To all our customers

Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the

contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices

and power devices.

Renesas Technology Corp.
Customer Support Dept.
April 1, 2003

1RENESAS

RenesasTechnology Corp.

Mitsubishi 32-bit RISC Single-chip Microcomputers

M32R-FPU

http://www.infomicom.maec.co.jp/indexe.htm

Before using this material, please visit the above website to confirm that this is
the most current document available.

RENESAS Rev. 1.0

RenesasTechnology Corp. Revision date: Jan. 8, 2003

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor prod-
ucts better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the
Mitsubishi semiconductor product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Mitsubishi Electric Corporation or a third party.

Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement
of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without notice due
to product improvements or other reasons. It is therefore recommended that customers
contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product
distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by
various means, including the Mitsubishi Semiconductor home page (http://
www.mitsubishichips.com).

When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Mitsubishi Electric Corporation assumes no responsibility for any damage,
liability or other loss resulting from the information contained herein.

Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use
in a device or system that is used under circumstances in which human life is potentially at
stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon-
ductor product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or repro-
duce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for further details on these materials or the products contained therein.

REVISION HISTORY

M32R-FPU SOFTWARE MANUAL

Rev.

Date

Description

Page

Summary

1.0

Jan. 8, 03

First edition issued

Table of contents

CHAPTER

1 CPUPROGRAMMING MODEL

1.1 CPU register
1.2 General-purpose registers

1.3 Control registers

131
1.3.2
1.3.3

134
135
1.3.6

1.4 Accumulator
1.5 Program counter

1.6 Data format

161
1.6.2

1.7 Addressing mode

Processor status word register: PSW (CRO)ccccevvvvevennnn.
Condition bit register: CBR (CRL)cccooiiiiiiiiiiiiiiiiiiiiiiieeens

Interrupt stack pointer: SPI (CR2)

User stack pointer: SPU (CR3)coovviiiiiiiieei e
Backup PC: BPC (CRB)cccuuiiiiiiiee it eeiieee e
Floating-Point Status Register: FPSR (CR7)ccccccccviiviiinnnn.
Floating-Point EXceptions (FPE)cuvviiiiiiiiiiiiiiiiiiiiiieeee

DaAta tYPE ...t

DLz 1 =1 (0] 1 1= | AT

CHAPTER 2 INSTRUCTION SET

2.1 Instruction set overview

211
212
2.13
214
2.15
2.16
2.1.7
2.1.8

2.2 Instruction format

Load/store iNSrUCHIONSocvvvveieiiee it
Transfer INStrUCLIONS ...,
Operation INSTIUCLIONSoooviiiiii
Branch iNSrUCHIONSuuvvuiiiiiiiiiiiiiiiiiiiiiieeriiieieeeeeeeeeeeeeeeeeeeeeeeees
ElT-related iNSrUCLIONSuvviiiiiiiiiiiiiiiiiiiiiiieriieeseeeeeeeenneeee.
DSP function iNStrUCtiONSuuvviiiiiiiiiiiiriiiiiriiieeeerereereneeee.
Floating-point INSTIUCIONSuvvvvviiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeees

Bit Operation INStrUCLIONSvvvuiiiiiiiiiiiiiieeiiieeeeeeeeeeeeeeeeeeeeeeees

M32R-FPU Software Manual (Rev.1.0)

CHAPTER 3 INSTRUCTIONS

3.1 Conventions for instruction description ... 3-2
T [1S3 i B [ox T o e (=S o T 1T ISP UPPRRRR 3-5
APPENDIX
Appendix 1 Hexadecimal INnStraction COecovvviiiiiiiiiii e Appendix-2
APPENdiX 2 INSLIUCTION LIStciiiiiiiiiiiiiiiie e reeee e e e Appendix-4
Appendix 3 Pipeling PrOCESSINGccuviiiiiiiiiiiiiiiiiiiieeeee e Appendix-8
Appendix 3.1 Instructions and Pipeline Processingcccccccevvviiviieeeieennnnns Appendix-8
Appendix 3.2 Pipeline Basic Operationccccccciiiiiiiiiiiiiiieiieeeee Appendix-10
Appendix 4 Instruction EXeCUtion TiMecc.uveiiiiiriiiiiiiiiee e e e Appendix-17
Appendix 5 IEEE754 Specification OVEIVIEW ... Appendix-18
Appendix 5.1 Floating Point FOrmMatsccccccviiiiiiiiiee, Appendix-18
ApPeNndix 5.2 ROUNAINGccvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee et Appendix-20
APPENdiX 5.3 EXCEPLONSccvviiiiiiiiiiiiiiiiiiiiieeeeeeeeee ettt Appendix-20
Appendix 6 M32R-FPU Specification Supplemental Explanationccccoeeeee. Appendix-23
Appendix 6.1 Operation Comparision: Using 1 instruction (FMADD or FMSBU)
vs. two instructions (FMUL and FADD)coeeeeeiiiiieeneen. Appendix-23
Appendix 6.1.1 Rounding Modecccccccvviiiiiiiiiii, Appendix-23
Appendix 6.1.2 Exception occurring in Step 1oooovviiiviieeeeeeeeiiiiieeenn. Appendix-23
Appendix 6.2 Rules concerning Generation of QNaN in M32R-FPU Appendix-28
APPENIX 7 PrECAULIONScevviiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt a e e e e e e e e e e e e e s Appendix-29
Appendix 7.1 Precautions to be taken when aligning data............................ Appendix-29

INDEX

2)
M32R-FPU Software Manual (Rev.1.0)

This page left blank intentionally.

M32R-FPU Software Manual (Rev.1.0)

CHAPTER 1

CPU PROGRAMMIING MODEL

1.1
1.2
1.3
1.4
1.5
1.6
1.7

CPU Regqister
General-purpose Registers
Control Registers
Accumulator

Program Counter

Data Format

Addressing Mode

1 CPU PROGRAMMING MODEL
1.1 CPU Register

1.1 CPU Regqister

The M32R family CPU, with a built-in FPU (herein referred to as M32R-FPU) has 16
general-purpose registers, 6 control registers, an accumulator and a program
counter. The accumulator is of 56-bit configuration, and all other registers are a 32-
bit configuration.

1.2 General-purpose Regqisters

The 16 general-purpose registers (RO — R15) are of 32-bit width and are used to
retain data and base addresses, as well as for integer calculations, floating-point
operations, etc. R14 is used as the link register and R15 as the stack pointer. The link
register is used to store the return address when executing a subroutine call
instruction. The Interrupt Stack Pointer (SPI) and the User Stack Pointer (SPU) are
alternately represented by R15 depending on the value of the Stack Mode (SM) bit in
the Processor Status Word Register (PSW).

At reset release, the value of the general-purpose registers is undefined.

b0 b31 b0 b31
RO R8
R1 R9
R2 R10
R3 R11
R4 R12
R5 R13
R6 R14 (Link register)
R7 R15 (Stack pointer) (Note 1)

Note 1: The stack pointer functions as either the SPI or the SPU depending on the value of the SM bit in the PSW.

Figure 1.2.1 General-purpose Registers

1-2 M32R-FPU Software Manual (Rev.1.0)

1 CPU PROGRAMMING MODEL
1.3 Control Registers

1.3 Control Reqgisters

There are 6 control registers which are the Processor Status Word Register (PSW),
the Condition Bit Register (CBR), the Interrupt Stack Pointer (SPI), the User Stack
Pointer (SPU), the Backup PC (BPC) and the Floating-point Status Register (FPSR).
The dedicated MVTC and MVFC instructions are used for writing and reading these
control registers.

In addition, the SM bit, IE bit and C bit of the PSW can also be set by the SETPSW
instruction or the CLRPSW instruction.

CRn

b0o b31
CRO PSW Processor Status Register
CR1 CBR Condition Bit Register
CR2 SPI Interrupt Stack Pointer
CR3 SPU User Stack Pointer
CR6 BPC Backup PC
CR7 FPSR Floating-point Status Register

Notes: « CRn (n = 0 - 3, 6 and 7) denotes the control register number.
* The dedicated MVTC and MVFC instructions are used for writing and reading these control registers.
« The SM bit, IE bit and C bit of the PSW can also be set by the SETPSW instruction or the CLRPSW
instruction.

Figure 1.3.1 Control Registers

1-3 M32R-FPU Software Manual (Rev.1.0)

1 CPU PROGRAMMING MODEL
1.3 Control Registers

1.3.1 Processor Status Word Register: PSW (CRO)

b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bil5

bl6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 b31
BSM | BIE BC | SM IE

[<X@]

BPSW field PSW field

< At reset release: "B'0000 0000 0000 0000 ??00 000? 0000 0000 >

b Bit Name Function R W
0-15 No function assigned. Fix to "0". 0O O
16 BSM Saves value of SM bit when EIT occurs R W
Backup SM Bit
17 BIE Saves value of IE bit when EIT occurs R W
Backup IE Bit
18-22 No function assigned. Fix to "0". 0O O
23 BC Saves value of C bit when EIT occurs R W
Backup C Bit
24 SM 0: Uses R15 as the interrupt stack pointer R W
Stack Mode Bit 1: Uses R15 as the user stack pointer
25 IE 0: Does not accept interrupt R W
Interrupt Enable Bit 1: Accepts interrupt
26-30 No function assigned. Fix to "0". 0O O
31 C Indicates carry, borrow and overflow resulting R W
Condition Bit from operations (instruction dependent)

The Processor Status Word Register (PSW) indicates the M32R-FPU status. It
consists of the current PSW field which is regularly used, and the BPSW field where
a copy of the PSW field is saved when EIT occurs.

The PSW field consists of the Stack Mode (SM) bit, the Interrupt Enable (IE) bit and
the Condition (C) bit.

The BPSW field consists of the Backup Stack Mode (BSM) bit, the Backup Interrupt
Enable (BIE) bit and the Backup Condition (BC) bit.

At reset release, BSM, BIE and BC are undefined. All other bits are "0".

1-4 M32R-FPU Software Manual (Rev.1.0)

CPU PROGRAMMING MODEL
1.3 Control Registers

1.3.2 Condition Bit Register: CBR (CR1)

The Condition Bit Register (CBR) is derived from the PSW register by extracting its
Condition (C) bit. The value written to the PSW register's C bit is reflected in this
register. The register can only be read. (Writing to the register with the MVTC
instruction is ignored.)

At reset release, the value of CBR is "H'0000 0000".

b0 b31

CBR O|O 00O0O0O0O00O0DO0DO0OD0ODODOODOOOODOOOODOODOOOOOOO]|C

1.3.3 Interrupt Stack Pointer: SPI (CR2)
User Stack Pointer: SPU (CR3)

The Interrupt Stack Pointer (SPI) and the User Stack Pointer (SPU) retain the
address of the current stack pointer. These registers can be accessed as the
general-purpose register R15. R15 switches between representing the SPI and
SPU depending on the value of the Stack Mode (SM) bit in the PSW.

At reset release, the value of the SPI and SPU are undefined.

b0 b31

SPI SP

bo b31

SPU SPU

1.3.4 Backup PC: BPC (CR6)

The Backup PC (BPC) is used to save the value of the Program Counter (PC) when
an EIT occurs. Bit 31 is fixed to "0".

When an EIT occurs, the register sets either the PC value when the EIT occurred or
the PC value for the next instruction depending on the type of EIT. The BPC value
is loaded to the PC when the RTE instruction is executed. However, the values of
the lower 2 bits of the PC are always "00" when returned (PC always returns to the
word-aligned address).

At reset release, the value of the BPC is undefined.

b0 b31
BPC BPC 0

1-5 M32R-FPU Software Manual (Rev.1.0)

1

CPU PROGRAMMING MODEL
1.3 Control Registers

1.3.5 Floating-point Status Register: FPSR (CR7)

b0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 b15
FS | FX | FU | FZ | FO | FV
0 [o f o] o[ofo o] o] o] o] o] o] o] o]o] o
b16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 b31
EX EU EZ EO EV DN CE CX CuU Ccz CO CVv RM
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0o | o
<At reset release: HO000 0100>
b Bit Name Function R W
0 FS Reflects the logical sum of FU, FZ, FO and FV. R -
Floating-point Exception
Summary Bit
1 FX Set to "1" when an inexact exception occurs R W
Inexact Exception Flag (if EIT processing is unexecuted (Note 1)).
Once set, the flag retains the value "1" until
it is cleared to "0" in software.
2 FU Set to "1" when an underflow exception occurs R W
Underflow Exception Flag (if EIT processing is unexecuted (Note 1)).
Once set, the flag retains the value "1" until
it is cleared to "0" in software.
3 Fz Set to "1" when a zero divide exception occurs R W
Zero Divide Exception Flag (if EIT processing is unexecuted (Note 1)).
Once set, the flag retains the value "1" until
it is cleared to "0" in software.
4 FO Set to "1" when an overflow exception occurs R W
Overflow Exception Flag (if EIT processing is unexecuted (Note 1)).
Once set, the flag retains the value "1" until
it is cleared to "0" in software.
5 FV Set to "1" when an invalid operation exception R W
Invalid Operation Exception occurs (if EIT processing is unexecuted (Note 1)).
Flag Once set, the flag retains the value "1" until
it is cleared to "0" in software.
6-16 No function assigned. Fix to "0". 0 0
17 EX 0: Mask EIT processing to be executed when an R W
Inexact Exception Enable inexact exception occurs
Bit 1: Execute EIT processing when an inexact
exception occurs
18 EU 0: Mask EIT processing to be executed when an R W
Underflow Exception Enable underflow exception occurs
Bit 1: Execute EIT processing when an underflow
exception occurs
19 EZ 0: Mask EIT processing to be executed when a R W
Zero Divide Exception zero divide exception occurs
Enable Bit 1: Execute EIT processing when a zero divide
exception occurs
20 EO 0: Mask EIT processing to be executed when an R W
Overflow Exception overflow exception occurs
Enable Bit 1: Execute EIT processing when an overflow

exception occurs

1-6

M32R-FPU Software Manual (Rev.1.0)

CPU PROGRAMMING MODEL
1.3 Control Registers

21 EV 0: Mask EIT processing to be executed when an R W
Invalid Operation Exception invalid operation exception occurs
Enable Bit 1: Execute EIT processing when an invalid
operation exception occurs
22 No function assigned. Fix to "0". 0 0
23 DN 0: Handle the denormalized number as a
Denormalized Number Zero denormalized number
Flash Bit (Note 2) 1: Handle the denormalized number as zero
24 CE 0: No unimplemented operation exception occurred . R (Note 3)
Unimplemented Operation 1: An unimplemented operation exception occurred.
Exception Cause Bit When the bit is set to "1", the execution of an
FPU operation instruction will clear it to "0".
25 CX 0: No inexact exception occurred. R (Note 3)
Inexact Exception Cause 1: An inexact exception occurred.
Bit When the bit is set to "1", the execution of an
FPU operation instruction will clear it to "0".
26 Cu 0: No underflow exception occurred. R (Note 3)
Underflow Exception Cause 1: An underflow exception occurred.
Bit When the bit is set to "1", the execution of an
FPU operation instruction will clear it to "0".
27 Ccz 0: No zero divide exception occurred. R (Note 3)
Zero Divide Exception 1: A zero divide exception occurred.
Cause Bit When the bit is set to "1", the execution of an
FPU operation instruction will clear it to "0".
28 Cco 0: No overflow exception occurred. R (Note 3)
Overflow Exception 1: An overflow exception occurred.
Cause Bit When the bit is set to "1", the execution of an
FPU operation instruction will clear it to "0".
29 Ccv 0: No invalid operation exception occurred. R (Note 3)
Invalid Operation Exception 1: An invalid operation exception occurred.
Cause Bit When the bit is set to "1", the execution of an
FPU operation instruction will clear it to "0".
30,31 RM 00: Round to Nearest R W
Rounding Mode Selection Bit 01: Round toward Zero
10: Round toward +Infinity
11: Round toward -Infinity
Note 1: ‘If EIT processing is unexecuted’ means whenever one of the exceptions occurs, enable bits
17 to 21 are set to "0" which masks the EIT processing so that it cannot be executed. If two
exceptions occur at the same time and their corresponding exception enable bits are
set differently (one enabled, and the other masked), EIT processing is executed. In this
case, these two flags do not change state regardless of the enable bit settings.
Note 2: If a denormalized number is given to the operand when DN = "0", an unimplemented
exception occurs.
Note 3: This bit is cleared by writing "0". Writing "1" has no effect (the bit retains the value it had

before the write).

