INTEGRATED CIRCUITS

DATA SHEET

TJA1054Fault-tolerant CAN transceiver

Preliminary specification
File under Integrated Circuits, IC18

1999 Feb 11

TJA1054

FEATURES

Optimized for in-car low-speed communication

- Baud rate up to 125 kBaud
- Up to 32 nodes can be connected
- · Supports unshielded bus wires
- Very low Radio Frequency Interference (RFI) due to built-in slope control function and a very good matching of the CANL and CANH bus outputs
- · Fully integrated receiver filters
- · Permanent dominant monitoring of transmit data input
- Good immunity performance of ElectroMagnetic Compatibility (EMC) in normal operating mode and in low power modes.

Bus failure management

- Supports single-wire transmission modes with ground offset voltages up to 1.5 V
- \bullet Automatic switching to single-wire mode in the event of bus failures, even when the CANH bus wire is short-circuited to V_{CC}
- Automatic reset to differential mode if bus failure is removed
- Fully wake-up capability during failure modes.

Protection

- Short-circuit proof to battery and ground in 12 V powered systems
- · Thermally protected
- Bus lines protected against transients in an automotive environment
- An unpowered node does not disturb the bus lines.

Support for low power modes

- Low current sleep and standby mode with wake-up via the bus lines
- Power-on reset flag on the output.

GENERAL DESCRIPTION

The TJA1054 is the interface between the protocol controller and the physical wires of the bus lines in a Control Area Network (CAN). It is primarily intended for low-speed applications, up to 125 kBaud, in passenger cars. The device provides differential transmit capability but will switch in error conditions to single-wire transmitter and/or receiver.

The TJA1054T is pin and upwards compatible with the PCA82C252T and the TJA1053T. This means that these two devices can be replaced by the TJA1054T with retention of all functions.

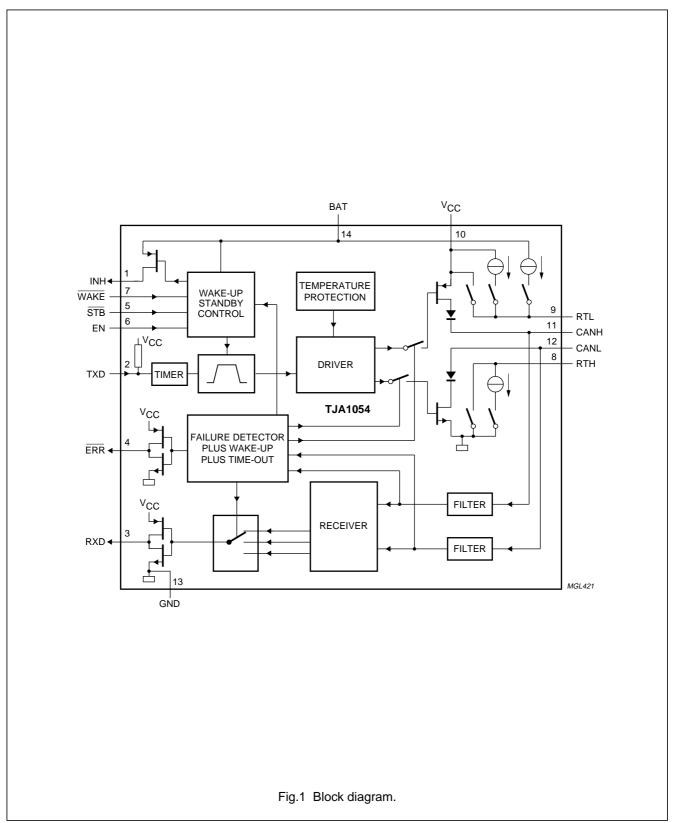
The most important improvements are:

- Very low RFI due to a very good matching of the CANL and CANH bus lines outputs
- Good immunity performance of EMC, especially in low power modes
- Fully wake-up capability during failure modes
- Extended bus failure management including short-circuit of the CANH bus line to V_{CC}
- · Supports easy fault localization
- Two-edge sensitive wake-up input signal via pin WAKE.

