M5M5256DFP,VP -70G,-70GI,-70XG

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

DESCRIPTION

The M5M5256DFP,VP is 262,144-bit CMOS static RAMs organized as 32,768-words by 8-bits which is fabricated using high-performance 3 poly silicon CMOS technology. The use of resistive load NMOS cells and CMOS periphery results in a high density and low power static RAM. Stand-by current is small enough for battery back-up application. It is ideal for the memory systems which require simple interface.

Especially the M5M5256DVP are packaged in a 28-pin thin small outline package.

FEATURE

	Access	Oprating	Power su	ipply current
Туре	time (max)	Temperature	Activ e (max)	Stand-by (max)
M5M5256DFP,VP	70ns	0~70°C		20µA (Vcc=5.5V)
-70G				12µA (Vcc=3.6V)
M5M5256DFP,VP	70ns		45mA (Vcc=5.5V)	40µA (Vcc=5.5V)
-70GI	70115	-40~85°C	25mA	24µA (Vcc=3.6V)
M5M5256DFP,VP -70XG	70ns	0~70°C	25MA (Vcc=3.6V)	5µA (Vcc=5.5V) 2.4µA (Vcc=3.6V) 0.05µA (Vcc=3.0V Typical)

•Single 3.0~5.5V power supply

•No clocks, no refresh

•Data-Hold on +2.0V power supply

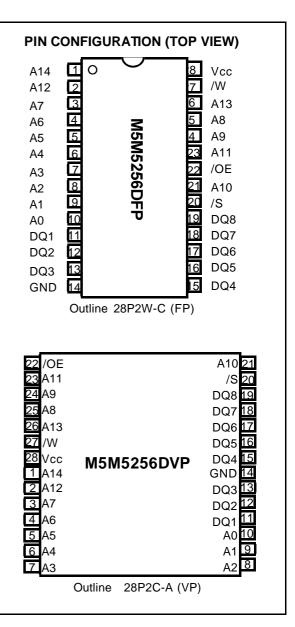
•Directly TTL compatible : all inputs and outputs

•Three-state outputs : OR-tie capability

 \bullet / OE prevents data contention in the I/O bus

Common Data I/O

Battery backup capability


•Low stand-by current $0.05 \mu A(ty\,p.)$

PACKAGE

M5M5256DFP	: 28 pin 450 mil SOP
M5M5256DVP	: 28pin 8 X 13.4 mm ² TSOP

APPLICATION

Small capacity memory units

RENESAS LSIS M5M5256DFP,VP -70G,-70GI,-70XG

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

FUNCTION

The operation mode of the M5M5256DFP,VP is determined by a combination of the device control inputs /S, /W and /OE. Each mode is summarized in the function table.

A write cy cle is executed whenever the low level /W ov erlaps with the low level /S. The address must be set up before the write cy cle and must be stable during the entire cy cle. The data is latched into a cell on the trailing edge of /W, /S, whichever occurs first, requiring the setup and hold time relative to these edge to be maintained. The output enable /OE directly controls the output stage. Setting the /OE at a high level, the output stage is in a high-impedance state, and the data bus contention problem in the write cy cle is eliminated. A read cycle is executed by setting /W at a high level and /OE at a low level while /S are in an active state. When setting /S at a high level, the chip is in a nonselectable mode in which both reading and writing are disabled. In this mode, the output stage is in a highimpedance state, allowing OR-tie with other chips and memory expansion by /S. The power supply current is reduced as low as the stand-by current which is specified as lcc3 or lcc4, and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the nonselected mode.

FUNCTION TABLE

/S	/W	/OE	Mode	DQ	Icc
н	х	х	Non selection High-impedance		Stand-by
L	L	х	Write	ΟіΝ	Activ e
L	Н	L	Read	Dout	Activ e
L	Н	Н		High-impedance	Activ e

Note • "H" and "L" in this table mean VIH and VIL, respectively. • "X" in this table should be "H" or "L".