1-7 M32R-FPU Software Manual (Rev.1.0)

CPU PROGRAMMING MODEL
1.3 Control Registers

1.3.6 Floating-point Exceptions (FPE)

Floating-point Exception (FPE) occurs when Unimplemented Exception (UIPL) or
one of the five exceptions specified in the IEEE754 standard (OVF/UDF/IXCT/
DIVO/IVLD) is detected. Each exception processing is outlined below.

(1) Overflow Exception (OVF)

The exception occurs when the absolute value of the operation result exceeds the
largest describable precision in the floating-point format. The following table shows
the operation results when an OVF occurs.

Operation Result (Content of the Destination Register)
Rounding Mode | Sign of the Result When the OVF EIT processing When the OVF EIT processing
is masked (Note 1) is executed (Note 2)

—infinity + +MAX

- —infinity
+infinity + +infinity

- -MAX No change
0 + +MAX

- -MAX
Nearest + +infinity

- —infinity

Note 1: When the Overflow Exception Enable (EO) bit (FPSR register bit 20) = "0"

Note 2: When the Overflow Exception Enable (EO) bit (FPSR register bit 20) = "1"

Note: « If an OVF occurs while EIT processing for OVF is masked, an IXCT occurs at the same time.
* +MAX = H'7F7F FFFF, -MAX = H'FF7F FFFF

(2) Underflow Exception (UDF)

The exception occurs when the absolute value of the operation result is less than
the largest describable precision in the floating-point format. The following table
shows the operation results when a UDF occurs.

Operation Result (Content of the Destination Register)

When UDF EIT processing is masked (Note 1) When UDF EIT processing is executed (Note 2)

DN = 0: An unimplemented exception occurs No change

DN = 1: 0 is returned

Note 1: When the Underflow Exception Enable (EU) bit (FPSR register bit 18) = "0"
Note 2: When the Underflow Exception Enable (EU) bit (FPSR register bit 18) = "1"

1-8 M32R-FPU Software Manual (Rev.1.0)

CPU PROGRAMMING MODEL
1.3 Control Registers

(3) Inexact Exception (IXCT)

The exception occurs when the operation result differs from a result led out with an

infinite range of precision. The following table shows the operation results and the
respective conditions in which each IXCT occurs.

Operation Result (Content of the Destination Register)

Occurrence Condition When the IXCT EIT processing is When the IXCT EIT processing is
masked (Note 1) executed (Note 2)
Overflow occurs in OVF Reference OVF operation results No change

masked condition

Rounding occurs Rounded value No change

Note 1: When the Inexact Exception Enable (EX) bit (FPSR register bit 17) = "0"
Note 2: When the Inexact Exception Enable (EX) bit (FPSR register bit 17) = "1"
(4) Zero Division Exception (DIVO0)

The exception occurs when a finite nonzero value is divided by zero. The following
table shows the operation results when a DIVO occurs.

Operation Result (Content of the Destination Register)

Dividend When the DIVO EIT processing is When the DIVO EIT processing is
masked (Note 1) executed (Note 2)

Nonzero finite value +infinity (Sign is derived by exclusive- No change
ORing the signs of divisor and dividend)

Note 1: When the Zero Division Exception Enable (EZ) bit (FPSR register bit 19) = "0"
Note 2: When the Zero Division Exception Enable (EZ) bit (FPSR register bit 19) = "1"

Please note that the DIVO EIT processing does not occur in the following conditions.

Dividend Behavior
0 An invalid operation exception occurs
infinity No exception occur (with the result "infinity")

1-9 M32R-FPU Software Manual (Rev.1.0)

CPU PROGRAMMING MODEL
1.3 Control Registers

(5) Invalid Operation Exception (IVLD)

The exception occurs when an invalid operation is executed. The following table shows
the operation results and the respective conditions in which each IVLD occurs.

Occurrence Condition Operation Result (Content of the Destination Register)

When the IVLD EIT processing | When the IVLD EIT
is masked (Note 1) processing is executed
(Note 2)

Operation for SNaN operand

+infinity -(+infinity), -infinity -(-infinity) QNaN

0 O infinity

0 + 0, infinity + infinity

When FTOI Return value when

instruction pre-conversion signed bit is:
When an integer conversion was executed "0" = H'7FFF FFFF No change
overflowed "1" = H’8000 0000
When NaN or Infinity was When FTOS Return value when
converted into an integer instruction pre-conversion signed bit is:

was executed "0" = H'0000 7FFF

"1" = H'FFF 8000

When < or > comparison was Comparison results
performed on NaN (comparison invalid)

Note 1: When the Invalid Operation Exception Enable (EV) bit (FPSR register bit 21) ="0"
Note 2: When the Invalid Operation Exception Enable (EV) bit (FPSR register bit 21) ="1"
Notes: « NaN (Not a Number)
SNaN (Signaling NaN): a NaN in which the MSB of the decimal fraction is “0”. When
SNaN is used as the source operand in an operation, an IVLD occurs. SNaNs are useful
in identifying program bugs when used as the initial value in a variable. However,
SNaNs cannot be generated by hardware.
QNaN (Quiet NaN): a NaN in which the MSB of the decimal fraction is "1". Even when
QNaN is used as the source operand in an operation, an IVLD will not occur (excluding
comparison and format conversion). Because a result can be checked by the arithmetic
operations, QNaN allows the user to debug without executing an EIT processing.
QNaNs are created by hardware.

(6) Unimplemented Exception (UIPL)

The exception occurs when the Denormalized Number Zero Flash (DN) bit (FPSR
register bit 23) = "0" and a denormalized number is given as an operation operand
(Note 1).

Because the UIPL has no enable bits available, it cannot be masked when they
occur. The destination register remains unchanged.

Note: « A UDF occurs when the intermediate result of an operation is a denormalized
number, in which case if the DN bit (FPSR register bit 23) = "0", an UIPL occurs.

1-10 M32R-FPU Software Manual (Rev.1.0)

1 CPU PROGRAMMING MODEL

1.4 Accumulator

1.4 Accumulator

The Accumulator (ACC) is a 56-bit register used for DSP function instructions.

The accumulator is handled as a 64-bit register when accessed for read or write.
When reading data from the accumulator, the value of bit 8 is sign-extended. When
writing data to the accumulator, bits 0 to 7 are ignored. The accumulator is also used
for the multiply instruction "MUL", in which case the accumulator value is destroyed
by instruction execution.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The
MVTACHI and MVTACLO instructions write data to the high-order 32 bits (bits 0-31)
and the low-order 32 bits (bits 32-63), respectively.

Use the MVFACHI, MVFACLO, and MVFACMI instructions for reading data from the
accumulator. The MVFACHI, MVFACLO and MVFACMI instructions read data from
the high-order 32 bits (bits 0-31), the low-order 32 bits (bits 32-63) and the middle 32
bits (bits 16-47), respectively.

At reset release, the value of accumulator is undefined.

T (Note 1) 1 ’— read range with MVFACMI instruction j
b0 78 15 16 31 32 47 48 b63
ACC “—
L read/write range with J read/write range with
MVTACHI or MVFACHI instruction MVTACLO or MVFACLO instruction

Note 1: When read, bits 0 to 7 always show the sign-extended value of bit 8. Writing to this bit field is
ignored.

1.5 Program Counter

The Program Counter (PC) is a 32-bit counter that retains the address of the
instruction being executed. Since the M32R CPU instruction starts with even-
numbered addresses, the LSB (bit 31) is always "0".

At reset release, the value of the PC is "H’0000 0000."

b0 b31

PC PC 0

1-11 M32R-FPU Software Manual (Rev.1.0)

1 CPU PROGRAMMING MODEL
1.6 Data Format

1.6 Data Format

1.6.1 Data Type

The data types that can be handled by the M32R-FPU instruction set are signed or
unsigned 8, 16, and 32-bit integers and single-precision floating-point numbers.
The signed integers are represented by 2's complements.

b0 b7
signed byte (8-bit) integer -

b0 b7
unsigned byte (8-bit) integer I:I
bo b15

signed halfword (16-bit) integer |S

bo b5

unsigned halfword (16-bit) integer |

bo b31

signed word (32-bit) integer |S

bo b31

unsigned word (32-bit) integer |

b0 8 9 b31

m
ul

floating-point single precision values |S‘

S: Sign bit E: Exponent field F: Fraction field

Figure 1.6.1 Data Type

1-12 M32R-FPU Software Manual (Rev.1.0)

CPU PROGRAMMING MODEL
1.6 Data Format

1.6.2 Data Format

(1) Data format in a register

The data sizes in the M32R-FPU registers are always words (32 bits).

When loading byte (8-bit) or halfword (16-bit) data from memory into a register, the
data is sign-extended (LDB, LDH instructions) or zero-extended (LDUB, LDUH
instructions) to a word (32-bit) quantity before being loaded into the register.
When storing data from a register into a memory, the 32-bit data, the 16-bit data on
the LSB side and the 8-bit data on the LSB side of the register are stored into
memory by the ST, STH and STB instructions, respectively.

from memory

< load > i i
sign-extention (LDB instruction) or (LDB, LDUB instruction)
bo zero-extention (LDUB instruction) 24 ¢ b3l
RN [« | | byte

sign-extention (LDH instruction) or

from memory (LDH, LDUH instruction)

zero-extention (LDUH instruction)
bo 16 $ b31
RN halfword
\ |
from memory (LD instruction)
bo $ b31
RN word
|
< store >
bo 24 b31
Rn byte
to memory (STB instruction)
bo 16 b31
RN halfword
|
to memory (STH instruction)
bo b31
Rn word |
|

to memory (ST instruction)

Figure 1.6.2 Data Format in a Register

1-13

M32R-FPU Software Manual (Rev.1.0)

CPU PROGRAMMING MODEL
1.6 Data Format

(2) Data format in memory

The data sizes in memory can be byte (8 bits), halfword (16 bits) or word (32 bits).
Although byte data can be located at any address, halfword and word data must be
located at the addresses aligned with a halfword boundary (least significant
address bit = "0") or a word boundary (two low-order address bits = "00"),
respectively. If an attempt is made to access memory data that overlaps the
halfword or word boundary, an address exception occurs.

Address
+0 address +1 address +2 address +3 address
v v v v

o b0 7 8 15 16 23 24 b31

[bye | | | |
| [e] | |
| | [bye | |

| | | | bye |

half B I half:vvord | | |
word B | | half:vvord I
word [| wo:rd : |

Figure 1.6.3 Data Format in Memory

1-14 M32R-FPU Software Manual (Rev.1.0)

1 CPU PROGRAMMING MODEL
1.7 Addressing Mode

1.7 Addressing Mode

M32R-FPU supports the following addressing modes.

(1) Register direct [R or CR]

The general-purpose register or the control register to be processed is
specified.

(2) Register indirect [@R]

The contents of the register specify the address of the memory. This mode
can be used by all load/store instructions.

(3) Register relative indirect [@(disp, R)]

(The contents of the register) + (16-bit immediate value which is sign-
extended to 32 bits) specify the address of the memory.

(4) Register indirect and register update

* Adds 4 to register contents [@R+]
The contents of the register specify the memory address, then 4 is added to
the register contents.
(Can only be specified with LD instruction).

« Add 2 to register contents [@R+] [M32R-FPU extended addressing mode]
The contents of the register specify the memory address, then 2 is added to
the register contents.

(Can only be specified with STH instruction).

* Add 4 to register contents [@+R]
The contents of the register is added by 4, the register contents specify the
memory address.
(Can only be specified with ST instruction).

» Subtract 4 to register contents [@—-R]
The content of the register is decreased by 4, then the register contents
specify the memory address.
(Can only be specified with ST instruction).

(5) immediate [#imm)]
The 4-, 5-, 8-, 16- or 24-bit immediate value.

(6) PC relative [pcdisp]

(The contents of PC) + (8, 16, or 24-bit displacement which is sign-extended
to 32 bits and 2 bits left-shifted) specify the address of memory.

1-15 M32R-FPU Software Manual (Rev.1.0)

CPU PROGRAMMING MODEL
1.7 Addressing Mode

This page left blank intentionally.

1-16 M32R-FPU Software Manual (Rev.1.0)

CHAPTER 2
INSTRUCTION SET

2.1 Instruction set overview
2.2 Instruction format

2 INSTRUCTION SET
2.1 Instruction set overview

2.1 Instruction set overview

The M32R-FPU has a total of 100 instructions. The M32R-FPU has a RISC architecture.
Memory is accessed by using the load/store instructions and other operations are
executed by using register-to-register operation instructions.

M32R CPU supports compound instructions such as " load & address update" and "store
& address update" which are useful for high-speed data transfer.

2.1.1 Load/store instructions

The load/store instructions carry out data transfers between a register and a memory.

LD Load

LDB Load byte

LDUB Load unsigned byte
LDH Load halfword

LDUH Load unsigned halfword
LOCK Load locked

ST Store

STB Store byte

STH Store halfword
UNLOCK Store unlocked

2-2 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTION SET
2.1 Instruction set overview

Three types of addressing modes can be specified for load/store instructions.

(1) Register indirect

The contents of the register specify the address. This mode can be used by all load/
store instructions.

(2) Register relative indirect

(The contents of the register) + (32-bit sign-extended 16-bit immediate value)
specifies the address. This mode can be used by all except LOCK and UNLOCK
instructions.

(3) Register indirect and register update

» Adds 4 to register contents [@R+]
The contents of the register specify the memory address, then 4 is added to the
register contents.
(Can only be specified with LD instruction).

» Add 2 to register contents [@R+] [M32R-FPU extended addressing mode]
The contents of the register specify the memory address, then 2 is added to the
register contents.
(Can only be specified with STH instruction).

» Add 4 to register contents [@+R]
The contents of the register is added by 4, the register contents specity the
memory address.
(Can only be specified with ST instruction).

» Subtract 4 to register contents [@—R]
The content of the register is decreased by 4, then the register contents specify
the memory address.
(Can only be specified with ST instruction).

When accessing halfword and word size data, it is necessary to specify the address on
the halfword boundary or the word boundary (Halfword size should be such that the low-
order 2 bits of the address are "00" or "10", and word size should be such that the low
order 2 bits of the address are "00"). If an unaligned address is specified, an address
exception occurs.

When accessing byte data or halfword data with load instructions, the high-order bits are
sign-extended or zero-extended to 32 bits, and loaded to a register.

2-3 M32R-FPU Software Manual (Rev.1.0)

2

INSTRUCTION SET
2.1 Instruction set overview

2.1.2 Transfer instructions

The transfer instructions carry out data transfers between registers or a register and an

immediate value.

LD24
LDl
MV
MVFC
MVTC
SETH

2.1.3 Operation instructions

Load 24-bit immediate
Load immediate

Move register

Move from control register
Move to control register
Set high-order 16-bit

Compare, arithmetic/logic operation, multiply and divide, and shift are carried out

between registers.

e compare instructions
CMP
CMPI
CMPU
CMPUI

Compare

Compare immediate
Compare unsigned

Compare unsigned immediate

» arithmetic operation instructions

ADD
ADD3
ADDI
ADDV
ADDV3
ADDX
NEG
SUB
SUBV
SUBX

Add

Add 3-operand

Add immediate

Add with overflow checking

Add 3-operand with overflow checking
Add with carry

Negate

Subtract

Subtract with overflow checking
Subtract with borrow

2-4 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTION SET

2.1 Instruction set overview

* logic operation instructions

AND
AND3
NOT
OR
OR3
XOR
XOR3

AND

AND 3-operand

Logical NOT

OR

OR 3-operand

Exclusive OR

Exclusive OR 3-operand

» multiply/divide instructions

DIV
DIvVU
MUL
REM
REMU

« shift instructions
SLL
SLL3
SLLI
SRA
SRA3
SRAI
SRL
SRL3
SRLI

Divide

Divide unsigned
Multiply

Remainder
Remainder unsigned

Shift left logical

Shift left logical 3-operand
Shift left logical immediate
Shift right arithmetic

Shift right arithmetic 3-operand
Shift right arithmetic immediate
Shift right logical

Shift right logical 3-operand
Shift right logical immediate

2-5 M32R-FPU Software Manual (Rev.1.0)

2 INSTRUCTION SET

2.1 Instruction set overview

2.1.4 Branch instructions

The branch instructions are used to change the program flow.