ORDERING INFORMATION

TYPE		PACKAGE				
NUMBER	NAME	DESCRIPTION	VERSION			
TJA1054T	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1			

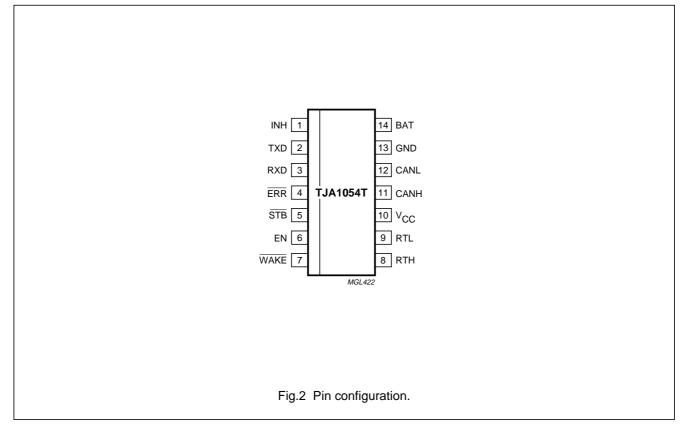
Fault-tolerant CAN transceiver


TJA1054

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{CC}	supply voltage on pin V _{CC}		4.75	_	5.25	V
V _{BAT}	battery voltage on pin BAT	no time limit	-0.3	_	+40	V
		operating mode	5.0	_	27	V
		load dump	_	_	40	V
I _{BAT}	battery current on pin BAT	Sleep mode; $V_{CC} = 0 \text{ V}$; $V_{BAT} = 12 \text{ V}$	_	30	50	μΑ
V _{CANH}	CANH bus line voltage	$V_{CC} = 0$ to 5.5 V; $V_{BAT} \ge 0$ V; no time limit	-40	-	+40	V
V _{CANL}	CANL bus line voltage	$V_{CC} = 0$ to 5.5 V; $V_{BAT} \ge 0$ V; no time limit	-40	-	+40	V
ΔV_{CANH}	CANH bus line transmitter voltage drop	I _{CANH} = -40 mA	_	_	1.4	V
ΔV_{CANL}	CANH bus line transmitter voltage drop	I _{CANL} = 40 mA	_	_	1.4	V
t _{PD}	propagation delay	TXD to RXD	_	1	_	μs
t _r	bus line output rise time	10 to 90%; C1 = 10 nF	_	0.6	_	μs
t _f	bus line output fall time	90 to 10%; C1 = 1 nF	_	0.3	_	μs
T _{amb}	operating ambient temperature		-40	_	+125	°C

TJA1054


BLOCK DIAGRAM

TJA1054

PINNING

SYMBOL	PIN	DESCRIPTION
INH	1	inhibit output for switching an external voltage regulator if a wake-up signal occurs
TXD	2	transmit data input for activating the driver to the bus lines
RXD	3	receive data output for reading out the data from the bus lines
ERR	4	error, wake-up and power-on indication output; active LOW in normal operating mode when the bus has a failure and in low power modes (wake-up signal or in power-on standby)
STB	5	standby digital control signal input (active LOW); defines together with input signal on pin EN the state of the transceiver (in normal and low power modes); see Table 2 and Fig.3
EN	6	enable digital control signal input; defines together with input signal on pin STB the state of the transceiver (in normal and low power modes); see Table 2 and Fig.3
WAKE	7	local wake-up signal input; falling and rising edges are both detected
RTH	8	termination resistor connection; in case of a CANH bus wire error the line is terminated with a selectable impedance
RTL	9	termination resistor connection; in case of a CANL bus wire the line is terminated with a selectable impedance
V _{CC}	10	supply voltage
CANH	11	HIGH-level voltage bus line
CANL	12	LOW-level voltage bus line
GND	13	ground
BAT	14	battery supply

Fault-tolerant CAN transceiver

TJA1054

FUNCTIONAL DESCRIPTION

The TJA1054 is the interface between the CAN protocol controller and the physical wires of the CAN bus (see Fig.7). It is primarily intended for low speed applications, up to 125 kBaud, in passenger cars. The device provides differential transmit capability to the CAN bus and differential receive capability to the CAN controller.

To reduce RFI, the rise and fall slope are limited. This allows the use of an unshielded twisted pair or a parallel pair of wires for the bus lines. Moreover, it supports transmission capability on either bus line if one of the wires is corrupted. The failure detection logic automatically selects a suitable transmission mode.

In normal operating mode (no wiring failures) the differential receiver is output on pin RXD (see Fig.1). The differential receiver inputs are connected to pins CANH and CANL through integrated filters. The filtered input signals are also used for the single-wire receivers. The receivers connected to pins CANH and CANL have threshold voltages that ensure a maximum noise margin in single-wire mode.

A timer has been integrated at pin TXD. This timer prevents the TJA1054 from driving the bus lines to a permanent dominant state.

Failure detector

The failure detector is fully active in the normal operating mode. After the detection of a single bus failure the detector switches to the appropriate mode (see Table 1).

Table 1 Bus failures

FAILURE	DESCRIPTION
1	CANH wire interrupted
2	CANL wire interrupted
3	CANH short-circuited to battery
3a	CANH short-circuited to V _{CC}
4	CANL short-circuited to ground
5	CANH short-circuited to ground
6	CANL short-circuited to battery
6a	CANL short-circuited to V _{CC}
7	CANL mutually short-circuited to CANH

The differential receiver threshold voltage is set at -3.2 V typically ($V_{CC} = 5$ V). This ensures correct reception with a noise margin as high as possible in the normal operating mode and in the event of failures 1, 2, 4 and 6a. These failures, or recovery from them, do not destroy ongoing transmissions.

Failures 3 and 6 are detected by comparators connected to the CANH and CANL bus lines, respectively. If the comparator threshold is exceeded for a certain period of time, the reception is switched to the single-wire mode. This time is needed to avoid false triggering by external RF fields. Recovery from these failures is detected automatically after a certain time-out (filtering) and no transmission is lost. In the event of failure 3 the CANH driver and pin RTH are switched off. In the event of failure 6 the CANL driver and pin RTL are switched off. The pull-up current on pin RTL and the pull-down current on pin RTH will not be switched off.