A 8 DQ1 32768 WORD A 13 DQ2 X 8BIT A 14 DQ3 ANPLIFIER BUFFER DECODER A 12 ď DQ4 BUFFER DATA I/O Α7 DQ5 DRESS (512 ROWS X OUTPUT A 6 ROW DQ6 SENSE A 5 512 COLUMNS) DQ7 A 4 DQ8 ADDRESS Α3 A 2 A 1 DATA INPUT BUFFER COLUMN Я A 0 BUFFER DRESS A 10 CLOCK A 11 GENERATOR Α9 WRITE CONTROL INPUT /W VCC (5V) CHIP SELECT /S INPUT GND (0V) OUTPUT ENABLE /OE INPUT

BLOCK DIAGRAM

M5M5256DFP,VP -70G,-70GI,-70XG

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Supply voltage		-0.3*~7.0	V
Vi	Input voltage	With respect to GND	-0.3*~Vcc+0.3 (Max 7.0)	V
Vo	Output voltage		0~Vcc	V
Pd	Power dissipation	Ta=25°C	700	mW
Topr	Operating temperature	-G,-XG	0~70	- °C
l opr		-GI	-40~85	-0
Tstg	Storage temperature		-65~150	°C

* -3.0V in case of AC (Pulse width < 30ns)

DC ELECTRICAL CHARACTERISTICS

0	Demonster	T				Limits			Limits		
Symbol	Parameter	Test condit	lions		(Vo Min	c=3.3± Typ	0.3V) Max		сс=5.0: Тур	HO.5V) Max	Unit
Vін	High-level input voltage				2.0	,,	Vcc +0.3	2.2	71	Vcc +0.3	V
VIL	Low-level input voltage				-0.3*		0.6	-0.3*		0.8	V
Vон1	High-level output voltage 1	Іон=-1mA (Vcc=5.0±0.5V) Іон=-0.5mA (Vcc=3.3±0.3V)		2.4			2.4			V	
Vон2	High-level output voltage 2	Іон=-0.1mA (Vcc=5.0±0.5V)		Vcc -0.5			Vcc -0.5			V	
Vol	Low-level output voltage	IoL=2mA (Vcc=5.0±0.5V) IoL=1mA (Vcc=3.3±0.3V)				0.4			0.4	V	
h	Input current	VI=0~Vcc				±1			±1	μA	
lo	Output current in off-state	/S=VIH or or /OE=VIH, VI/0=0~Vcc				±1			±1	μA	
Icc1	Active supply current (AC, MOS level)	/S<0.2V, Output-ope Other inputs<0.2V	n	70ns		13	25		25	40	mA
		or >Vcc	-0.2V	1MHz		1.5	3		2	4	1117 \
lcc2	Active supply current (AC, TTL level)	/S=VIL, Output-oper	1	70ns		14	25		25	45	mA
ICC2	(AC, TTL level)	other inputs=VIH or V	IL	1MHz		1.5	3		4	8	
			~25°C	-G,-GI			1.2			2	
			~23 0	-XG		0.05	0.3		0.1	0.4	_
		/S>Vcc-0.2V,	~40°C	-G,-GI			3.6			6	
lcc3	Stand-by current	other inputs =0~Vcc	~40 C	-XG			0.8			1.2	μA
			~70°C	-G,-GI			12			20	_
			~10 C	-XG			2.4			5	
			~85°C	-GI			24			40	
lcc4	Stand-by current	/S=VIH, other inputs=	0~Vcc				0.33			3	mA

* -3.0V in case of AC (Pulse width \leq 30ns)

CAPACITANCE

		Demonster Test and diviens		Limits	5	Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Cı	Input capacitance	VI=GND, VI=25mVrms, f=1MHz			6	pF
Co	Output capacitance	Vo=GND,Vo=25mVrms, f=1MHz			8	рF

Note 0: Direction for current flowing into an IC is positive (no mark).

1: Typical value is one at Ta = 25°C.

2: C1, Co are periodically sampled and are not 100% tested.