BC Branch on C-bit

BEQ Branch on equal to

BEQZ Branch on equal to zero

BGEZ Branch on greater than or equal to zero
BGTZ Branch on greater than zero

BL Branch and link

BLEZ Branch on less than or equal to zero
BLTZ Branch on less than zero

BNC Branch on not C-bit

BNE Branch on not equal to

BNEZ Branch on not equal to zero

BRA Branch

JL Jump and link

JMP Jump

NOP No operation

Only a word-aligned (word boundary) address can be specified for the branch address.

2-6 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTION SET
2.1 Instruction set overview

The addressing mode of the BRA, BL, BC and BNC instructions can specify an 8-bit or
24-bit immediate value. The addressing mode of the BEQ, BNE, BEQZ, BNEZ, BLTZ,
BGEZ, BLEZ, and BGTZ instructions can specify a 16-bit immediate value.

In the JMP and JL instructions, the register value becomes the branch address.
However, the low-order 2-bit value of the register is ignored. In other branch
instructions, (PC value of branch instruction) + (sign-extended and 2 bits left-shifted
immediate value) becomes the branch address. However, the low order 2-bit value of the
address becomes "00" when addition is carried out. For example, refer to Figure 2.1.1.
When instruction A or B is a branch instruction, branching to instruction G, the
immediate value of either instruction A or B becomes 4.

Simultaneous with execution of branching by the JL or BL instructions for subroutine
calls, the PC value of the return address is stored in R14. The low-order 2-bit value of
the address stored in R14 (PC value of the branch instruction + 4) is always cleared to
"0". For example, refer to Figure 2.1.1. If an instruction A or B is a JL or BL instruction,
the return address becomes that of the instruction C.

<~ 1 word (32 bits) —_ >
address +0 +1 ‘ +2 ‘ +3
branch instruction — H'00 instruction A instruction B
H'04 instruction C instruction D
H'08 instruction E
H'0C instruction F
H'10 instruction G instruction H

Fig. 2.1.1 Branch addresses of branch instruction

2-7 M32R-FPU Software Manual (Rev.1.0)

2

INSTRUCTION SET
2.1 Instruction set overview

2.1.5 ElIT-related instructions

The EIT-related instructions carry out the EIT events (Exception, Interrupt and Trap).
Trap initiation and return from EIT are EIT-related instructions.

TRAP Trap
RTE Return from EIT

2.1.6 DSP function instructions

The DSP function instructions carry out multiplication of 32 bits x 16 bits and 16 bits x 16
bits or multiply and add operation; there are also instructions to round off data in the
accumulator and carry out transfer of data between the accumulator and a general-
purpose register.

MACHI Multiply-accumulate high-order halfwords
MACLO Multiply-accumulate low-order halfwords
MACWHI Multiply-accumulate word and high-order halfword
MACWLO Multiply-accumulate word and low-order halfword
MULHI Multiply high-order halfwords

MULLO Multiply low-order halfwords

MULWHI Multiply word and high-order halfword

MULWLO Multiply word and low-order halfword

MVFACHI Move high-order word from accumulator
MVFACLO Move low-order word from accumulator
MVFACMI Move middle-order word from accumulator
MVTACHI Move high-order word to accumulator

MVTACLO Move low-order word to accumulator

RAC Round accumulator

RACH Round accumulator halfword

2-8 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTION SET
2.1 Instruction set overview

Rsrcl Rsrc2
0 15 16 31 0 15 16 31
Lw [Jle []
X
X
MULHI instruction MULLO instruction
0 v 63
| ACC |
Rsrcl Rsrc2
0 31 0 15 16 31
[@ [7 | ¢ |
4®J
X
MULWH]I instruction MULWLO instruction
0 v 63
| ACC
Rsrcl Rsrc2
0 15 16 31 0 15 16 31 0 63
Lw oo Jw [0]
X
X
i
i
MACHI instruction MACLO instruction
0 63
| ACC
Rsrcl Rsrc2
0 31 0 15 16 31 0 63
| 32 hits | | H L | | ACC
4@(_‘
X

MACWHI instruction
0

MACWLO instruction
63

ACC

Note: The location in the accumulator of the result and the appropriate sign extension are performed
in the execution of the DSP function instruction. Refer to Chapter 3 for details.

Fig. 2.1.2 DSP function instruction operation 1 (multiply, multiply and accumulate)

2-9

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTION SET
2.1 Instruction set overview

< word size round off >

< halfword size round off >

0 63 0 63

| ACC | | ACC |
|

\ RAC instruction l \éCH instruction

0 63 0 v 63

| sign | data | 0 | | sign | data | 0 |

Note: The actual operation is processed in two steps.

Refer to Chapter 3 for details.

Fig. 2.1.3 DSP function instruction operation 2 (round off)

MVFACMI instruction

0 15 16 31 32 47 48 63 0 31
| ACC | Rsrc |
MVFACHI N\ MVFACLO ‘ ‘
instruction instruction l
MVTACHI MVTACLO
l l /7 instruction v instruction \
0 31 0 31 32 63
Rdest ACC

Fig. 2.1.4 DSP function instruction operation 3 (transfer between accumulator and register)

2-10

M32R-FPU Software Manual (Rev.1.0)

2 INSTRUCTION SET
2.1 Instruction set overview

2.1.7 Floating-point Instructions

The following instructions execute floating-point operations.

FADD Floating-point add

FSUB Floating-point subtract

FMUL Floating-point multiply

FDIV Floating-point divede

FMADD Floating-point multiply and add
FMSUB Floating-point multiply and subtract
ITOF Integer to float

UTOF Unsigned integer to float

FTOI Float to integer

FTOS Float to short

FCMP Floating-point compare

FCMPE Floating-point compare with exeption if unordered

2.1.8 Bit Operation Instructions

These instructions determine the operation of the bit specified by the register or

memory.
BSET Bit set
BCLR Bit clear
BTST Bit test
SETPSW Set PSW
CLRPSW Clear PSW

2-11 M32R-FPU Software Manual (Rev.1.0)

2

INSTRUCTION SET
2.2 Instruction format

2.2 Instruction format

There are two major instruction formats: two 16-bit instructions packed together within a
word boundary, and a single 32-bit instruction (see Figure 2.2.1). Figure 2.2.2 shows
the instruction format of M32R CPU.

1 word
address +0 +1 ‘ +2 +3
16-bit instruction A | 16-bit instruction B |
1 word ‘
address +0 +1 +2 +3
32-bit instruction |
Fig. 2.2.1 16-bit instruction and 32-bit instruction
< 16-bit instruction >
opl | R1 | op2 | Rz Ri=R:1 op Re
opl | R1 Ri=R1 op ¢
opl | cond Branch (Short Displacement)
< 32-bit instruction >
opl R1 op2 | Rz [Ri=R2 op c
opl | Rt | op2 | Rz c Compare and Branch
opl R1 c Ri=R1 op c
opl | cond [« Branch
Floating-point 2-operand
opl R op2 op3 Rd op4
p s p2 | 0000 p p4 | 0000 (Ra=op(R¢))
Floating-point 3-operand
1 R 2 R R 4
op s1 | op s2 | op3 d op4 | 0000 (Ra=Rs1 op Rs2)

Fig. 2.2.2 Instruction format of M32R CPU

2-12

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTION SET

2.2 Instruction format

The MSB (Most Significant Bit) of a 32-bit instructio

n is always "1". The MSB of a 16-bit

instruction in the high-order halfword is always "0" (instruction A in Figure 2.2.3),
however the processing of the following 16-bit instruction depends on the MSB of the

instruction.

In Figure 2.2.3, if the MSB of the instruction B is "0", instructions A and B are executed
sequentially; B is executed after A. If the MSB of the instruction B is "1", instructions A

and B are executed in parallel.

The current implementation allows only the NOP instruction as instruction B for parallel
execution. The MSB of the NOP instruction used for word arraignment adjustment is
changed to "1" automatically by a standard Mitsubishi assembler, then the M32R-FPU

can execute this instruction without requiring any cl

ock cycles.

MSB MSB
v v
0| 16-bitinstruction A 0| 16-bit instruction B
0| 16-bitinstruction A 1| 16-bit instruction B
1 32-bit instruction

inserted by assembler

< instruction execution sequence >

[instruction A] --> [instruction B] sequential

[instruction A] & [instruction B] parallel

NOP instruction
—

v

NOP instruction whose MSB is changed to "1"

0| 16-bit instruction A 1111 | 0000 | 0000 | 0000

1 32-bit instruction

0111 | 0000 | 0000 | 0000

[instruction A] & [NOP] parallel

Fig. 2.2.3 Processing of 16-bit instructions

2-13

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTION SET

2.2 Instruction format

This page left blank intentionally.

2-14 M32R-FPU Software Manual (Rev.1.0)

CHAPTER 3
INSTRUCTIONS

3.1 Conventions for instruction
description
3.2 Instruction description

3

INSTRUCTIONS

3.1 Conventions for instruction description

3.1 Conventions for instruction description

Conventions for instruction description are summarized below.

[Mnemonic]

Shows the mnemonic and possible operands (operation target) using assembly
language notation.

Table 3.1.1 Operand list

symbol(see note)

addressing mode

operation target

R register direct general-purpose registers (RO - R15)
CR control register Mcontrol registers (CR0O = PSW, CR1 = CBR, CR2 = SPI,
CR3 = SPU, CR6 = BPC, CR7 = FPSR)

@r register indirect memory specified by register contents as address

@disp, R register relative memory specified by (register contents) + (sign-extended value of
indirect 16-bit displacement) as address

@R+ register indirect and Add 4 to register contents. (Register contents specify the memory
register update address, then 4 is added to the contents.)

@R register indirect and Add 4 to register contents. (4 is added to the register contents,
register update then the register contents specify the memory address.)

@R register indirect and Subtract 4 to register contents. (4 is subtract to the register
register update contents, hen the register contents specify the memory address.)

#i mm immediate immediate value (refer to each instruction description)

#bi t pos Bit position Contents of byte data bit position

pcdi sp PC relative memory specified by (PC contents) + (8, 16, or 24-bit displacement

which is sign-extended to 32 bits and 2 bits left-shifted) as address

Note: When expressing Rsrc or Rdest as an operand, a general-purpose register numbers (0 - 15) should be
substituted for src or dest. When expressing CRsrc or CRdest, control register numbers (0 - 3, 6, 7)
should be substituted for src or dest.

[Function]

Indicates the operation performed by one instruction. Notation is in accordance with C
language notation.

Table 3.1.2 Operation expression (operator)

operator meaning

+ addition (binomial operator)

- subtraction (binomial operator)

ad multiplication (binomial operator)

/ division (binomial operator)

% remainder operation (binomial operator)
++ increment (monomial operator)

decrement (monomial operator)

3-2 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.1 Conventions for instruction description

Table 3.1.3 Operation expression (operator) (cont.)

operator meaning

- sign invert (monomial operator)

= substitute right side into left side (substitute operator)

+= adds right and left variables and substitute into left side (substitute operator)
-= subtract right variable from left variable and substitute into left side (substitute operator)
> greater than (relational operator)

< less than (relational operator)

>= greater than or equal to (relational operator)

<= less than or equal to (relational operator)

== equal (relational operator)

1= not equal (relational operator)

&& AND (logical operator)

|| OR (logical operator)

! NOT (logical operator)

.

execute a conditional expression (conditional operator)

Table 3.1.4 Operation expression (bit operator)

operator meaning

<< bits are left-shifted

>> bits are right-shifted

& bit product (AND)

| bit sum (OR)

A bit exclusive or (EXOR)

~ bit invert
Table 3.1.5 Data type

expression sign bit length range

signed char yes 8 -128 to +127

signed short yes 16 —-32,768 to +32,767

signed int yes 32 —-2,147,483,648 to +2,147,483,647
unsigned char no 8 0 to 255

unsigned short no 16 0 to 655,535

unsigned int no 32 0 to 4,294,967,295

signed64bit yes 64 signed 64-bit integer (with accumulator)

Table 3.1.6 Data type (floating-point)

expression

floating-point format

float

single precision values format

3-3 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.1 Conventions for instruction description

[Description]

Describes the operation performed by the instruction and any condition bit change.

[EIT occurrence]

Shows possible EIT events (Exception, Interrupt, Trap) which may occur as the result of
the instruction's execution. Only address exception (AE), floating-point exception (FPE)
and trap (TRAP) may result from an instruction execution.

[Instruction format]

Shows the bit level instruction pattern (16 bits or 32 bits). Source and/or destination
register numbers are put in the src and dest fields as appropriate. Any immediate or
displacement value is put in the imm or disp field, its maximum size being determined by
the width of the field provided for the particular instruction. Refer to 2.2 Instruction
format for detail.

3-4 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

3.2 Instruction description

This section lists M32R-FPU instructions in alphabetical order. Each page is laid out
as shown below.

instruction name —}——> arithmetic oper
(instruction type and A D D Add
full name are in center)

instruction mnemonic ——————> [Mnemonic]

Add Rdest,Rsrc

instruction function
(expression corresponds to

C language methOd) Aggest = Rdest + Rsrc;

> [Function]

instruction description ————————> [Description]
and effect on condition bit (C) ADD adds Rsrc to Rdest and puts the result in

The condition bit (C) is unchanged.

EIT eventswhichmay — L 5 [EIT occurrence]
occur when this
instruction is executed None

16- or 32-bit instructionformat 1 5 [instruction format]

[0000] dest [1010 | src | Add Rde

3-5 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

arithmetic/logic operation
ADD Add ADD

[Mnemonic]

ADD Rdest, Rsrc

[Function]

Add
Rdest = Rdest + Rsrc;

[Description]

ADD adds Rsrc to Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000 | dest | 1010 | src ADD Rdest, Rsrc

3-6 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

ADD3

[Mnemonic]

arithmetic operation instruction A D D 3
Add 3-operand

ADD3 Rdest, Rsrc, #i mml6

[Function]

Add

Rdest = Rsrc + (signed short) imm16;

[Description]

ADD3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate
value is sign-extended to 32 bits before the operation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1000 | dest

1010

Src

imﬁL6

ADD3 Rdest, Rsrc, #1 ml6

3-7

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

arithmetic operation mstruction
ADDI Add immediate ADDI

[Mnemonic]

ADDI Rdest, #i m8

[Function]

Add
Rdest = Rdest + (signed char) imm8;

[Description]

ADDI adds the 8-bit immediate value to Rdest and puts the result in Rdest.
The immediate value is sign-extended to 32 bits before the operation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0100 | dest i 8 ADDlI Rdest, #i 8

3-8 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

ADDV

[Mnemonic]

arithmetic operation mstruction
Add with overflow checking

ADDV Rdest, Rsrc

[Function]

Add

[Description]

ADDV

Rdest = (' signed) Rdest + (signed) Rsrc;
C =overflow ? 1:0;

ADDV adds Rsrc to Rdest and puts the result in Rdest.
The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

0000

dest

1000

Src

ADDV Rdest, Rsrc

39

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

ADDV3

[Mnemonic]

ADDV3 Rdest, Rsrc, #i mrml6

[Function]

Add

arithmetic operation mstruction

Add 3-operand with overflow checking ADDV3

Rdest = ('signed) Rsrc + (signed) ((signed short) imm16);

C=overflow ? 1:0;

[Description]

ADDV3 adds the 16-bit immediate value to Rsrc and puts the result in Rdest. The immediate
value is sign-extended to 32 bits before it is added to Rsrc.
The condition bit (C) is set when the addition results in overflow; otherwise it is cleared.