Failures 3a, 4 and 7 initially result in a permanent dominant level on pin RXD. After a time-out, the CANL driver and pin RTL are switched off (failures 4 and 7) or the CANH driver and pin RTH are switched off (failure 3a). Only a weak pull-up on pin RTL or a weak pull-down on pin RTH remains. Reception continues by switching to the single-wire mode via pins CANH or CANL. When failures 3a, 4 or 7 are removed, the recessive bus levels are restored. If the differential voltage remains below the recessive threshold level for a certain period of time, reception and transmission switch back to the differential mode.

If any of the wiring failure occurs, the output signal on pin $\overline{\mathsf{ERR}}$ will become LOW. On error recovery, the output signal on pin $\overline{\mathsf{ERR}}$ will become HIGH again.

During all single-wire transmissions, the EMC performance (both immunity and emission) is worse than in the differential mode. The integrated receiver filters suppress any HF noise induced into the bus wires. The cut-off frequency of these filters is a compromise between propagation delay and HF suppression. In the single-wire mode, LF noise cannot be distinguished from the required signal.

Fault-tolerant CAN transceiver

TJA1054

Low power modes

The transceiver provides 3 low power modes which can be entered and exited via pins STB and EN (see Table 2 and Fig.3).

The Sleep mode is the mode with the lowest power consumption. Pin INH is switched to high-impedance for deactivation of the external voltage regulator. Pin CANL is biased to the battery voltage via pin RTL. If the supply voltage is provided pins RXD and $\overline{\text{ERR}}$ will signal the wake-up interrupt signal.

The standby mode will react the same as the Sleep mode but with a HIGH-level on pin INH.

The power-on standby mode is the same as the standby mode with the battery power-on flag instead of the wake-up interrupt signal on pin \overline{ERR} . The output on pin RXD will show the wake-up interrupt. This mode is only for reading out the power-on flag.

Wake-up requests are recognized by the transceiver when a dominant signal is detected on either bus line or if pin WAKE detects an edge (rising or falling) which stays longer HIGH or LOW respectively during a certain period of time. On a wake-up request the transceiver will set the output on pin INH which can be used to activate the external supply voltage regulator.

 $\frac{\text{If }V_{CC}}{\text{ERR}} \text{ is provided the wake-up request can be read on the } \\ \overline{\text{ERR}} \text{ or RXD outputs, so the external microcontroller can wake-up the transceiver (switch to normal operating mode) via pins } \\ \overline{\text{STB}} \text{ and EN.}$

To prevent false wake-up due to transients or RF fields, the wake-up voltage levels have to be maintained for a certain period of time. In the low power modes the failure detection circuit remains partly active to prevent an increased power consumption in the event of failures 3, 3a, 4 and 7.

Pin INH is set to floating only during the goto-sleep command and stays floating during the Sleep mode. If pin INH is set to floating, pin INH will not be set to HIGH-level again just by a mode change to normal operating mode. Pin INH will be set to HIGH-level by the following events only:

- power-on (V_{BAT} switching-on at cold start)
- rising or falling edge on pin WAKE
- a message with 5 consecutive dominant bits during pin EN or pin STB is at LOW-level.

The signals on pins $\overline{\text{STB}}$ and EN will internally be set to LOW-level when V_{CC} is below a certain threshold voltage so providing fail safe functionality.

Table 2 Normal operating and low power modes

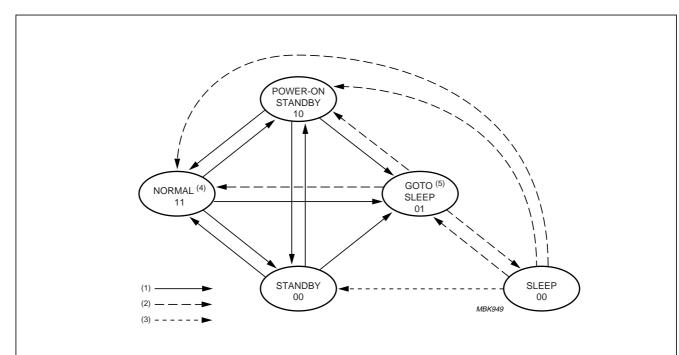
			ERR		RXD		RTL	
MODE	STB	EN	LOW	HIGH	LOW	HIGH	SWITCHED TO	
Goto-sleep command	0	1	wake-up interrupt		wake-up interrupt		V _{BAT}	
Sleep	0	0(1)	signal; notes 2 and 3		signal; notes 2 and 3		V _{BAT}	
Standby	0	0	Tioles 2 and 5		Hotes 2 and 5		V _{BAT}	
Power-on standby	1	0	V _{BAT} power-on flag; notes 2 and 4		wake-up interrupt signal; notes 2 and 3		V _{BAT}	
Normal operating	1	1	error flag	no error flag	dominant received data	recessive received data	Vcc	

Notes

- 1. In case the goto-sleep command was used before. When V_{CC} drops pin EN will become LOW, but this does not effect the internal functions due to the fail safe functionality.
- 2. If the supply voltage V_{CC} is present.
- 3. Wake-up interrupts are released when entering the normal operating mode.
- 4. V_{BAT} power-on flag will be reset when entering the normal operating mode.