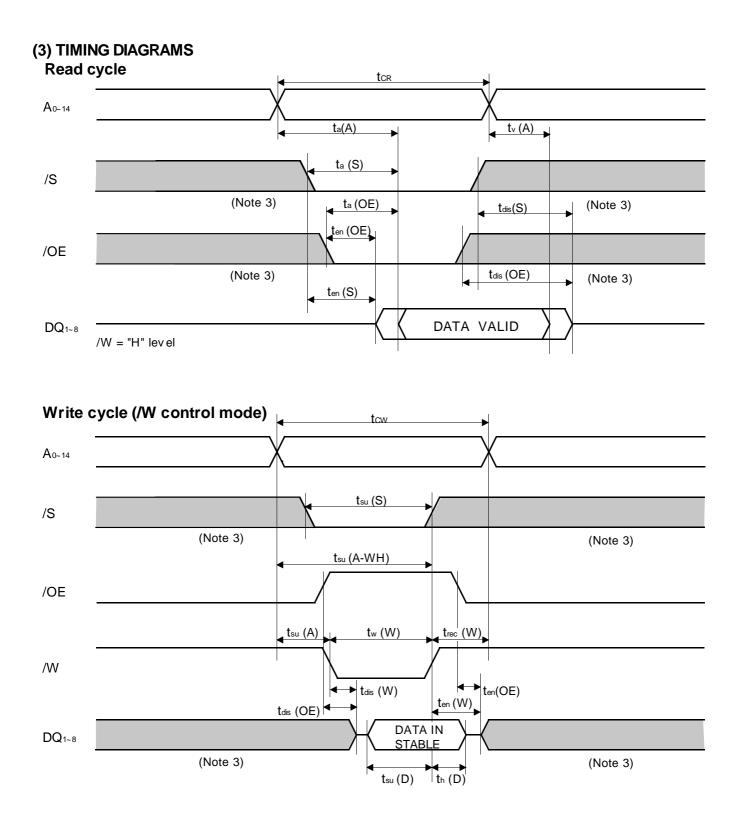
M5M5256DFP,VP -70G,-70GI,-70XG

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

AC ELECTRICAL CHARACTERISTICS

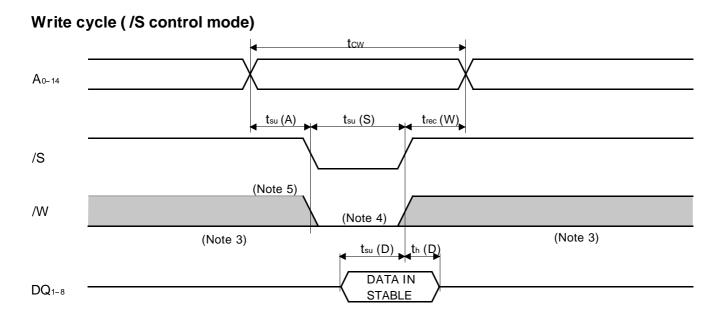
(1) READ CYCLE

			Limits1		Limits2	
Symbol	Parameter	Vcc=3.3±0.3V		Vcc=5.	0±0.5V	Unit
,		Min	Max	Min	Max	
t CR	Read cycle time	70		70		ns
ta(A)	Address access time		70		70	ns
ta(S)	Chip select access time		70		70	ns
ta(OE)	Output enable access time		35		35	ns
tdis(S)	Output disable time after /S high		25		25	ns
tdis(OE)	Output disable time after /OE high		25		25	ns
ten(S)	Output enable time after /S low	5		5		ns
ten(OE)	Output enable time after /OE low	5		5		ns
t∨(A)	Data valid time after address	10		10		ns


(2) WRITE CYCLE

Symbol	Parameter		Limits1 Vcc=3.3±0.3V		Limits2 Vcc=5.0±0.5V	
Cymbol	T arameter	Min	Max	Min	Max	Unit
tcw	Write cycle time	70		70		ns
t _w (W)	Write pulse width	55		50		ns
tsu(A)	Address setup time	0		0		ns
tsu(A-WH)	Address setup time with respect to /W high	65		65		ns
tsu(S)	Chip select setup time	65		65		ns
tsu(D)	Data setup time	30		30		ns
th(D)	Data hold time	0		0		ns
trec(W)	Write recovery time	0		0		ns
t _{dis} (W)	Output disable time from /W low		25		25	ns
	Output disable time from /OE high		25		25	ns
ten(W)	Output enable time from /W high	5		5		ns
ten(OE)	Output enable time from /OE low	5		5		ns