[EIT occurrence]

None
[Encoding]
1000 | dest | 1000 | src [mﬂG
ADDV3 Rdest, Rsrc, #i mml6
3-10

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

arithmetic operation instruction
ADDX Add with carry ADDX

[Mnemonic]

ADDX Rdest, Rsrc

[Function]

Add
Rdest = (unsigned) Rdest + (unsigned) Rsrc + C;
C=carry_ out ? 1:0;

[Description]

ADDX adds Rsrc and C to Rdest, and puts the result in Rdest.
The condition bit (C) is set when the addition result cannot be represented by a 32-bit unsigned
integer; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

0000 | dest | 1001 | src ADDX Rdest, Rsrc

3-11 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

AND

[Mnemonic]

AND Rdest, Rsrc

[Function]

Logical AND
Rdest = Rdest & Rsrc;

[Description]

logic operation Instruction
AND AND

AND computes the logical AND of the corresponding bits of Rdest and Rsrc and puts the result
in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000

dest

1100

Src

AND Rdest, Rsrc

312 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

AND3

[Mnemonic]

logic operation Instruction
AND 3-operand AND3

AND3 Rdest, Rsrc, #i mml6

[Function]

Logical AND

Rdest = Rsrc & (unsigned short) imm16;

[Description]

AND3 computes the logical AND of the corresponding bits of Rsrc and the 16-bit immediate
value, which is zero-extended to 32 bits, and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
1000 | dest | 1100 | src [6
AND3 Rdest, Rsrc, #i nnil6
3-13 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction B C

BC Bit clear

M32R-FPU Extended Instruction

[Mnemonic]

(1) BC pcdisp8
(2) BC pcdisp24

[Function]

Branch
(1) if(C==1) PC = (PC & 0xfffffffc) + (((signed char) pcdisp8) << 2);
(2) if(C==1) PC=(PC & Oxfffffffc) + (sign_extend (pcdisp24) << 2);
where
#define sign_extend(x) (((signed) ((x)<<8))>>8)

[Description]

BC causes a branch to the specified label when the condition bit (C) is 1.
There are two instruction formats; which allows software, such as an assembler, to decide on

the better format.
The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0111 | 1100 | pcdi §p8 BC pcdisp8
1111 1100 pcdi §p24 | BC pcdi sp24

3-14 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

BCLR e etonr BCLR

[M32R-FPU Extended Instruction]

[Mnemonic]

BCLR #bi t pos, @di spl6, Rsrc)

[Function]

Bit operation for memory contents Set 0 to specified bit.
* (signed char*) (Rsrc + (signed short) displ6) & = ~ (1<< (7-bitpos)) ;

[Description]

BCLR reads the byte data in the memory at the address specified by the Rsrc combined with
the 16-bit displacement, and then stores the value of the bit that was specified by bitpos to be set
to “0". The displacement is sign-extended before the address calculation. bitpos becomes 0 to 7;
MSB becomes 0 and LSB becomes 7. The memory is accessed in bytes. The LOCK bit is on
while the BCLR instruction is executed, and is cleared when the execution is completed. The
LOCK bit is internal to the CPU and cannot be directly read or written to by the user.

Condition bit C remains unchanged.

The LOCK bit is internal to the CPU and is the control bit for receiving all bus right requests
from circuits other than the CPU.

Refer to the Users Manual for non-CPU bus right requests, as the handling differs according to
the type of MCU.

[EIT occurrence]

None

[Encoding]

1010 O |bitpos| 0111 | src di spl6

BCLR #bit pos, @di spl6, Rsrc)

3-15 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction
BEQ Branch on equal to BEQ

[Mnemonic]

BEQ Rsrcl, Rsrc2, pcdispl6

[Function]

Branch
if (Rsrcl ==Rsrc2) PC = (PC & 0xfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BEQ causes a branch to the specified label when Rsrcl is equal to Rsrc2.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 srcl | 0000 |src2 pcdi §p16

BEQ Rsrcl, Rsrc2, pcdispl6

3-16 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction
B EQZ Branch on equal to zero B EQZ

[Mnemonic]

BEQZ Rsrc, pcdispl6

[Function]

Branch
if (Rsrc ==0) PC =(PC & 0Oxfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BEQZ causes a branch to the specified label when Rsrc is equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 | 0000 | 1000 | src pcdi §p16

BEQZ Rsrc, pcdispl6

3-17 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch mnstruction
BGEZ Branch on greater than or equal to zero BGEZ

[Mnemonic]

BGEZ Rsrc, pcdispl6

[Function]

Branch
if ((signed) Rsrc >=0) PC =(PC & Oxfffffffc) + (((sighed short) pcdispl6) << 2);

[Description]

BGEZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is
greater than or equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 0000 | 1011 | src pcdi §p16

BGEZ Rsrc, pcdispl6

3-18 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction
BGTZ Branch on greater than zero BGTZ

[Mnemonic]

BGTZ Rsrc, pcdispl6

[Function]

Branch
if ((signed) Rsrc > 0) PC = (PC & Oxfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BGTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is
greater than zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 | 0000 | 1101 | src pcdi §p16

BGTZ Rsrc, pcdispl6

3-19 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

branch instruction
BL Branch and link BL

[Mnemonic]

(1) BL pcdisp8
(2) BL pcdisp24

[Function]

Subroutine call (PC relative)
(1) R14 = (PC & Oxfffffffc) + 4;

PC = (PC & Oxfffffffc) + (((signed char) pcdisp8) << 2);
(2) R14 = (PC & Oxfffffffc) + 4;

PC = (PC & Oxfffffffc) + (sign_extend (pcdisp24) << 2);
where

#define sign_extend(x) (((signed) ((x)<<8))>>8)

[Description]

BL causes an unconditional branch to the address specified by the label and puts the return
address in R14.

There are two instruction formats; this allows software, such as an assembler, to decide on the
better format.

The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0111 | 1110 | pcdi §p8 BL pcdisp8
1111 1110 pcdi §p24 BL pcdisp24
3-20

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

BLEZ

[Mnemonic]

BLEZ Rsrc, pcdispl6

[Function]

Branch

branch instruction
Branch on less than or equal to zero

BLEZ

if ((signed) Rsrc <=0) PC = (PC & Oxfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BLEZ causes a branch to the specified label when the contents of Rsrc treated as a signed 32-

bit value, is less than or equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
1011 | 0000 | 1100 | src | pcdi §p16 |
BLEZ Rsrc, pcdispl6
3-21 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction
BI—TZ Branch on less than zero BI—TZ

[Mnemonic]

BLTZ Rsrc, pcdispl6

[Function]

Branch
if ((signhed) Rsrc < 0) PC = (PC & 0xfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BLTZ causes a branch to the specified label when Rsrc treated as a signed 32-bit value is less
than zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 0000 | 1010 | src pcdi §p16

BLTZ Rsrc, pcdispl6

3-22 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction
BNC Branch on not C-bit BNC

[Mnemonic]

(1) BNC pcdisp8
(2) BNC pcdisp24

[Function]

Branch
(1) if (C==0) PC = (PC & Oxfffffffc) + (((signed char) pcdisp8) << 2);
(2) if (C==0) PC = (PC & Oxfffffffc) + (sign_extend (pcdisp24) << 2);
where
#define sign_extend(x) (((signed) ((x)<<8))>>8)

[Description]

BNC branches to the specified label when the condition bit (C) is 0.

There are two instruction formats; this allows software, such as an assembler, to decide on the
better format.

The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0111 1101 | pcdi §p8 BNC pcdi sp8
1111 | 1101 pcdi §p24 | BNC pcdi sp24

3-23 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction
BNE Branch on not equal to BNE

[Mnemonic]

BNE Rsrcl, Rsrc2, pcdispl6

[Function]

Branch
if (Rsrcl !'= Rsrc2) PC = (PC & Oxfffffffc) + (((signed short) pcdisp16) << 2);

[Description]

BNE causes a branch to the specified label when Rsrcl is not equal to Rsrc2.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 'srcl | 0001 src2 pcdi §p16

BNE Rsrcl, Rsrc2, pcdispl6

3-24 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction
BNEZ Branch on not equal to zero BNEZ

[Mnemonic]

BNEZ Rsrc, pcdispl6

[Function]

Branch
if (Rsrc!=0) PC =(PC & 0xfffffffc) + (((signed short) pcdispl6) << 2);

[Description]

BNEZ causes a branch to the specified label when Rsrc is not equal to zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1011 | 0000 | 1001 | src pcdi §p16

BNEZ Rsrc, pcdi spl6

3-25 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

B R A branch instruction B R A

Branch

[Mnemonic]

(1) BRA pcdisp8
(2) BRA pcdisp24

[Function]

Branch
(1) PC = (PC & Oxfffffffc) + (((signed char) pcdisp8) << 2);
(2) PC =(PC & Oxfffffffc) + (sign_extend (pcdisp24) << 2);
where
#define sign_extend(x) (((signed) ((x)<<8))>>8)

[Description]

BRA causes an unconditional branch to the address specified by the label.
There are two instruction formats; this allows software, such as an assembler, to decide on the

better format.
The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0111 | 1111 | pcdi §p8 BRA pcdi sp8
1111 1111 pCdI §p24 | BRA pcdisp24

3-26 M32R-FPU Software Manual (Rev.1.0)

3

INSTRUCTIONS

3.2 Instruction description

bit operation Instructions
BSET Bit set BSET

[M32R-FPU Extended Instruction]

[Mnemonic]

BSET #bit pos, @di spl6, Rsrc)

[Function]

Bit operation for memory contents Set 0 to specified bit.
* (signed char*) (Rsrc + (signed short) disp16) : = (1<< (7-bitpos)) ;

[Description]

BSET reads the byte data in the memory at the address specified by the Rsrc combined with
the 16-bit displacement, and then stores the value of the bit that was specified by bitpos to be set
to “1". The displacement is sign-extended before the address calculation. bitpos becomes 0 to 7;
MSB becomes 0 and LSB becomes 7. The memory is accessed in bytes. The LOCK bit is on
while the BSET instruction is executed, and is cleared when the execution is completed. The
LOCK bit is internal to the CPU and cannot be directly read or written to by the user.

Condition bit C remains unchanged.

The LOCK bit is internal to the CPU and is the control bit for receiving all bus right requests

from circuits other than the CPU.

Refer to the Users Manual for non-CPU bus right requests, as the handling differs according to

the type of MCU.

[EIT occurrence]

None

[Encoding]

1010 |0 bitpos| 0110 | src

di spl6

BSET #bit pos, @di spl6, Rsrc)

3-27

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

bit operation Instructions
BTST Bit test BTST

[M32R-FPU Extended Instruction]

[Mnemonic]

BTST #bitpos, Rsrc

[Function]

Remove the bit specified by the register.
C = Rsrc >> (7-bitpos)) &1;

[Description]

Take out the bit specified as bitpos within the Rsrc lower eight bits and sets it in the condition
bit (C). bitpos becomes 0 to 7, MSB becomes 0 and LSB becomes 7.

[EIT occurrence]

None

[Encoding]

0000 |O|bitpos| 1111 | src BTST #bitpos, Rsrc

3-28 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

CLRPSW 77 m® CLRPSW

[M32R-FPU Extended Instruction]

[Mnemonic]

CLRPSW #i nmB

[Function]

Set the undefined SM, IE, and C bits of PSW to 0.
PSW& = ~imm8 : OxffffffOO

[Description]

Set the AND result s of the reverse value of b0 (MSB), b1, and b7 (LSB) of the 8-bit immediate
value and bits SM, IE, and C of PSW to the corresponding SM, IE, and C bits. When b7 (LSB) or
#imma8 is 1, the condition bit (C) goes to 0. All other bits remain unchanged.

[EIT occurrence]

None

[Encoding]

0111 | 0010 I 8 CLRPSW #i nm8B

3-29 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

CMP

[Mnemonic]

CWMP Rsrcl, Rsrc?

[Function]

Compare
C = ((signed) Rsrcl < (signed) Rsrc2) ? 1:0;

[Description]

compare Instruction
Compare CM P

The condition bit (C) is set to 1 when Rsrcl is less than Rsrc2. The operands are treated as
signed 32-bit values.

[EIT occurrence]

None

[Encoding]

0000

srcl

0100

src?2

CMP Rsrcl,Rsrc2

3-30 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

compare Instruction
CMPI Compare immediate CMPI

[Mnemonic]

CWPl Rsrc, #i mml6

[Function]

Compare
C = ((signed) Rsrc < (signed short)imml16) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc is less than 16-bit immediate value. The operands are
treated as signed 32-bit values. The immediate value is sign-extended to 32-bit before the opera-
tion.

[EIT occurrence]

None

[Encoding]

1000 | 0000 0100 | src imp].6

CWPl Rsrc, #i mmL6

3-31 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

compare Instruction
CMPU Compare unsigned CMPU

[Mnemonic]

CWMPU Rsrcl, Rsrc2

[Function]

Compare
C = ((unsigned) Rsrcl < (unsigned) Rsrc2) ? 1:0;

[Description]

The condition bit (C) is set when Rsrcl is less than Rsrc2. The operands are treated as un-
signed 32-bit values.

[EIT occurrence]

None

[Encoding]

0000 | src1 | 0101 |src? CVWPU Rsrcl, Rsrc?

3-32 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

compare Instruction
CMPUI Compare unsigned immediate CMPUI

[Mnemonic]

CVPU Rsrc, #i nmL6

[Function]

Compare
C = ((unsigned) Rsrc < (unsigned) ((signed short) imm16)) ? 1:0;

[Description]

The condition bit (C) is set when Rsrc is less than the 16-bit immediate value. The operands
are treated as unsigned 32-bit values. The immediate value is sign-extended to 32-bit before the
operation.

[EIT occurrence]

None

[Encoding]

1000 | 0000 0101 | src im‘rﬂ.G

CMPUI Rsrc, #i mmL6

3-33 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

multiply and divide instruction
DIV Divide DIV

[Mnemonic]

DIV Rdest, Rsrc

[Function]

Signed division
Rdest = ('signed) Rdest / (signed) Rsrc;

[Description]

DIV divides Rdest by Rsrc and puts the quotient in Rdest.

The operands are treated as signed 32-bit values and the result is rounded toward zero.
The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 0000 | src || 0000 | 0000 0000 | OO0

DIV Rdest, Rsrc

3-34 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

multiply and divide instruction
DIVU Divide unsigned DIVU

[Mnemonic]

DI VU Rdest, Rsrc

[Function]

Unsigned division
Rdest = (unsigned) Rdest / (unsigned) Rsrc;

[Description]

DIVU divides Rdest by Rsrc and puts the quotient in Rdest.

The operands are treated as unsigned 32-bit values and the result is rounded toward zero.
The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 0001 | src [/ 0000 | 0000 | OO0 | 0000

DI VU Rdest, Rsrc

3-35 M32R-FPU Software Manual (Rev.1.0)

3

INSTRUCTIONS

3.2 Instruction description

FADD

[Mnemonic]

floating-poimnt Instructions
Floating-point add
[M32R-FPU Extended Instruction]

FADD Rdest, Rsrcl, Rsrc2

[Function]

Floating-point add
Rdest = Rsrcl + Rsrc2 ;

[Description]

FADD

Add the floating-point single precision values stored in Rsrcl and Rsrc2 and store the result in
Rdest. The result is rounded according to the RM field of FPSR. The DN bit of FPSR handles the
modification of denormalized numbers. The condition bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)
» Unimplemented Operation Exception (UIPL)
« Invalid Operation Exception (IVLD)
* Overflow (OVF)

* Underflow (UDF)
* Inexact Exception (IXCT)

[Encoding]
1101 | srcl | 0000 | src2 || 0000 | dest | 0000 | 0000
FADD Rdest, Rsrcl, Rsrc2
3-36

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

F A D D floating point Instructions F A D D

Floating-point addd
[M32R-FPU Extended Instruction]

[Supplemental Operation Description]

The following shows the values of Rsrcl and Rsrc2 and the operation results when DN = 0 and
DN =1.