TJA1054

Power-on


After power-on (V_{BAT} switched on) the signal on pin INH will become HIGH and an internal power-on flag will be set. This flag can be read in the power-on standby mode via pin \overline{ERR} ($\overline{STB} = 1$; EN = 0) and will be reset by entering the normal operating mode.

Protections

A current limiting circuit protects the transmitter output stages against short-circuit to positive and negative battery voltage.

If the junction temperature exceeds a maximum value, the transmitter output stages are disabled. Because the transmitter is responsible for the major part of the power dissipation, this will result in a reduced power dissipation and hence a lower chip temperature. All other parts of the IC will remain operating.

The pins CANH and CANL are protected against electrical transients which may occur in an automotive environment.

- (1) Mode change via input ports STB and EN.
- (2) Mode change via input ports STB and EN, but in the sleep mode INH is inactive and possibly there is no V_{CC}. Mode control is only possible if V_{CC} of the transceiver is active.
- (3) INH is activated after wake-up via bus or input port WAKE.
- (4) Transitions to normal mode clear the internal wake-up: interrupt and battery fail flag are cleared.
- (5) Transitions to sleep mode: INH is deactivated.

Fig.3 Mode control.

Fault-tolerant CAN transceiver

TJA1054

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134); note 1.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage on pin V _{CC}		-0.3	+6	V
V _{BAT}	battery voltage on pin BAT		-0.3	+40	V
V _n	DC voltage on pins 2 to 6		-0.3	V _{CC} + 0.3	V
V _{CANH}	DC voltage on pin CANH		-40	+40	V
V _{CANL}	DC voltage on pin CANL		-40	+40	V
V _{trt(n)}	transient voltage on pins CANH and CANL	see Fig.6	-150	+100	V
V _{WAKE}	DC input voltage on pin WAKE		_	V _{BAT} + 0.3	V
I _{WAKE}	DC input current on pin WAKE		-15	_	mA
V _{INH}	DC output voltage on pin INH		-0.3	V _{BAT} + 0.3	V
V _{RTH}	DC voltage on pin RTH		-0.3	V _{BAT} + 1.2	V
V _{RTL}	DC voltage on pin RTL		-0.3	V _{BAT} + 1.2	V
R _{RTH}	termination resistance on pin RTH		500	16000	Ω
R _{RTL}	termination resistance on pin RTL		500	16000	Ω
T _{vj}	virtual junction temperature	note 2	-40	+150	°C
T _{stg}	storage temperature		-55	+150	°C
V _{esd}	electrostatic discharge voltage	human body model; note 3	-2.0	+2.0	kV
		machine model; note 4	-200	+200	V

Notes

- 1. All voltages are defined with respect to pin GND. Positive current flows into the IC.
- 2. Junction temperature in accordance with "IEC 747-1". An alternative definition is: $T_{vj} = T_{amb} + P \times R_{th(vj-a)}$ where $R_{th(vj-a)}$ is a fixed value to be used for the calculation of T_{vj} . The rating for T_{vj} limits the allowable combinations of power dissipation (P) and operating ambient temperature (T_{amb}).
- 3. Equivalent to discharging a 100 pF capacitor through a 1.5 $k\Omega$ resistor.
- 4. Equivalent to discharging a 200 pF capacitor through a 10 Ω resistor and a 0.75 μ H coil.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(vj-a)}	thermal resistance from junction to ambient	in free air	120	K/W

QUALITY SPECIFICATION

Quality specification in accordance with "SNW-FQ-611-Part-E".

TJA1054

DC CHARACTERISTICS

 V_{CC} = 4.75 to 5.25 V; V_{BAT} = 5 to 27 V; V_{STB} = V_{CC} ; T_{amb} = -40 to +125 °C; unless otherwise specified. All voltages are defined with respect to ground. Positive currents flow into the IC. All parameters are guaranteed over the temperature range by design, but only 100% tested at 25 °C.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies					•	
I _{CC}	supply current	normal operating mode; V _{TXD} = V _{CC} (recessive)	4	7	11	mA
		normal operating mode; V _{TXD} = 0 V (dominant); no load	11	17	27	mA
		low power modes; V _{TXD} = V _{CC}	0	0	10	μΑ
I _{BAT}	battery current on pin BAT	all modes; in low power modes at $V_{RTL} = V_{BAT}$ or $V_{RTL} < 2.5 \text{ V (>1.5 ms)}$				
		$V_{BAT} = V_{WAKE} = V_{INH} = 12 V$	10	30	50	μΑ
		$V_{BAT} = V_{WAKE} = V_{INH} = 5 \text{ to } 27 \text{ V}$	5	30	125	μΑ
		$V_{BAT} = V_{WAKE} = V_{INH} = 3.5 \text{ V}$	5	20	30	μΑ
		V _{BAT} = V _{WAKE} = V _{INH} = 1 V	0	0	10	μΑ
I _{CC} + I _{BAT}	supply current plus battery current	low power modes; $V_{CC} = 5 \text{ V}$; $V_{BAT} = V_{WAKE} = V_{INH} = 12 \text{ V}$	_	35	60	μΑ
V_{BAT}	battery voltage on pin BAT	low power modes				
		for setting power-on flag	-	_	1	V
		for not setting power-on flag	3.5	_	_	V
Pins STB,	EN and TXD					
V _{IH}	HIGH-level input voltage		0.7V _{CC}	_	V _{CC} + 0.3	٧
V _{IL}	LOW-level input voltage		-0.3	_	0.3V _{CC}	V
I _{IH}	HIGH-level input current	V _I = 4 V				
	pins STB and EN		_	9	20	μΑ
	pin TXD		-25	-80	-200	μΑ
I _{IL}	LOW-level input current	V _I = 1 V				
	pins STB and EN		4	8	_	μΑ
	pin TXD		-100	-320	-800	μΑ
V _{CC}	supply voltage	for forced power-on standby mode (fail safe)	2.75	_	4.5	V
Pins RXD	and ERR					•
V _{OH}	HIGH-level output voltage					
	on pin ERR	I _O = -100 μA	V _{CC} – 0.9	_	V _{CC}	V
	on pin RXD	I _O = -1 mA	V _{CC} - 0.9		V _{CC}	V
V _{OL}	LOW-level output voltage	I _O = 1.6 mA	0	_	0.4	V
	on pins ERR and RXD	I _O = 7.5 mA	0	_	1.5	V

