电开关、光敏管、发光二极管和发光二极管组件、半导体激光二极管和激光器组件、光电探测器和光接收组件、光发射接收模块、光纤激光器和光放大器、光调制器、光开关、DWDM 用光发射和接收器件、用户接入系统光光收发器件与模块、光纤连接器、光纤跳线/尾纤、光衰减器、光纤适配器、光隔离器、光耦合器、光环行器、光复用器/转换器；无线收发芯片和模组、蓝牙芯片和模组。

更多产品请看本公司产品专用销售网站：

商斯达中国传感器科技信息网：<http://www.sensor-ic.com>

商斯达工控安防网：<http://www.pc-ps.net>

商斯达电子元器件网：<http://www.sunstare.com>

商斯达微波光电产品网：<HTTP://www.rfoe.net>

商斯达消费电子产品网：<http://www.icasic.com>

商斯达实业科技产品网：<http://www.sunstars.cn> 微波元器件销售热线：

地址：深圳市福田区福华路福庆街鸿图大厦 1602 室

电话：0755-82884100 83397033 83396822 83398585

传真：0755-83376182 (0) 13823648918 MSN：[SUNS8888@hotmail.com](mailto:SUNS8888@hotmail.com)

邮编：518033 E-mail：[szss20@163.com](mailto:szss20@163.com) QQ：195847376

深圳赛格展销部：深圳华强北路赛格电子市场 2583 号 电话：0755-83665529 25059422

技术支持：0755-83394033 13501568376

欢迎索取免费详细资料、设计指南和光盘；产品凡多，未能尽录，欢迎来电查询。

北京分公司：北京海淀区知春路 132 号中发电子大厦 3097 号

TEL：010-81159046 82615020 13501189838 FAX：010-62543996

上海分公司：上海市北京东路 668 号上海赛格电子市场 D125 号

TEL：021-28311762 56703037 13701955389 FAX：021-56703037

西安分公司：西安高新区 20 所(中国电子科技集团导航技术研究所)

西安劳动南路 88 号电子商城二楼 D23 号

TEL：029-81022619 13072977981 FAX:029-88789382