M5M5256DFP,VP -70G,-70GI,-70XG


262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

M5M5256DFP,VP -70G,-70GI,-70XG

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

(4) MEASUREMENT CONDITIONS

Limits1:Vcc= $3.3\pm0.3V$ Input pulse level VIH= $2.4V$,VIL= $0.4V$ Input rise and fall time 5ns Reference level VOH=VOL= $1.5V$ Output load Fig.1, CL= $30pF$	(Including scope and JIG)
CL=5pF (for ten,tdis) Transition is measured ±500mV from steady state voltage. (for ten,tdis)	Fig.1 Output load
Limits2:Vcc=5.0±0.5V	0.14

1000000000000000000000000000000000000			-O-Vcc
Input pulse level	VIH=2.4V,VIL=0.6V		<pre></pre>
Input rise and fall time	5ns		₹ ^{1.8k}
Reference level	Vон=VоL=1.5V	DQ O —	┭ ──┥
Output load	Fig.2, CL=100pF		$\geq_{990\Omega} \perp_{C^{\perp}}$
	CL=5pF (for ten,tdis)	(Including	
	Transition is measured ±500mV from steady	scope and JIG)	·•
	state voltage. (for ten,tdis)		<i>777</i>

Note 3 : Hatching indicates the state is "don't care".

Fig.2 Output load

- 4 : Writing is executed in overlap of /S and /W low. 5 : If /W goes low simultaneously with or prior to /S the outputs remain in the high
- 5 : If /W goes low simultaneously with or prior to /S, the outputs remain in the high impedance state.
- 6 : Don't apply inverted phase signal externally when DQ pin is output mode. 7 : ten, tdis are periodically sampled and are not 100% tested.

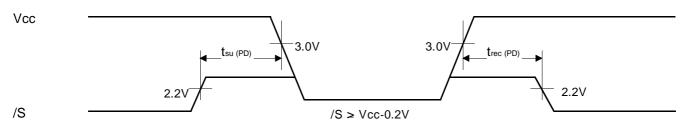
Vcc 1.8kΩ

M5M5256DFP,VP -70G,-70GI,-70XG

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

POWER DOWN CHARACTERISTICS

(1) ELECTRICAL CHARACTERISTICS


0	Denemeter	Test conditions				Limits		1.1.4.14
Symbol	Parameter	l est col		Min	Тур	Max	Unit	
Vcc (PD)	Power down supply voltage				2			V
	Chin coloct input (C	$2.2V \leq VCC(PD)$			2.2			V
VI (/S)	Chip select input /S	$2V \le VCC(PD) \le 2.2$	2V			Vcc(PD)		V
			~25°C	-G,-GI			1	
			~25 C	-XG		0.05	0.2	
		$Vcc = 3V,/S \ge Vcc-0.2V,$	40%0	-G,-GI			3	
ICC (PD)	Power down supply current	Other inputs=0~Vcc	~40°C	-XG			0.6	μA
		•	7000	-G,-GI			10	
			~70°C	-XG			2	
			~85°C	-GI			20	

(2) TIMING REQUIREMENTS

Symbol Paramete		T (10)		Limits		11
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
tsu (PD)	Power down set up time		0			ns
trec (PD)	Power down recovery time		tCR			ns

(3) POWER DOWN CHARACTERISTICS

/S control mode

262144-BIT (32768-WORD BY 8-BIT) CMOS STATIC RAM

RenesasTechnologyCorp.

Nippon Bldg., 6-2, Otemachi 2-chome, Chiyoda-ku, Tokyo, 100-0004 Japan

Keep safety first in your circuit designs!

Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

 Notes regarding these materials
These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com).
When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility of the information and products. Renesas Technology Corporati before making a linal decision on the applicability of the information and products. Refease recentionogy Corporation assumes no responsibility for any damage, liability of other loss resulting from the information and products. Refease recention gy Corporation assumes no responsibility for any damage, liability of other loss resulting from the information and products. Refease recention gy Corporation assumes no responsibility for any damage, liability of other loss resulting from the information and products. Refease recention gy Corporation assumes no responsibility for any damage, liability of other loss resulting from the information and products. Refease recention gy Corporation assumes no responsibility for any damage, liability of other loss resulting from the information and products. Refease recention gy Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other the approval decipation.

other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.

REJ03C0054 © 2003 Renesas Technology Corp. New publication, effective May 2002. Specifications subject to change without notice