TJA1054

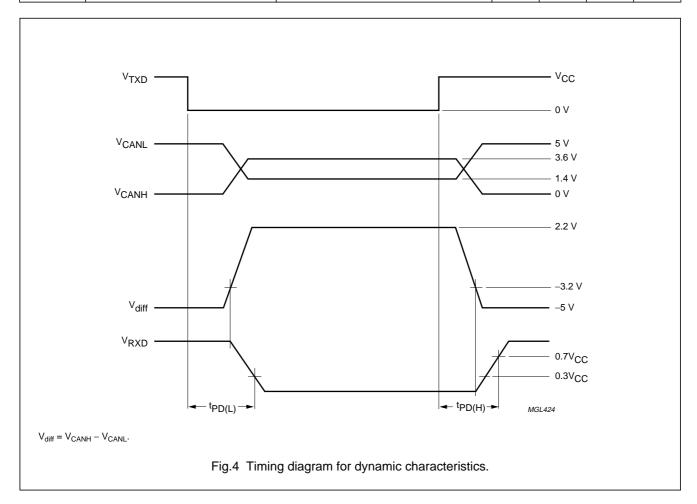
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Pin WAKE	-			!	!	
I _{IL}	LOW-level input current	V _{WAKE} = 0 V; V _{BAT} = 27 V	-1	-4	-10	μΑ
V _{th(WAKE)}	wake-up threshold voltage	$V_{STB} = 0 \text{ V}$	2.5	3.2	3.9	V
Pin INH	<u> </u>	0.0				
ΔV_{H}	HIGH-level voltage drop	I _{INH} = -0.18 mA	_	_	0.8	V
1_	leakage current	Sleep mode; V _{INH} = 0 V	_	_	5	μΑ
Pins CAN	H and CANL		1	•	•	•
V_{diff}	differential receiver threshold voltage	no failures and bus failures 1, 2, 5, 6a; see Fig.4				.,
		V _{CC} = 5 V	-3.5	-3.2	-2.9	V
		V _{CC} = 4.75 to 5.25 V	-0.70V _{CC}	-0.64V _{CC}	-0.58V _{CC}	V
V _{O(reces)}	on pin CANI	$V_{TXD} = V_{CC}$ $R_{RTH} < 4 \text{ k}\Omega$	-	_	0.2	V
\/	on pin CANL	$R_{RTL} < 4 k\Omega$	V _{CC} – 0.2	_	_	V
$V_{O(dom)}$	dominant output voltage on pin CANH	$V_{TXD} = 0 \text{ V}; V_{EN} = V_{CC}$ $I_{CANH} = -40 \text{ mA}$	V _{CC} – 1.4	_	_	V
	on pin CANL	$I_{CANL} = 40 \text{ mA}$	_	_	1.4	V
I _{O(CANH)}	output current on pin CANH	normal operating mode; V _{CANH} = 0 V; V _{TXD} = 0 V	-45	-80	-110	mA
		low power modes; V _{CANH} = 0 V; V _{CC} = 5 V	_	-0.25	_	μΑ
I _{O(CANL)}	output current on pin CANL	normal operating mode; $V_{CANL} = 14 \text{ V}; V_{TXD} = 0 \text{ V}$	45	70	100	mA
		low power modes; $V_{CANL} = 12 \text{ V}; V_{BAT} = 12 \text{ V}$	_	0	_	μΑ
$V_{\text{det(CANH)}}$	detection threshold	normal operating mode	1.5	1.7	1.85	V
	voltage for short-circuit to battery voltage on pin CANH	low power modes	1.1	1.8	2.5	V
V _{det(CANL)}	detection threshold voltage for short-circuit to battery voltage on pin CANL	normal operating mode	6.5	7.3	8	V
V _{th(wake)}	wake-up threshold voltage on pin CANL	low power modes	2.5	3.2	3.9	V
	on pin CANH	low power modes	1.1	1.8	2.5	V
$\Delta V_{th(wake)}$	difference of wake-up threshold voltages	low power modes	0.8	1.4	-	V
V _{se(CANH)}	single-ended receiver threshold voltage on	normal operating mode and failures 4, 6 and 7				
	pin CANH	V _{CC} = 5 V	1.5	1.7	1.85	V
		V _{CC} = 4.75 to 5.25 V	0.30V _{CC}	0.34V _{CC}	0.37V _{CC}	V