DN=0

Rsrc2

Mimalzed | +0 | -0 | +infinity | -infinity [Pemalzed] gnan | sNaN

Normalized
Number add

+0 +0 (Note) -Infinity
-0 (Note) -0
+Infinity +Infinity IVLD

Rsrcl

-Infinity -Infinity IVLD -Infinity

Denormalized
Number UIPL

QNaN QNaN
SNaN

IVLD

DN=1

Rsrc2

Normalized Denormalized Denormalized i i
number |0t Numper |0 Number | FInfinity | -Infinity QNaN SNaN

Normalized Number add N%rtrjnmal!)ié?d

Denormalized o
+0 + -
01 Number Normalized O (NOte) |nf|n|ty

Denormalized Number
-0, -7 Number (Note) -0

Rsrcl +Infinity +Infinity IVLD
-Infinity -Infinity IVLD -Infinity

QNaN

QNaN
SNaN

IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception
NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding
toward any other direction.

3-37 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

floating point Instructions
FCMP Floating-point compare FCMP

[M32R-FPU Extended Instruction]

[Mnemonic]

FCVP Rdest, Rsrcl, Rsrc2

[Function]

Floating-point compare

Rdest = (comparison results of Rsrcl and Rsrc2);

When at least one value, either Rsrcl or Rsrc2, is SNaN, a floating-point exception (other than
Invalid Operation Exception) occurs.

[Description]

Compare the floating-point single precision values stored in Rsrcl and Rsrc2 and store the
result in Rdest. The results of the comparison can be determined y the following methods.

Typical instructions used to

Rdest Comparison Results i)
determine comparison results
b0=0 All bits, b1 to b31, are 0. Rsrc1=Rsrc2 begz Rdest, LABEL
b1l to b9=111 1111 11, Comparison invalid bgtz Rdest, LABEL
Bits b10 to b31 are an undefined.
All others Rsrc1>Rsrc2
b0=1 Bits bl to b31 are an undefined. Rsrcl<Rsrc2 bltz Rdest, LABEL

The DN bit of FPSR handles the conversion of denormalized numbers. The condition bit (C)
remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)
» Unimplemented Operation Exception (UIPL)
* Invalid Operation Exception (IVLD)

[Encoding]

1101 | srcl | 0000 | src2]| 0000 | dest | 1100 H 0000

FCVP Rdest, Rsrcl, Rsrc2

3-38 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

F C M P floating point Instructions F C M P

Floating-point compare
[M32R-FPU Extended Instruction]

[Supplemental Operation Description]

The following shows the values of Rsrcl and Rsrc2 and the operation results when DN = 0 and
DN =1.

DN=0

Rsrc2

N?\lrrn?tl)ié?d | +0 | 0 +infinity | -Infinity Denormglized ONaN SNaN

Number

Normalized | comparison

+0 -Infinity o
00000000 +Infinity
-0

+Infinity +Infinity 00000000
Rsrcl
-Infinity -Infinity 00000000

Denormalized
Number UIPL

comparison
QNaN invalid
SNaN

IVLD

Rsrc2

Normaiized | 49, 4 Denormalized | .o, .Depormaized | tinfinity | -Infinity | QNaN SNaN

Normalized Number comparison

+0, +Denormalized -Infinity
0 Den'\(l)l::;?zred 00000000 +Infinity

Number

Rsrcl +Infinity +Infinity 00000000

-Infinity -Infinity 00000000
comparison
QNaN

invalid
SNaN

IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception
NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

3-39 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

floating-poimnt Instructions
FCMPE Floating-point compare with exception FCMPE
if unordered
[M32R-FPU Extended Instruction]

[Mnemonic]

FCMPE Rdest, Rsrcl, Rsrc?2

[Function]

Floating-point compare

Rdest = (comparison results of Rsrcl and Rsrc2);

When at least one value, either Rsrcl or Rsrc2, is QNaN or SNaN, a floating-point exception
(other than Invalid Operation Exception) occurs.

[Description]

Compare the floating-point single precision values stored in Rsrcl and Rsrc2 and store the
result in Rdest. The results of the comparison can be determined y the following methods.

Rdest Comparison Results Typicgl instructior.ls used to
determine comparison results

b0=0 All bits, b1 to b31, are 0. Rsrc1=Rsrc2 beqz Rdest, LABEL

bl to b9=111 1111 11, Comparison invalid bgtz Rdest, LABEL

Bits b10 to b31 are an undefined.

(Note)

All others Rsrc1>Rsrc2
b0=1 Bits b1 to b31 are an undefined. Rsrc1<Rsrc2 bltz Rdest, LABEL

Note: Only when EV bit (b21 of FPSR Register) = “0".

The DN bit of FPSR handles the conversion of denormalized numbers. The condition bit (C)
remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)
» Unimplemented Operation Exception (UIPL)
« Invalid Operation Exception (IVLD)

[Encoding]

1101 | srcl | 0000 | src2 | 0000 | dest | 1101 | 0000

FCMPE Rdest, Rsrcl, Rsrc?2

3-40 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

FCMPE

floating point Instructions

Floating-point compare with exception
if unordered
[M32R-FPU Extended Instruction]

[Supplemental Operation Description]

FCMPE

The following shows the values of Rsrcl and Rsrc2 and the operation results when DN = 0 and

DN =1.

DN

Rsrc2

Normalized
Number

+0 |

+Infinity

Denormalized
Number

-Infinity

QNaN SNaN

Normalized
Number

+0
-0

comparison

00000000

-Infinity

+Infinity

+Infinity
Rsrcl

+Infinity

00000000

-Infinity

-Infinity

00000000

Denormalized
Number

UIPL

QNaN
SNaN

IVLD

DN

Rsrc2

Normalized
Number

10, +Denormalized -0, - De

Number

Number

normalized

+Infinity | -Infinity

QNaN SNaN

Normalized Number

comparison

Denormalized
0, + Number

0. - Denormalized

Number

00000000

-Infinit
Y +Infinity

Rsrcl +Infinity

+Infinity

00000000

-Infinity

-Infinity

00000000

QNaN

SNaN

IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

3-41

M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

floating-poimnt Instructions
FDIV Floating-point divide FDIV

[M32R-FPU Extended Instruction]

[Mnemonic]

FDIV Rdest, Rsrcl, Rsrc2

[Function]

Floating-point divide
Rdest = Rsrcl / Rsrc2 ;

[Description]

Divide the floating-point single precision value stored in Rsrcl by the floating-point single pre-
cision value stored in Rsrcl and store the result in Rdest. The result is rounded according to the
RM field of FPSR. The DN bit of FPSR handles the modification of denormalized numbers. The
condition bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)
» Unimplemented Operation Exception (UIPL)
* Invalid Operation Exception (IVLD)
* Overflow (OVF)
» Underflow (UDF)
* Inexact Exception (IXCT)
« Zero Divide Exception (DIVO)

[Encoding]

1101 | srcl 0000 | src2 | 0010 | dest | 0000 | 0000

FDIV Rdest,Rsrcl, Rsrc2

3-42 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS
3.2 Instruction description

F D IV floating point Instructions F D IV

Floating-point divide
[M32R-FPU Extended Instruction]

[Supplemental Operation Description]

The following shows the values of Rsrc1 and Rsrc2 and the operation results when DN = 0 and
DN = 1.

DN=0
Rsrc2
Normalized +0 -0 +Infinity | -Infinity |PeRormalized) onaN SNaN
Noymalized | divide DIVO 0
+0 +0 -0
0 IVLD
-0 -0 +0
+Infinity +Infinity | -Infinity
Rsrcl — Infinity — — IVLD
-Infinity -Infinity | +Infinity
D lized
maare UIpL
QNaN QNaN
SNaN IVLD
DN=1
Rsrc2
Normalized | 10, +Denormalized | .q, . Denormalized |y |nfinjty | -Infinity | QNaN SNaN
Normalized Number divide DIVO 0
+0, + Do e 0 VLD +0 0
D lized
0, - Depermaize 0 | 0
Rsrcl +Infinity +Infinity -Infinity
- Infinity — — IVLD
-Infinity -Infinity +Infinity
QNaN QNaN
SNaN IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception
DIVO: Zero Divide Exception
NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

3-43 M32R-FPU Software Manual (Rev.1.0)

3

INSTRUCTIONS

3.2 Instruction description

floating-poimnt Instructions
FMADD Floating-point multiply and add FMADD

[M32R-FPU Extended Instruction]

[Mnemonic]

FMADD Rdest, Rsrcl, Rsrc?2

[Function]

Floating-point multiply and add
Rdest = Rdest + Rsrcl * Rsrc2 ;

[Description]

This instruction is executed in the following 2 steps.

e Step 1

Multiply the floating-point single precision value stored in Rsrcl by the floating-point single
precision value stored in Rsrc2.

The multiplication result is rounded toward O regardless of the value in the RM field of FPSR.

e Step 2
Add the result of Step 1 (the rounded value) and the floating-point single precision value stored
in Rdest. The result is rounded according to the RM field of FPSR.

The result of this operation is stored in Rdest. Exceptions are determined in both Step 1 and
Step 2. The DN bit of FPSR handles the conversion of denormalized numbers. The condition bit
(C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)
» Unimplemented Operation Exception (UIPL)
* Invalid Operation Exception (IVLD)
* Overflow (OVF)
» Underflow (UDF)
« Inexact Exception (IXCT)

[Encoding]

1101 | srcl | 0000 |src2 |/ 0011 dest | 0000 | 0000

FMADD Rdest, Rsrcl, Rsrc?2

3-44 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

floating point Instructions
Floating-point multiply and add
[M32R-FPU Extended Instruction]

FMADD FMADD

[Supplemental Operation Description]
The following shows the values of Rsrcl, Rsrc2 and Rdest and the operation results when DN
=0and DN = 1.
DN=0

Value after Multiplication Operation

Rsrc2
Normalized | +0 -0 +Infinity | -Infinity |PeRormaized| onan SNaN
Normalized | Mmyltiplication Infinity
+0 +0 -0
IVLD
-0 -0 +0
+Infinity +Infinity | -Infinity
Rsrcl — Infinity IVLD — —
-Infinity -Infinity | +Infinity
D lized
Sfomaize UIPL
QNaN QNaN
SNaN IVLD
Value after Addition Operation
Value after Multiplication Operation
Normalized | +0 | -0 +Infinity | -Infinity | QNaN
Wi | add
+0 +0 (Note) -Infinity
-0 (Note) -0
+Infinity +Infinity IVLD
Rdest —
-Infinity -Infinity IVLD -Infinity
D lized
R UIPL
QNaN QNaN
SNaN IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception
NaN: Not a Number
SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding
toward any other direction.

3-45 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

floating point Instructions
Floating-point multiply and add
[M32R-FPU Extended Instruction]

FMADD FMADD

DN=1

Value after Multiplication Operation

Rsrc2
Normalized | 1, 4Denormalized| Denormalized| ynfinity | -Infinity | QNaN | SNaN
Normalized Multiplication Infinity
10, + Depormlzed +0 0
Denormalized IVLD
-0,- Number -0 +0
Rsrcl +Infinity infinity D +Infinity | -Infinity
-Infinity -Infinity | +Infinity
QNaN QNaN
SNaN IVLD
Value after Addition Operation
Value after Multiplication Operation
Nomalized | 40 | -0 [+Infinity | -infinity | QnaN
Normalized | Multiplication
+0 +0 (Note) -Infinity
-0 (Note) -0
Rdest | +Infinity +Infinity | IVLD
-Infinity -Infinity IVLD -Infinity
QNaN QNaN
SNaN IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception

NaN: Not a Number

SNaN: Signaling NaN
QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding
toward any other direction.

3-46

M32R-FPU Software Manual (Rev.1.0)

3

INSTRUCTIONS

3.2 Instruction description

FMSUB

[Mnemonic]

FMBUB Rdest, Rsrcl, Rsrc?2

[Function]

floating-point Instructions
Floating-point multiply and subtract
[M32R-FPU Extended Instruction]

Floating-point multiply and subtract

Rdest = Rdest - Rsrcl * Rsrc2 ;

[Description]

This instruction is executed in the following 2 steps.
e Step1
Multiply the floating-point single precision value stored in Rsrcl by the floating-point single
precision value stored in Rsrc2.
The multiplication result is rounded toward 0 regardless of the value in the RM field of FPSR.

e Step 2
Subtract the result (rounded value) of Step 1 from the floating-point single precision value

stored in Rdest.

FMSUB

The subtraction result is rounded according to the RM field of FPSR.
The result of this operation is stored in Rdest. Exceptions are determined in both Step 1 and
Step 2. The DN bit of FPSR handles the conversion of denormalized numbers. The condition bit

(C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)

» Unimplemented Operation Exception (UIPL)
« Invalid Operation Exception (IVLD)
« Overflow (OVF)

* Underflow (UDF)
* Inexact Exception (IXCT)

[Encoding]
1101 srcl | 0000 | src2]| 0011 | dest | 0100 H 0000
FMSUB Rdest, Rsrcl, Rsrc?2
3-47 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

floating point Instructions
Floating-point multiply and subtract
[M32R-FPU Extended Instruction]

FMSUB FMSUB

[Supplemental Operation Description]

The following shows the values of Rsrcl1, Rsrc2 and Rdest and the operation results when DN
=0and DN =1.

DN=0

Value after Multiplication Operation

Rsrc2
Noymalized | +0 -0 +Infinity | -Infinity |Pepormaized) gNaN SNaN
Normalized | Mmyltiplication Infinity
+0 +0 -0
IVLD
-0 -0 +0
+Infinity +Infinity | -Infinity
Rsrcl — Infinity IVLD — —
-Infinity -Infinity | +Infinity
D lized
omeare UIPL
QNaN QNaN
SNaN IVLD
Value after Subtraction Operation
Value after Multiplication Operation
Nomalized [40 [-0 [+infinity | -infinity | Qnan
Normalized | Sybtraction
+0 +0 (Note) -Infinity
-0 (Note) -0
+Infinity +Infinity IVLD
Rdest —
-Infinity -Infinity IVLD -Infinity
D lized
“fomalze UIPL
QNaN QNaN
SNaN IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception
NaN: Not a Number
SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding
toward any other direction.

3-48 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

FMSUB

floating point Instructions
Floating-point multiply and subtract
[M32R-FPU Extended Instruction]

FMSUB

DN=1
Value after Multiplication Operation
Rsrc2
Noymalized | 1, 4Denormalized| o Denormalized| 4 nfinity | -Infinity | QNaN | SNaN
Normalized Multiplication Infinity
10, +Depormalzes +0 0 Vb
-, - Denormalzed 0 +0
Rsrcl +Infinity N +Infinity | -Infinity
Infinity IVLD
-Infinity -Infinity | +Infinity
QNaN QNaN
SNaN IVLD
Value after Subtraction Operation
Value after Multiplication Operation
Normalized +0 | -0 +Infinity | -Infinity | QNaN
Normalized | Subtraction
+0 (Note) +0 -Infinity | +Infinity
-0 -0 (Note)
Rdest | +Infinity +Infinity IVLD
-Infinity -Infinity IVLD
ONaN QNaN
SNaN IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception
NaN: Not a Number
SNaN: Signaling NaN
QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding
toward any other direction.

3-49

M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

floating-poimnt Instructions
FMUL Floating-point multiply FMUL

[M32R-FPU Extended Instruction]

[Mnemonic]

FMJUL Rdest,Rsrcl, Rsrc2

[Function]

Floating-point multiply
Rdest = Rsrcl * Rsrc2 ;

[Description]

Multiply the floating-point single precision value stored in Rsrcl by the floating-point single
precision value stored in Rsrc2 and store the results in Rdest. The result is rounded according to
the RM field of FPSR. The DN bit of FPSR handles the modification of denormalized numbers.
The condition bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)
» Unimplemented Operation Exception (UIPL)
* Invalid Operation Exception (IVLD)
* Overflow (OVF)
» Underflow (UDF)
* Inexact Exception (IXCT)

[Encoding]

1101 | srcl | 0000 | src2 |/ 0001 dest | 0000 | 0000

FMJUL Rdest,Rsrcl, Rsrc2

3-30 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS
3.2 Instruction description

floating point Instructions
FMUL Floating-point multiply FMUL

[M32R-FPU Extended Instruction]

[Supplemental Operation Description]

The following shows the values of Rsrcl and Rsrc2 and the operation results when DN = 0 and
DN = 1.