TJA1054

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{se(CANL)}	single-ended receiver threshold voltage on	normal operating mode and failures 3 and 3a				
	pin CANL	V _{CC} = 5 V	3.15	3.3	3.45	V
		V _{CC} = 4.75 to 5.25 V	0.63V _{CC}	0.66V _{CC}	0.69V _{CC}	V
Pins RTH	and RTL					
R _{sw(RTL)}	switch-on resistance between pin RTL and V _{CC}	normal operating mode; I _O < 10 mA	-	50	100	Ω
R _{sw(RTH)}	switch-on resistance between pin RTH and ground	normal operating mode; I _O < 10 mA	_	50	100	Ω
V _{O(RTH)}	output voltage on pin RTH	low power modes; I _O = 1 mA	_	0.7	1.0	V
I _{O(RTL)}	output current on pin RTL	low power modes; V _{RTL} = 0 V	-1.25	-0.65	-0.3	mA
I _{pu(RTL)}	pull-up current on pin RTL	normal operating mode and failures 4, 6 and 7	_	75	_	μΑ
$I_{pd(RTH)}$	pull-down current on pin RTH	normal operating mode and failures 3 and 3a	_	75	_	μΑ
Thermal s	hutdown					
T _j	junction temperature	for shutdown	155	165	180	°C

Fault-tolerant CAN transceiver

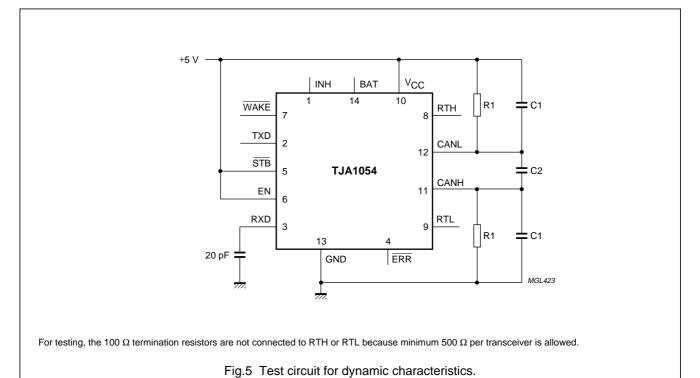
TJA1054

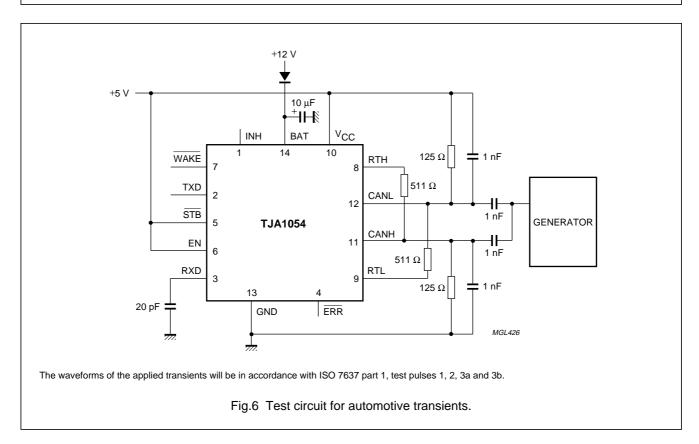

TIMING CHARACTERISTICS

 V_{CC} = 4.75 to 5.25 V; V_{BAT} = 5 to 27 V; V_{STB} = V_{CC} ; T_{amb} = -40 to +125 °C; unless otherwise specified. All voltages are defined with respect to ground. Positive currents flow into the IC. All parameters are guaranteed over the temperature range by design, but only 100% tested at 25 °C.