DN=0

Rsrc2

Normalized
Number

+0 | -0 | +infinity | -nfinity [Popematzed] onan | snan
Normalized

Number Multiplication

Infinity

+0 +0 -0
-0 -0 +0

+Infinity

IVLD

Rsrcl +Infinity | -Infinity

Infinity IVLD

-Infinity
D lized

Hormatze UIPL

QNaN

SNaN

-Infinity | +Infinity

QNaN

IVLD

DN=1

Rsrc2

NRlinabized | +0, +Depormalized| o Depormalized) +infinity | -Infinity | QNaN | SNaN
Normalized Multiplication

Denormalized
+0, + Number +0 -0

- IVLD
D lized
0, Dopemalee 0 0

Infinity

Rsrcl +Infinity +Infinity | -Infinity

Infinity IVLD

-Infinity
QNaN
SNaN

-Infinity | +Infinity

QNaN

IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception
NaN: Not a Number

SNaN: Signaling NaN

ONaN: Quiet NaN

3-51 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description
floating-poimnt Instructions
FSUB Floating-point subtract FSUB

[M32R-FPU Extended Instruction]

[Mnemonic]

FSUB Rdest, Rsrcl, Rsrc2

[Function]

Floating-point subtract
Rdest = Rsrcl - Rsrc2 ;

[Description]

Subtract the floating-point single precision value stored in Rsrc2 from the floating-point single
precision value stored in Rsrcl and store the results in Rdest. The result is rounded according to
the RM field of FPSR. The DN bit of FPSR handles the modification of denormalized numbers.
The condition bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)
» Unimplemented Operation Exception (UIPL)
* Invalid Operation Exception (IVLD)
* Overflow (OVF)
» Underflow (UDF)
* Inexact Exception (IXCT)

[Encoding]

1101 | srcl | 0000 | src2 |/ 0000 | dest | 0100 | 0000

FSUB Rdest, Rsrcl, Rsrc2

3-32 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

F S U B floating point Instructions F S U B

Floating-point subtract
[M32R-FPU Extended Instruction]

[Supplemental Operation Description]

The following shows the values of Rsrc1 and Rsrc2 and the operation results when DN = 0 and
DN = 1.

Rsrc2

No”“a”ze"| +0 | -0 +Infinity | -Infinity |P°Romieer®d| QNaN SNaN

Number

Normalized | 5yptraction
+0 (Note) +0 -Infinity | +Infinity
0 -0 (Note)

+Infinity +Infinity IVLD

Rsrcl

-Infinity -Infinity IVLD

Denormalized
Number UIPL

QNaN
SNaN

QNaN

IVLD

DN=1

Rsrc2

Normalized Denormalized | _g . Denormalized L .
Number | PO * Number | 0 Number +Infinity | -Infinity QNaN SNaN

Normalized Number| Sybtraction
+0, + DeR%rmggfed (Note) +0 -Infinity

Denormalized
-0, -~ Number -0 (Note)

+Infinity

Rsrcl +Infinity +Infinity IVLD
-Infinity -Infinity IVLD

QNaN

QNaN
SNaN

IVLD

IVLD: Invalid Operation Exception
UIPL: Unimplemented Exception
NaN: Not a Number

SNaN: Signaling NaN

QNaN: Quiet NaN

Note: The rounding mode is “-0” when rounding toward “-Infinity”, and “+0” when rounding
toward any other direction.

3-53 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

floating-poimnt Instructions
FTOI Float to Integer FTOI
[M32R-FPU Extended Instruction]

[Mnemonic]

FTO Rdest, Rsrc

[Function]

Convert the floating-point single precision value to 32-bit integer.
Rdest = (signed int) Rsrc ;

[Description]

Convert the floating-point single precision value stored in Rsrc to a 32-bit integer and store the
result in Rdest.

The result is rounded toward 0 regardless of the value in the RM field of FPSR. The condition
bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)
» Unimplemented Operation Exception (UIPL)
* Invalid Operation Exception (IVLD)
* Inexact Exception (IXCT)

[Encoding]

1101 | src | 0000 | 0000 || 0100 | dest | 1000 | 0000

FTO Rdest, Rsrc

3-4 M32R-FPU Software Manual (Rev.1.0)

3

INSTRUCTIONS

3.2 Instruction description

FTOI

[Supplemental Operation Description]

floating point Instructions

Float to Integer

[M32R-FPU Extended Instruction]

FTOI

The results of the FTOI instruction executed based on the Rsrc value, both when DN =0and DN =1,
are shown in below.

DN=0
Rsrc Value (exponent with no bias) Rdest Exception
Rsrc =0 +Infinity When EIT occurs: no change | Invalid Operation Exception
127z exp =31 Other EIT: H'7FFF FFFF
30=exp=-126 H'0000 0000 to H'7FFF FF80 | No change (Note 1)
+Denormalized value No change Unimplemented Exception
+0 H'0000 0000 No change
Rsrc <0 -0
-Denormalized value No change Unimplemented Exception
30=exp=-126 H'0000 0000 to H'8000 0080 | No change (Note 1)
127> exp =31 When EIT occurs: no change | Invalid Operation Exception
-Infinity Other EIT: H'8000 0080 (Note 2)
NaN QNaN When EIT occurs: no change | Invalid Operation Exception
Other EIT:
SNaN Signed bit = 0:H'7FFF FFFF
Signed bit = 1:H'8000 0000

Note 1: Inexact Exception occurs when rounding is performed.
2: Inexact Exception does not occur when Rsrc = H'CF00 0000.

DN=1
Rsrc Value (exponent with no bias) Rdest Exception
Rsrc =0 +Infinity When EIT occurs: no change | Invalid Operation Exception
127 2z exp =31 Other EIT: H'7FFF FFFF
30=exp=-126 H'0000 0000 to H'7FFF FF80 | No change (Note 1)
+0, +Denormalized value H'0000 0000 No change
Rsrc <0 -0, -Denormalized value
30=exp=-126 H'0000 0000 to H'8000 0080 | No change (Note 1)
127 2 exp =31 When EIT occurs: no change | Invalid Operation Exception
-Infinity Other EIT: H'8000 0000 (Note 2)
NaN QNaN When EIT occurs: no change | Invalid Operation Exception
Other EIT:
SNaN Signed bit = 0:H'7FFF FFFF
Signed bit = 1:H’8000 0000

Note 1: Inexact Exception occurs when rounding is performed.
2: Inexact Exception does not occur when Rsrc = H'CF00 0000.

3-55 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

floating-poimnt Instructions
FTOS Float to short FTOS

[M32R-FPU Extended Instruction]

[Mnemonic]

FTOS Rdest, Rsrc

[Function]

Convert the floating-point single precision value to 16-bit integer.
Rdest = (signed int) Rsrc ;

[Description]

Convert the floating-point single precision value stored in Rsrc to a 16-bit integer and store the
result in Rdest.

The result is rounded toward 0 regardless of the value in the RM field of FPSR. The condition
bit (C) remains unchanged.

[EIT occurrence]

Floating-Point Exceptions (FPE)
» Unimplemented Operation Exception (UIPL)
* Invalid Operation Exception (IVLD)
* Inexact Exception (IXCT)

[Encoding]

1101 | src | 0000 | 0000 || 0100 | dest | 1100 | 0000

FTOS Rdest, Rsrc

3-56 M32R-FPU Software Manual (Rev.1.0)

3

INSTRUCTIONS

3.2 Instruction description

FTOS

floating point Instructions

Float to short

[M32R-FPU Extended Instruction]

[Supplemental Operation Description]

FTOS

The results of the FTOS instruction executed based on the Rsrc value, both when DN =0 and DN =1,

are shown in below.

DN=0
Rsrc Value (exponent with no bias) Rdest Exception
Rsrc =0 +Infinity When EIT occurs: no change | Invalid Operation Exception
127z exp =15 Other EIT: H'0000 7FFFF
14> exp=-126 H'0000 0000 to H'0000 7FFF | No change (Note 1)
+Denormalized value No change Unimplemented Exception
+0 H'0000 0000 No change
Rsrc <0 -0
-Denormalized value No change Unimplemented Exception
14> exp=-126 H'0000 0000 to H'FFFF 8001 | No change (Note 1)
127 2 exp =15 When EIT occurs: no change | Invalid Operation Exception
-Infinity Other EIT: H'FFFF 8000 (Note 2)
NaN QNaN When EIT occurs: no change | Invalid Operation Exception
Other EIT:
SNaN Signed bit = 0:H’0000 7FFF
Signed bit = 1:H’FFFF 8000

Note 1: Inexact Exception occurs when rounding is performed.
2: Inexact Exception does not occur when Rsrc = H'CF00 0000.

DN=1
Rsrc Value (exponent with no bias) Rdest Exception
Rsrc =0 +Infinity When EIT occurs: no change | Invalid Operation Exception
127 2z exp =15 Other EIT: H'0000 7FFF
14> exp=-126 H'0000 0000 to H'0000 7FFF | No change (Note 1)
+0, +Denormalized value H'0000 0000 No change
Rsrc <0 -0, -Denormalized value
14 > exp =-126 H'0000 0000 to H'FFFF 8001 | No change (Note 1)
127 >exp =15 When EIT occurs: no change | Invalid Operation Exception
-Infinity Other EIT: H'FFFF 8000 (Note 2)
NaN QNaN When EIT occurs: no change | Invalid Operation Exception
Other EIT:
SNaN Signed bit = 0:H’0000 7FFF
Signed bit = 1:H’FFFF 8000

Note 1: Inexact Exception occurs when rounding is performed.
2: No Exceptions occur when Rsrc = H'C700 0000. When Rsrc = H'C700 0001 to H'C700 O0FF,
the Inexact Exception occurs and the Invalid Operation Exception does not occur.

3-57

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

floating-poimnt Instructions
ITOF Integer to float ITOF
[M32R-FPU Extended Instruction]

[Mnemonic]

| TOF Rdest, Rsrc

[Function]

Convert the integer to a floating-point single precision value.
Rdes = (float) Rsrc ;

[Description]

Converts the 32-bit integer stored in Rsrc to a floating-point single precision value and stores
the result in Rdest. The result is rounded according to the RM field of FPSR. The condition bit (C)
remains unchanged. H'0000 0000 is handled as “+0” regardless of the Rounding Mode.

[EIT occurrence]

Floating-Point Exceptions (FPE)
« Inexact Exception (IXCT)

[Encoding]

1101 | src | 0000 | 0000 |[0100 | dest | 0000 | OOO0

| TOF Rdest, Rsrc

3-38 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

J L branch instruction
Jump and link

[Mnemonic]

JL Rsrc

[Function]

Subroutine call (register direct)
R14 = (PC & Oxfffffffc) + 4;
PC = Rsrc & Oxfffffffc;

[Description]

JL

JL causes an unconditional jump to the address specified by Rsrc and puts the return address

in R14.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | 1110 | 1100 | src JL Rsrc

3-59

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction
JMP " JMP

[Mnemonic]

JMP Rsrc

[Function]

Jump
PC = Rsrc & Oxfffffffc;

[Description]

JMP causes an unconditional jump to the address specified by Rsrc.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | 1111 1100 | src JMP Rsrc

3-60 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS
3.2 Instruction description

LD

load/store instruction

Load I—D

[Mnemonic]

(1) LD Rdest, @src

(2) LD Rdest, @rsrc+

(3) LD Rdest, @displ6, Rsrc)
[Function]

Load to register from the contents of the memory.

(1) Rdest =*(int *) Rsrc;

(2) Rdest = *(int *) Rsrc, Rsrc +=4;

(3) Rdest =*(int *) (Rsrc + (signed short) disp16);

[Description]

(1) The contents of the memory at the address specified by Rsrc are loaded into Rdest.
(2) The contents of the memory at the address specified by Rsrc are loaded into Rdest.
Rsrc is post incremented by 4.

(3) The contents of the memory at the address specified by Rsrc combined with the 16-
bit displacement are loaded into Rdest.

The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]
0010 | dest | 1100 | src LD Rdest, @rsrc
0010 | dest | 1110 | src LD Rdest, @rsrc+
1010 | dest | 1100 | src di sp16

LD Rdest, @di spl6, Rsrc)

3-61 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

loady/store instruction
I—D24 Load 24-bit immediate I—D24

[Mnemonic]

LD24 Rdest, #i R4

[Function]

Load the 24-bit immediate value into register.
Rdest = imm24 & 0xOOffffff;

[Description]

LD24 loads the 24-bit immediate value into Rdest. The immediate value is zero-extended to 32
bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1110 | dest [mpZ4

LD24 Rdest, #i mR4

3-62 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

LDB

[Mnemonic]

load/store instruction

Load byte I—DB

(1) LDB Rdest, @src
(2) LDB Rdest, @displ6, Rsrc)

[Function]

Load to register from the contents of the memory.
(1) Rdest =*(signed char *) Rsrc;
(2) Rdest = *(signed char *) (Rsrc + (signed short) disp16);

[Description]

(1) LDB sign-extends the byte data of the memory at the address specified by Rsrc and loads

it into Rdest.

(2) LDB sign-extends the byte data of the memory at the address specified by Rsrc combined
with the 16-bit displacement, and loads it into Rdest.

The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0010 | dest | 1000

src LDB Rdest, @rsrc
1010 | dest | 1000 | src di sp16
LDB Rdest, @di spl6, Rsrc)
3-63

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

LDH

[Mnemonic]

loady/store instruction
LDH

Load halfword

(1) LDH Rdest, @src
(2) LDH Rdest, @displ6, Rsrc)

[Function]

Load to register from the contents of the memory.
(1) Rdest = *(signed short *) Rsrc;
(2) Rdest = *(signed short *) (Rsrc + (signed short) displ6);

[Description]

(1) LDH sign-extends the halfword data of the memory at the address specified by Rsrc and

loads it into Rdest.

(2) LDH sign-extends the halfword data of the memory at the address specified by Rsrc
combined with the 16-bit displacement, and loads it into Rdest.
The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 | dest | 1010 | src

LDH Rdest, @rsrc

1010 | dest | 1010 | src

displG

LDH Rdest, @di spl6, Rsrc)

3-64

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

L D I lransfer instruction
Load immediate

[Mnemonic]

(1) LD Rdest, #i m8
(2) LD Rdest, #i nl6

[Function]

Load the immediate value into register.
(1) Rdest = (signed char) imm8;
(2) Rdest = (signed short) imm16;

[Description]

(1) LDI loads the 8-bit immediate value into Rdest.
The immediate value is sign-extended to 32 bits.

(2) LDI loads the 16-bit immediate value into Rdest.
The immediate value is sign-extended to 32 bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0110 | dest i rnrr8 LDI Rdest, #i m8
1001 | dest | 1111 0000 im‘rﬂ.G

LDl Rdest, #i mml6

LDI

3-65 M32R-FPU Software Manual (Rev.1.0)

3

INSTRUCTIONS

3.2 Instruction description

LDUB

[Mnemonic]

(1)
(2)

loaay/store instruction
Load unsigned byte LDUB

LDUB Rdest, @rsrc
LDUB Rdest, @di spl6, Rsrc)

[Function]

Load to register from the contents of the memory.
(1) Rdest = *(unsigned char *) Rsrc;
(2) Rdest = *(unsigned char *) (Rsrc + (signed short) displ6);

[Description]

(1) LDUB zero-extends the byte data from the memory at the address specified by Rsrc and

loads it into Rdest.

(2) LDUB zero-extends the byte data of the memory at the address specified by Rsrc com-

bined

[EIT occurrence]

with the 16-bit displacement, and loads it into Rdest.
The displacement value is sign-extended to 32 bits before address calculation.
The condition bit (C) is unchanged.

None
[Encoding]

0010 | dest | 1001 | src LDUB Rdest, @rsrc
1010 | dest | 1001 | src di splG

LDUB Rdest, @di spl6, Rsrc)

3-66

M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

load/store instruction
I—DUH Load unsigned halfword I—DUH

[Mnemonic]

(1) LDUH Rdest, @src
(2) LDUH Rdest, @displ6, Rsrc)

[Function]

Load to register from the contents of the memory.
(1) Rdest = *(unsigned short *) Rsrc;
(2) Rdest = *(unsigned short *) (Rsrc + (signed short) disp16);

[Description]

(1) LDUH zero-extends the halfword data from the memory at the address specified by Rsrc
and loads it into Rdest.
(2) LDUH zero-extends the halfword data in memory at the address specified by Rsrc com-
bined
with the 16-bit displacement, and loads it into Rdest.
The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 | dest | 1011 | src LDUH Rdest, @rsrc

1010 | dest | 1011 | src disp16

LDUH Rdest, @di spl6, Rsrc)

3-67 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

loady/store instruction
I—OCK Load locked LOCK

[Mnemonic]

LOCK Rdest, @rsrc

[Function]

Load locked
LOCK =1, Rdest =*(int *) Rsrc;

[Description]

The contents of the word at the memory location specified by Rsrc are loaded into Rdest. The
condition bit (C) is unchanged.

This instruction sets the LOCK bit in addition to simple loading.

When the LOCK bit is 1, external bus master access is not accepted.

The LOCK bit is cleared by executing the UNLOCK instruction.

The LOCK bit is located in the CPU and operates based on the LOCK and UNLOCK instruc-
tions. The user cannot directly read or write to this bit.

The LOCK bit is internal to the CPU and is the control bit for receiving all bus right requests
from circuits other than the CPU.

Refer to the Users Manual for non-CPU bus right requests, as the handling differs according to
the type of MCU.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 | dest | 1101 | src LOCK Rdest, @src

3-68 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

DSP function instruction
MACHI Multiply-accumulate high-order halfwords MACHI

[Mnemonic]

MACHI Rsrcl, Rsrc2

[Function]

Multiply and add
accumulator += ((signed) (Rsrcl & 0xffff0000) * (signed short) (Rsrc2 >> 16));

[Description]

MACHI multiplies the high-order 16 bits of Rsrc1 and the high-order 16 bits of Rsrc2, then adds
the result to the low-order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign-extended before addition. The
result of the addition is stored in the accumulator. The high-order 16 bits of Rsrcl and Rsrc2 are
treated as signed values.

The condition bit (C) is unchanged.

0 15 16 31
‘high-order 16 bits‘ ‘ Rsrcl
X ‘high-order 16 bits‘ ‘ Rsrc2
Sign extension ‘ 4—}0 ‘ ‘ 0 ‘ Result of the multiplication
+ ‘ ‘ Value in accumulator before the
execution of the MACHI instruction
Sign extension ‘ 4_+. ‘ ‘ ‘ ‘ Value in accumulator after the
execution of the MACHI instruction
0 78 15 16 3132 47 48

[EIT occurrence]

None

[Encoding]

0011 |srcl1 | 0100 |src2 MACHI Rsrcl, Rsrc?2

3-69 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

DSP function instruction
MACI—O Multiply-accumulate low-order halfwords MACI—O

[Mnemonic]

MACLO Rsrcl, Rsrc2

[Function]

Multiply and add
accumulator += ((signed) (Rsrcl << 16) * (signed short) Rsrc2) ;

[Description]

MACLO multiplies the low-order 16 bits of Rsrcl and the low-order 16 bits of Rsrc2, then adds
the result to the low order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign-extended before addition. The
result of the addition is stored in the accumulator. The low-order 16 bits of Rsrcl and Rsrc2 are
treated as signed values.

The condition bit (C) is unchanged.

0 15 16 31
‘ ‘Iow-order 16 bits‘ Rsrcl

X ‘ ‘Iow-order 16 bits‘ Rsrc2
Sign extension ‘ 4—}0 ‘ ‘ 0 ‘ Result of the multiplication
+ ‘ ‘ ‘ ‘ ‘ Value in accumulator before the
execution of the MACLO instruction
Sign extension ‘ <o ‘ ‘ ‘ Value in accumulator after the
execution of the MACLO instruction
0 78 15 16 31 32 47 48

[EIT occurrence]

None

[Encoding]

0011 |srcl1l | 0101 |src2 MACLO Rsrcl, Rsrc?

3-70 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description
DSP function instruction
MACWHI Multiply-accumulate MACWHI

word and high-order halfword

[Mnemonic]

MACVHI Rsrcl, Rsrc2

[Function]

Multiply and add
accumulator += ((' signed) Rsrcl * (signed short) (Rsrc2 >>16));

[Description]

MACWHI multiplies the 32 bits of Rsrcl and the high-order 16 bits of Rsrc2, then adds the
result to the low-order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign extended before addition. The
result of addition is stored in the accumulator. The 32 bits of Rsrc1 and the high-order 16 bits of
Rsrc2 are treated as signed values.

The condition bit (C) is unchanged.

0 15 16 31
‘ 32 bits ‘ Rsrcl
X ‘ high-order 16 bits‘ ‘ Rsrc2
Sign extension ‘ 4—}0 ‘ ‘ ‘ Result of the multiplication
+ ‘ ‘ ‘ ‘ ‘ Value in accumulator before the

execution of the MACWHI instruction

Sign extension ‘ 4—}0 ‘ ‘ ‘ ‘ Value in accumulator after the
execution of the MACWHI instruction
0 78 15 16 31 32 47 48

[EIT occurrence]

None

[Encoding]

0011 |srcl1 | 0110 |src2 MACVHI Rsrcl, Rsrc?2

3-71 M32R-FPU Software Manual (Rev.1.0)

3

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
Multiply-accumulate

MACWLO

MACWLO

word and low-order halfword

[Mnemonic]

MACW.O Rsrcl, Rsrc2

[Function]

Multiply and add

accumulator += (('signed) Rsrcl * (signed short) Rsrc2) ;

[Description]

MACWLO multiplies the 32 bits of Rsrcl and the low-order 16 bits of Rsrc2, then adds the
result to the low-order 56 bits in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 8 through 15 of the accumulator is sign-extended before the addition. The
result of the addition is stored in the accumulator. The 32 bits Rsrcl and the low-order 16 bits of

Rsrc2 are treated as signed values.
The condition bit (C) is unchanged.

0 15 16 31
32 bits ‘ Rsrcl
X ‘ low-order 16 bits ‘ Rsrc2
Sign extension ‘ 4—}0 ‘ Result of the multiplication
+ ‘ ‘ ‘ ‘ Value in accumulator before the
execution of the MACWLO instruction
Sign extension 4_+. Value in accumulator after the
9 ‘ ‘ execution of the MACWLO instruction
0 78 15 16 3132 47 48

[EIT occurrence]

None

[Encoding]

0011 |srcl | 0111 |src?

MACW.O Rsrcl, Rsrc?2

3-72 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

multiply and divide instruction M U L

MUL Multiply

[Mnemonic]

MJL Rdest, Rsrc

[Function]

Multiply
{ signed64bit tmp;
tmp = (signed64bit) Rdest * (signed64bit) Rsrc;

Rdest = (int) tmp;}

[Description]

MUL multiplies Rdest by Rsrc and puts the result in Rdest.

The operands are treated as signed values.
The contents of the accumulator are destroyed by this instruction. The condition bit (C) is

unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 0110 | src MJL Rdest, Rsrc

3-73 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

DSP function instruction
MULHI Multiply high-order halfwords MULHI

[Mnemonic]

MULHI Rsrcl, Rsrc2

[Function]

Multiply
accumulator = ((signed) (Rsrcl & 0xffff000) * (signed short) (Rsrc2 >> 16));

[Description]

MULHI multiplies the high-order 16 bits of Rsrcl and the high-order 16 bits of Rsrc2, and
stores the result in the accumulator.

However, the LSB of the multiplication result is aligned with bit 47 in the accumulator, and the
portion corresponding to bits 0 through 15 of the accumulator is sign-extended. Bits 48 through
63 of the accumulator are cleared to 0. The high-order 16 bits of Rsrc1 and Rsrc2 are treated as
signed values.

The condition bit (C) is unchanged.

0 15 16 31
‘high—order 16 bits‘ ‘ Rsrcl
X ‘high—order 16 bits‘ ‘ Rsrc2
Sign extension 4—}. 0 Value in accumulator after the
g ‘ ‘ ‘ execution of the MALHI instruction
0 15 16 3132 47 48 3

[EIT occurrence]

None

[Encoding]

0011 |srcl1 | 0000 |src? MULHI Rsrcl, Rsrc?

3-74 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS
3.2 Instruction description

DSP function instruction
MULI—O Multiply low-order halfwords MULI—O

[Mnemonic]

MULLO Rsrcl, Rsrc2

[Function]

Multiply
accumulator = ((signed) (Rsrcl << 16) * (signed short) Rsrc2);

[Description]

MULLO multiplies the low-order 16 bits of Rsrcl and the low-order 16 bits of Rsrc2, and stores
the result in the accumulator.

The LSB of the multiplication result is aligned with bit 47 in the accumulator, and the portion
corresponding to bits 0 through 15 of the accumulator is sign extended. Bits 48 through 63 of the
accumulator are cleared to 0. The low-order 16 bits of Rsrcl and Rsrc2 are treated as signed
values.

The condition bit (C) is unchanged.

0 15 16 31
‘ ‘ low-order 16 bits ‘ Rsrcl

X ‘ low-order 16 bits‘ Rsrc2
Sign extension 4—# 0 Value in accumulator after the
’ ‘ ‘ ‘ ‘ execution of the MULLO instruction
0 15 16 3132 47 48

[EIT occurrence]

None

[Encoding]

0011 |srcl1 | 0001 src2 MULLO Rsrcl, Rsrc?

3-75 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

MULWHI o MULWHI

word and high-order halfword

[Mnemonic]

MULVH Rsrcl, Rsrc2

[Function]

Multiply
accumulator = ((signed) Rsrcl * ('signed short) (Rsrc2 >>16));

[Description]

MULWHI multiplies the 32 bits of Rsrcl and the high-order 16 bits of Rsrc2, and stores the
result in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 0 through 15 of the accumulator is sign-extended. The 32 bits of Rsrcl and
high-order 16 bits of Rsrc2 are treated as signed values.

The condition bit (C) is unchanged.

0 15 16 31
‘ 32 bits ‘ Rsrcl
X ‘ high-order 16 bits‘ ‘ Rsrc2
Sign extension ‘ 4—’-. ‘ ‘ ‘ Value in accumulator after the

execution of the MULWHI instruction
0 15 16 3132 47 48 3

[EIT occurrence]

None

[Encoding]

0011 |srcl1 | 0010 |src? MULVHI Rsrcl, Rsrc2

3-76 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

M U LWL O DSP fulfﬂnlj/ﬁ/: F;}:;z‘fucz‘/on M U LWL O

word and low-order halfword

[Mnemonic]

MULWLO Rsrcl, Rsrc2

[Function]

Multiply
accumulator = ((signed) Rsrcl * (signed short) Rsrc2);

[Description]

MULWLO multiplies the 32 bits of Rsrcl and the low-order 16 bits of Rsrc2, and stores the
result in the accumulator.

The LSB of the multiplication result is aligned with the LSB of the accumulator, and the portion
corresponding to bits 0 through 15 of the accumulator is sign extended. The 32 bits of Rsrc1 and
low-order 16 bits of Rsrc2 are treated as signed values.

The condition bit (C) is unchanged.

0 15 16 31
‘ 32 bits ‘ Rsrcl
X ‘ ‘ low-order 16 bits‘ Rsrc2
Sign extension ‘ 4—}. ‘ ‘ ‘ Value in accumulator after the

execution of the MULWLO instruction
0 15 16 3132 47 48 3

[EIT occurrence]

None

[Encoding]

0011 |srcl1 | 0011 src2 MULW.O Rsrcl, Rsrc?2

3-77 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

MV

[Mnemonic]

M Rdest, Rsrc

[Function]

Transfer
Rdest = Rsrc;

[Description]

MV moves Rsrc to Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 1000 | src

transfer instruction MV
Move register

MW Rdest, Rsrc

3-78

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
MVFACHI Move high-order word MVFACHI

from accumulator

[Mnemonic]

MVFACHI Rdest

[Function]

Transfer from accumulator to register
Rdest = (int) (accumulator >> 32) ;

[Description]

MVFACHI moves the high-order 32 bits of the accumulator to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 | dest | 1111 | 0000 MVFACH Rdest

3-79 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
MVFACI—O Move low-order word MVFACI—O
from accumulator

[Mnemonic]

MVFACLO Rdest

[Function]

Transfer from accumulator to register
Rdest = (int) accumulator

[Description]

MVFACLO moves the low-order 32 bits of the accumulator to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 | dest | 1111 | 0001 MVFACLO Rdest

3-80 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
MVFACMI Move middle-order word MVFACMI

from accumulator

[Mnemonic]

MVFACM Rdest

[Function]

Transfer from accumulator to register
Rdest = (int) (accumulator >> 16) ;

[Description]

MVFACMI moves bits16 through 47 of the accumulator to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 | dest | 1111 | 0010 MVFACM Rdest

3-81 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

MVFC

[Mnemonic]

MVFC Rdest, CRsrc

[Function]

Transfer from control register to register
Rdest = CRsrc ;

[Description]

MVFC moves CRsrc to Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 1001 | src MVFC

transfer instruction
Move from control register

MVFC

Rdest , CRsr c

3-82

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
M v IACHI Move high-order word M v I ACHI
to accumulator

[Mnemonic]

MVTACHI Rsrc

[Function]

Transfer from register to accumulator
accumulator [0 : 31] = Rsrc;

[Description]

MVTACHI moves Rsrc to the high-order 32 bits of the accumulator.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 | src | 0111 | 0000 M/TACH Rsrc

3-83 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

DSP function instruction
MVTACI—O Move low-order word MVTACI—O
to accumulator

[Mnemonic]

MVTACLO Rsrc

[Function]

Transfer from register to accumulator
accumulator [32 : 63] = Rsrc ;

[Description]

MVTACLO moves Rsrc to the low-order 32 bits of the accumulator.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 | src | 0111 | 0001 MVTACLO Rsrc

3-84 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

transfer instruction
M v I C Move to control register M v I C

[Mnemonic]

MVTC Rsrc, CRdest

[Function]

Transfer from register to control register
CRdest = Rsrc ;

[Description]

MVTC moves Rsrc to CRdest.
If PSW(CRO) is specified as CRdest, the condition bit (C) is changed; otherwise it is un-
changed.