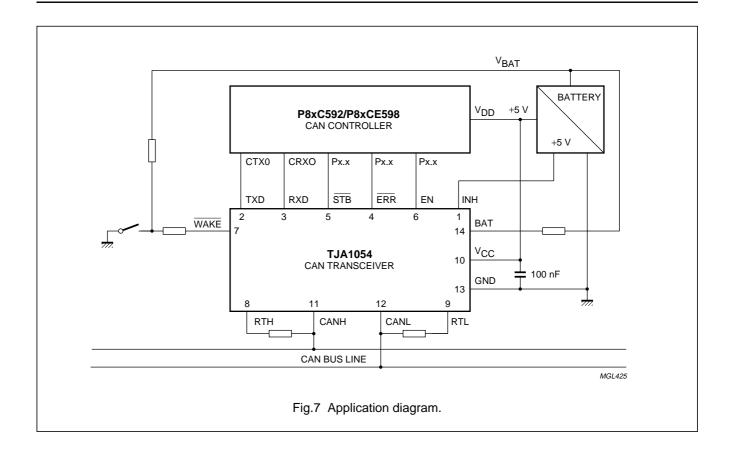
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{t(r-d)}	CANL and CANH output transition time for recessive-to-dominant	10 to 90%; C1 = 10 nF; C2 = 0; R1 = 100 Ω ; see Fig.5	0.35	0.60	-	μs
$t_{t(d-r)}$	CANL and CANH output transition time for dominant-to-recessive	10 to 90%; C1 = 1 nF; C2 = 0; R1 = 100 Ω ; see Fig.5	0.2	0.3	_	μs
t _{PD(L)}	propagation delay TXD to RXD (LOW)	no failures and failures 1, 2, 5, 6a; see Figs 4 and 5				
		C1 = 1 nF; C2 = 0; R1 = 100Ω	_	0.75	1.35	μs
		C1 = C2 = 3.3 nF; R1 = 100Ω	_	1	1.75	μs
		failures 3, 3a, 4, 6 and 7; see Figs 4 and 5				
		C1 = 1 nF; C2 = 0; R1 = 100 Ω	-	0.85	1.4	μs
		C1 = C2 = 3.3 nF; R1 = 100 Ω	_	1.1	1.7	μs
t _{PD(H)}	propagation delay TXD to RXD (HIGH)	no failures and failures 1, 2, 5, 6a; see Figs 4 and 5				
		C1 = 1 nF; C2 = 0; R1 = 100 Ω	_	1.2	1.9	μs
		C1 = C2 = 3.3 nF; R1 = 100 Ω	-	2.5	3.3	μs
		failures 3, 3a, 4, 6 and 7; see Figs 4 and 5				
		C1 = 1 nF; C2 = 0; R1 = 100 Ω	_	1.1	1.7	μs
		C1 = C2 = 3.3 nF; R1 = 100Ω	-	1.5	2.2	μs
t _{CANH(min)}	minimum dominant time for wake-up on pin CANH	low power modes; V _{BAT} = 12 V	7	_	38	μs
t _{CANL(min)}	minimum dominant time for wake-up on pin CANL	low power modes; V _{BAT} = 12 V	7	_	38	μs
t _{WAKE(min)}	minimum time on pin WAKE	low power modes; V _{BAT} = 12 V; for wake-up after receiving a falling or rising edge	7	_	38	μs
t _{det}	failure detection time	normal mode				
		failure 3 and 3a	1.6	_	8.0	ms
		failure 4, 6 and 7	0.3	-	1.6	ms
		low power modes; V _{BAT} = 12 V				
		failure 3 and 3a	1.6	_	8.0	ms
		failure 4 and 7	0.1	-	1.6	ms

TJA1054


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{rec}	failure recovery time	normal mode				
		failure 3 and 3a	0.3	-	1.6	ms
		failure 4 and 7	7	-	38	μs
		failure 6	125	-	750	μs
		low power modes; V _{BAT} = 12 V				
		failures 3, 3a, 4 and 7	0.3	_	1.6	ms
t _{h(min)}	minimum hold time of goto-sleep command		5	_	50	μs
t _{dis(TXD)}	disable time of TXD permanent dominant timer	normal mode; V _{TXD} = 0 V	0.75	_	4	ms
Δρς	pulse-count difference between CANH and CANL	normal mode and failures 1, 2, 5 and 6a failure detection	_	4	_	
		(pin ERR becomes LOW)				
l		failure recovery	-	4	_	

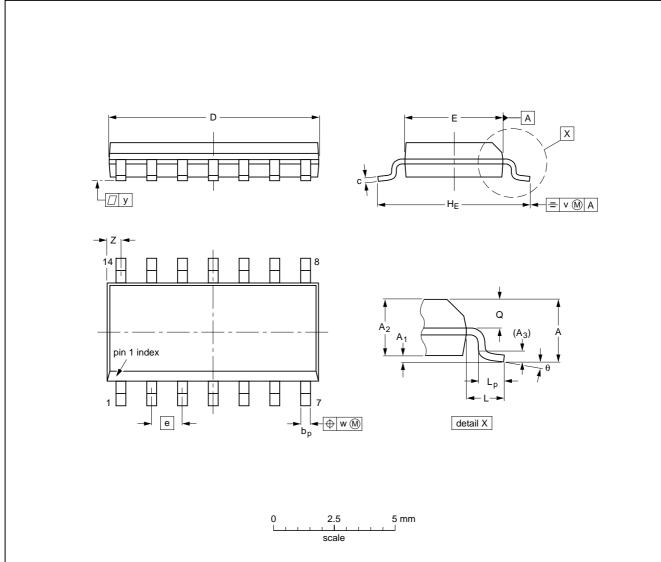


Fault-tolerant CAN transceiver


TJA1054

TEST AND APPLICATION INFORMATION

TJA1054



TJA1054

PACKAGE OUTLINE

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

U	NIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
r	mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
ind	ches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT108-1	076E06S	MS-012AB				95-01-23 97-05-22	

Fault-tolerant CAN transceiver

TJA1054

SOLDERING

Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is **preferred** to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300~^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

Fault-tolerant CAN transceiver

TJA1054

Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD					
PACKAGE	WAVE	REFLOW ⁽¹⁾				
BGA, SQFP	not suitable	suitable				
HLQFP, HSQFP, HSOP, HTSSOP, SMS	not suitable ⁽²⁾	suitable				
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable				
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable				
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable				

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

DEFINITIONS

Data sheet status						
Objective specification	This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.					
Product specification	This data sheet contains final product specifications.					
Limiting values						

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,

Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr 6 A-1101 WIEN P.O. Box 213 Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG,

Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America

Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,

Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 4099 6161, Fax. +33 1 4099 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,

Tel. +30 1 489 4339/4239, Fax. +30 1 481 4240

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,

Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14 Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,

Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain Romania: see Italy

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,

Tel. +27 11 470 5911, Fax. +27 11 470 5494

South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,

Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,

TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.

209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,

Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,

Tel. +90 212 279 2770. Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,

MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 62 5344, Fax.+381 11 63 5777

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1999

SCA62

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

Date of release: 1999 Feb 11

Document order number: 9397 750 03636

Let's make things better.

Internet: http://www.semiconductors.philips.com

SUNSTAR 商斯达实业集团是集研发、生产、工程、销售、代理经销 、技术咨询、信息服务等为一体的高科技企业,是专业高科技电子产品生产厂家,是具有 10 多年历史的专业电子元器件供应商,是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一,是一家专业代理和分銷世界各大品牌 IC 芯片和電子元器件的连锁经营綜合性国际公司,专业经营进口、国产名厂名牌电子元件,型号、种类齐全。在香港、北京、深圳、上海、西安、成都等全国主要电子市场设有直属分公司和产品展示展销窗口门市部专卖店及代理分销商,已在全国范围内建成强大统一的供货和代理分销网络。 我们专业代理经销、开发生产电子元器件、集成电路、传感器、微波光电元器件、工控机/DOC/DOM 电子盘、专用电路、单片机开发、MCU/DSP/ARM/FPGA 软件硬件、二极管、三极管、模块等,是您可靠的一站式现货配套供应商、方案提供商、部件功能模块开发配套商。商斯达实业公司拥有庞大的资料库,有数位毕业于著名高校——有中国电子工业摇篮之称的西安电子科技大学(西军电)并长期从事国防尖端科技研究的高级工程师为您精挑细选、量身订做各种高科技电子元器件,并解决各种技术问题。

微波光电部专业代理经销高频、微波、光纤、光电元器件、组件、部件、模块、整机;电磁兼容元器件、材料、设备;微波 CAD、EDA 软件、开发测试仿真工具;微波、光纤仪器仪表。欢迎国外高科技微波、光纤厂商将优秀产品介绍到中国、共同开拓市场。长期大量现货专业批发高频、微波、卫星、光纤、电视、CATV 器件: 晶振、VCO、连接器、PIN 开关、变容二极管、开关二极管、低噪晶体管、功率电阻及电容、放大器、功率管、MMIC、混频器、耦合器、功分器、振荡器、合成器、衰减器、滤波器、隔离器、环行器、移相器、调制解调器;光电子元器件和组件:红外发射管、红外接收管、光电开关、光敏管、发光二极管和发光二极管组件、半导体激光二极管和激光器组件、光电探测器和光接收组件、光发射接收模块、光纤激光器和光放大器、光调制器、光开关、DWDM 用光发射和接收器件、用户接入系统光光收发器件与模块、光纤连接器、光纤跳线/尾纤、光衰减器、光纤适 配器、光隔离器、光耦合器、光环行器、光复用器/转换器;无线收发芯片和模组、蓝牙芯片和模组。

更多产品请看本公司产品专用销售网站:

商斯达中国传感器科技信息网: http://www.sensor-ic.com/

商斯达工控安防网: http://www.pc-ps.net/

商斯达电子元器件网: http://www.sunstare.com/

商斯达微波光电产品网:HTTP://www.rfoe.net/

商斯达消费电子产品网://www.icasic.com/

商斯达实业科技产品网://www.sunstars.cn/ 微波元器件销售热线:

地址:深圳市福田区福华路福庆街鸿图大厦 1602 室

电话: 0755-82884100 83397033 83396822 83398585

传真: 0755-83376182 (0) 13823648918 MSN: SUNS8888@hotmail.com

邮编: 518033 E-mail:szss20@163.com QQ: 195847376

深圳赛格展销部: 深圳华强北路赛格电子市场 2583 号 电话: 0755-83665529 25059422

技术支持: 0755-83394033 13501568376

欢迎索取免费详细资料、设计指南和光盘 : 产品凡多,未能尽录,欢迎来电查询。

北京分公司:北京海淀区知春路 132 号中发电子大厦 3097 号

TEL: 010-81159046 82615020 13501189838 FAX: 010-62543996

上海分公司: 上海市北京东路 668 号上海賽格电子市场 D125 号

TEL: 021-28311762 56703037 13701955389 FAX: 021-56703037

西安分公司: 西安高新开发区 20 所(中国电子科技集团导航技术研究所)

西安劳动南路 88 号电子商城二楼 D23 号

TEL: 029-81022619 13072977981 FAX:029-88789382