[EIT occurrence]

None

[Encoding]

0001 | dest | 1010 | src MVTC Rsrc, CRdest

3-85 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

NEG

[Mnemonic]

arithmetic operation mstruction N E G
Negate

NEG Rdest, Rsrc

[Function]

Negate

Rdest = 0 — Rsrc ;

[Description]

NEG negates (changes the sign of) Rsrc treated as a signed 32-bit value, and puts the result
in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000

dest

0011

Src

NEG

Rdest , Rsrc

3-86 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

branch instruction
NOP No operation NOP

[Mnemonic]

NCP

[Function]

No operation
* *

[Description]

NOP performs no operation. The subsequent instruction then processed.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0111 | 0000 | OO0 | 0000 NCOP

3-87 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

NOT

[Mnemonic]

NOT Rdest, Rsrc

[Function]

Logical NOT
Rdest = ~ Rsrc ;

[Description]

NOT inverts each of the bits

logic operation Instruction
Logical NOT NOT

of Rsrc and puts the result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000 | dest | 1011 | src

NOT Rdest, Rsrc

3-88 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

logic operation Instruction
OR OR OR

[Mnemonic]

OR Rdest, Rsrc

[Function]

Logical OR
Rdest = Rdest | Rsrc;

[Description]

OR computes the logical OR of the corresponding bits of Rdest and Rsrc, and puts the result

in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000 | dest | 1110 | src

OR Rdest, Rsrc

3-89 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

OR3

[Mnemonic]

logic operation Instruction O R 3

OR 3-operand

OR3 Rdest, Rsrc, #i mmL6

[Function]

Logical OR

Rdest = Rsrc | (unsigned short) imm16 ;

[Description]

OR3 computes the logical OR of the corresponding bits of Rsrc and the 16-bit immediate
value, which is zero-extended to 32 bits, and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
1000 ' dest | 1110 | src [m‘rﬂ.G
OR3 Rdest, Rsrc, #i mml6
3-90

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

RAC

[Mnemonic]

RAC

[Function]

Saturation Process
{ signed64bit tmp;
tmp = (signed64bit) accumulator << 1;
tmp = tmp + 0x0000 0000 0000 8000;

if(0x0000 Tfff ffff 0000 < tmp)

DSP function mstruction R A C
Round accumulator

accumulator = 0x0000 7fff ffff 0000;
else if(tmp < Oxffff 8000 0000 0000)
accumulator = Oxffff 8000 0000 0000;

else

accumulator = tmp & Oxffff ffff ffff 0000; }

[Description]

RAC rounds the contents in the accumulator to word size and stores the result in the accumu-

lator.

The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0101 | 0000 | 1001 | 0000 RAC
3-91 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

RAC

DSP function instruction

RAC

Round accumulator

[Supplement]

This instruction is executed in two steps as shown below:

<step 1>

/'

extended bit0-bit7

I
supposed sign
I

0 8 16 32 48 63
«—t | I I I

] 1-bit shift to the left
[l I I |
0 8 16 32 47 48 63

<step 2>

The value in the accumulator is altered depending on the supposed bit 80 through 7 after
left-shift operation and bit 8 through bit 63 after shift operation.

8 16 32 48 63
| | | | | | Value in Adest after the
I execution of the RAC instruction
A - 0 8 63
. —» | 00] 00| 7FFF | FFFF [0000 |
positive | 0000 7FFF FFFF 8000 | 8 B 63
value | 0000 7FFF, FFFF 7FFF]] [IT o]
E if bit 48 is 0 , there is no carry.
_ » if bit 48 is 1 , the bit is carried.
0000 0000:0000 0000 Bits 48 to 63 are cleared to zero.
FFEF 8000 0000 8000_ |8 4|8 = 63|
. FFFF 8000 0000 7FFF | !
negatlve R
value H
: 0 8 63
v —> [FE|]FF] 8000 | oooo | o000 |

3-92

M32R-FPU Software Manual (Rev.1.0)

3

INSTRUCTIONS

3.2 Instruction description

RACH

[Mnemonic]

RACH

[Function]

Saturation Process
{ signed64bit tmp;
tmp = (signed64bit) accumulator << 1;
tmp = tmp + 0x0000 0000 8000 0000;

if(00000 7fff 0000 0000 < tmp)

DSP function mstruction
Round accumulator halfword

accumulator = 0x0000 7fff 0000 0000;
else if(tmp < Oxffff 8000 0000 0000)
accumulator = Oxffff 8000 0000 0000;

else

accumulator = tmp & Oxffff ffff 0000 0000; }

[Description]

RACH

RACH rounds the contents in the accumulator to halfword size and stores the result in the

accumulator.

The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0101 | 0000 | 1000 | 0000 RACH
3-93 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

DSP function instruction

Round accumulator halfword

RACH RACH

[Supplement]

This instruction is executed in two steps, as shown below.
<proccess 1>

0

/'

|
supposed sign
|

16 32 48 63

8

<1 |
/ 1-bit shift to the left

1 I I [

8

16 32 4748 63

extended bit0-bit7

0

<proccess 2>

The value in the accumulator is altered depending on the supposed bit 80 through 7 after
left-shift operation and bit 8 through bit 63 after shift operation.

8 16 32 48 63
| | I | | | Value in Adest after the
i execution of the RAC instruction
A _ 0 8 63
. —» [o00] 00| 7FFF | FFFF | 0000 |
positive| 0000 7FFE 8000 0000_] 8 31 %2 63
value | 0000 7FFE 7FFF 7FFF] | | [IT] o] 0 |
E t‘ if bit 32 is 0, there is no carry.
L if bit 32 is 1, the bit is carried.
0000 OOOO:OOOO 0000 sign extension Bits 32 to 63 are cleared to zero.
FEFF 8000 8000 0000_ 0O 8 48 63
- = [o | o |
. FFFF 8000 7FFF FFFF
negative R
value H
: 0 8 63
v —> [FE| FF] 8000 | o000 | o000 |

3-94

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

REM

[Mnemonic]

multiply and divide instruction
Remainder

REM Rdest, Rsrc

[Function]

Signed remainder
Rdest = ('signed) Rdest % (signed) Rsrc ;

[Description]

REM

REM divides Rdest by Rsrc and puts the quotient in Rdest. The operands are treated as
signed 32-bit values.
The quotient is rounded toward zero and the quotient takes the same sign as the dividend.
The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None
[Encoding]
1001 | dest | 0010 | src | 0000 | 0000 | 0000 | 0000
REM Rdest, Rsrc
3-95 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

multiply and divide instruction
REMU Remainder unsigned REMU

[Mnemonic]

REMJ Rdest, Rsrc

[Function]

Unsigned remainder
Rdest = (unsigned) Rdest % (unsigned) Rsrc ;

[Description]

REMU divides Rdest by Rsrc and puts the quotient in Rdest.
The operands are treated as unsigned 32-bit values.

The condition bit (C) is unchanged.

When Rsrc is zero, Rdest is unchanged.

[EIT occurrence]

None

[Encoding]

1001 | dest | 0011 | src [0000 | 0000 | OO0 | 0000

REMJ Rdest, Rsrc

3-96 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

E/T-related instruction
RTE Return from EIT RTE

[Mnemonic]

RTE

[Function]

Return from EIT
SM =BSM ;
IE =BIE;
C=BC;
PC = BPC & Oxfffffffc ;

[Description]

RTE restores the SM, IE and C bits of the PSW from the BSM, BIE and BC bits, and jumps to
the address specified by BPC.

At this time, because the BSM, BIE, and BC bits in the PSW register are undefined, the BPC is
also undefined.

[EIT occurrence]

None

[Encoding]

0001 | 0000 | 1101 | 0110 RTE

3-97 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

Transfer instructions
SETH Set high-order 16-bit SETH

[Mnemonic]

SETH Rdest, #i nmL6

[Function]

Transfer instructions
Rdest = (signed short) imm16 << 16 ;

[Description]

SETH load the immediate value into the 16 most significant bits of Rdest.
The 16 least significant bits become zero.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1101 | dest | 1100 | 0000 im‘ril.G

SETH Rdest, #i nml6

3-98 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

SETPSW

[Mnemonic]

Bit Operation Instructions
Set PSW

SETPSW

[M32R-FPU Extended Instruction]

SETPSW #i nm8

[Function]

Set the undefined SM, IE, anc C bits of PSW to 1.

PSW : = imm8&0x000000ff

[Description]

Set the AND result of the value of bO (MSB), b1, and b7 (LSB) of the 8-bit immediate value and
bits SM, IE, and C of PSW to the corresponding SM, IE, and C bits. When b7 (LSB) or #imm8 is
1, the condition bit (C) goes to 0. All other bits remain unchanged.

[EIT occurrence]

None

[Encoding]

0111

0001

i m8

[Note]

Set the 8-bit immediate values of b2 to b6 to “0".

SETPSW #i nm8

3-99

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

Shift instruction
SI—L Shift left logical SLL

[Mnemonic]

SLL Rdest, Rsrc

[Function]

Logical left shift
Rdest = Rdest << (Rsrc & 31);

[Description]

SLL left logical-shifts the contents of Rdest by the number specified by Rsrc, shifting zeroes
into the least significant bits.

Only the five least significant bits of Rsrc are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 0100 | src SLL Rdest, Rsrc

3-100 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

shift instruction
SLI—3 Shift left logical 3-operand SLI—3

[Mnemonic]

SLL3 Rdest, Rsrc, #i mml6

[Function]

Logical left shift
Rdest = Rsrc << (imm16 & 31);

[Description]

SLL3 left logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-bit
immediate value, shifting zeroes into the least significant bits.

Only the five least significant bits of the 16-bit immediate value are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1001 dest | 1100 | src im‘rﬂ.6

SLL3 Rdest, Rsrc, #i mml6

3-101 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

Shift instruction
SI—I—I Shift left logical immediate SI—I—I

[Mnemonic]

SLLI Rdest, #i rmb

[Function]

Logical left shift
Rdest = Rdest << imm5;

[Description]

SLLI left logical-shifts the contents of Rdest by the number specified by the 5-bit immediate
value, shifting zeroes into the least significant bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 |dest |010| i mMd SLLI Rdest , #i b

3-102 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

Shift instruction
SRA Shift right arithmetic SRA

[Mnemonic]

SRA Rdest, Rsrc

[Function]

Arithmetic right shift
Rdest = ('signed) Rdest >> (Rsrc & 31) ;

[Description]

SRA right arithmetic-shifts the contents of Rdest by the number specified by Rsrc, replicates
the sign bit in the MSB of Rdest and puts the result in Rdest.

Only the five least significant bits are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 0010 | src SRA Rdest, Rsrc

3-103 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

SRA3

[Mnemonic]

SRA3 Rdest, Rsrc, #i mmL6

[Function]

Shift instruction

Shift right arithmetic 3-operand SRA3

Arithmetic right shift
Rdest = ('signed) Rsrc >> (imm16 & 31) ;

[Description]

SRAZ3 right arithmetic-shifts the contents of Rsrc into Rdest by the number specified by the 16-
bit immediate value, replicates the sign bit in Rsrc and puts the result in Rdest.
Only the five least significant bits are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
1001 | dest | 1010 | src i rrrﬁLG
SRA3 Rdest, Rsrc, #i mml6
3-104

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

shift instruction
SRAI Shift right arithmetic immediate SRAI

[Mnemonic]

SRAI Rdest, #i rmb

[Function]

Arithmetic right shift
Rdest = (' signed) Rdest >>immb5 ;

[Description]

SRAI right arithmetic-shifts the contents of Rdest by the number specified by the 5-bit immedi-
ate value, replicates the sign bit in MSB of Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0101 |dest [001| i mbd SRAI Rdest , #i rmb

3-105 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

Shift instruction
SRL Shift right logical SRL

[Mnemonic]

SRL Rdest, Rsrc

[Function]

Logical right shift
Rdest = (unsigned) Rdest >> (Rsrc & 31) ;

[Description]

SRL right logical-shifts the contents of Rdest by the number specified by Rsrc, shifts zeroes
into the most significant bits and puts the result in Rdest.

Only the five least significant bits of Rsrc are used.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0001 | dest | 0000 | src SRL Rdest, Rsrc

3-106 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

shift instruction
SRI—3 Shift right logical 3-operand SRI—3

[Mnemonic]

SRL3 Rdest, Rsrc, #i mmL6

[Function]

Logical right shift
Rdest = (unsigned) Rsrc >> (imm16 & 31) ;

[Description]

SRL3 right logical-shifts the contents of Rsrc into Rdest by the number specified by the 16-bit
immediate value, shifts zeroes into the most significant bits. Only the five least significant bits of
the immediate value are valid.

The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

1001 dest | 1000 | src im‘rﬂ.6

SRL3 Rdest, Rsrc, #i mml6

3-107 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

SRLI

[Mnemonic]

SRLI

Rdest , #i rmb

[Function]

Logical right shift

Rdest = (unsigned) Rdest >> (imm5 & 31);

[Description]

Shift instruction
Shift right logical immediate

SRLI

SRLI right arithmetic-shifts Rdest by the number specified by the 5-bit immediate value, shift-
ing zeroes into the most significant bits.
The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
0101 dest [000| i b SRLI Rdest, #i nmb
3-108

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

ST load/store instruction

Store ST

[Mnemonic]

(1) ST Rsrcl, @src2

(2) ST Rsrcl, @Rsrc2

(3) ST Rsrcl, @Rsrc2

(4) ST Rsrcl, @displ6, Rsrc?2)

[Function]

Store
(1) * (int*) Rsrc2 = Rsrcl,;
(2) Rsrc2 +=4, *(int*) Rsrc2 = Rsrcl;
(3) Rsrc2 -=4, *(int*) Rsrc2 = Rsrcl;
(4) *(int*) (Rsrc2 + (signed short) disp16) = Rsrcl;

[Description]

(1) ST stores Rsrcl in the memory at the address specified by Rsrc2.

(2) ST increments Rsrc2 by 4 and stores Rsrcl in the memory at the address specified by the
resultant Rsrc2.

(3) ST decrements Rsrc2 by 4 and stores the contents of Rsrcl in the memory at the address
specified by the resultant Rsrc2.

(4) ST stores Rsrcl in the memory at the address specified by Rsrc combined with the 16-bit
displacement. The displacement value is sign-extended before the address calculation.
The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

3-109 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

T load/store instruction
S Store ST
[Encoding]
0010 |srcl | 0100 |src2| ST Rsrcl, @Rsrc2
0010 |srcl | 0110 |src2| ST Rsrcl, @Rsrc2
0010 |srcl1 | 0111 |src2| ST Rsrcl, @Rsrc2
1010 | srcl | 0100 |src2 di sp16
ST Rsrcl, @displ6, Rsrc2)

3-110 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS
3.2 Instruction description

STB

[Mnemonic]

(1)
(2)

[Function]

Store

load/store instruction

Store byte STB

STB Rsrcl, @src?
STB Rsrcl, @di spl6, Rsrc2)

(1) * (char*) Rsrc2 = Rsrcl;
(2) * (char *) (Rsrc2 + (signed short) disp16) = Rsrcl;

[Description]

(1) STB stores the least significant byte of Rsrcl in the memory at the address specified by

Rsrc2.

(2) STB stores the least significant byte of Rsrcl in the memory at the address specified by

Rsrc

[EIT occurrence]

combined with the 16-bit displacement.

The displacement value is sign-extended to 32 bits before the address calculation.
The condition bit (C) is unchanged.

None
[Encoding]
0010 |srcl | 0000 |src2| STB Rsrcl, @src2
1010 | srcl | 0000 | src2 di sp16

STB Rsrcl, @di spl6, Rsrc2)

3-111 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

load/store instruction
STH Store halfword STH
[M32R-FPU Extended Mnemonic]

[Mnemonic]

(1) STH Rsrcl, @Rsrc?2
(2) STH Rsrcl, @rsrc2+ [M2R-FPU Ext ended Mienoni c]

(3) STH Rsrcl, @displ6, Rsrc2)

[Function]

Store
(1) * (signed short *) Rsrc2 = Rsrcl;
(2) * (signed short *) Rsrc2 = Rsrcl, Rsrc2 +=2;
(3) * (' signed short *) (Rsrc2 + (signed short) disp16) = Rsrcl;

[Description]

(1) STH stores the least significant halfword of Rsrcl in the memory at the address specified
by Rsrc2.

(2) STH stores the LSB halfword of Rsrcl to the memory of the address specified by Rsrc2,
and then increments Rsrc2 by 2.

(3) STH stores the least significant halfword of Rsrcl in the memory at the address specified
by Rsrc combined with the 16-bit displacement. The displacement value is sign-ex-
tended to 32 bits before the address calculation.

The condition bit (C) is unchanged.

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 |srcl | 0010 |src2| STH Rsrcl, @Rsrc2

0010 |srcl | 0011 |src2| STH Rsrcl, @Rsrc2+

1010 ' srcl | 0010 |src2 di sp16

STH Rsrcl, @di spl6, Rsrc2)

3-112 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

S U B arithmetic operation instruction
Subtract

[Mnemonic]

SUB Rdest, Rsrc

[Function]

Subtract
Rdest = Rdest - Rsrc;

[Description]

SUB subtracts Rsrc from Rdest and puts the result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000 | dest | 0010 | src SUB Rdest, Rsrc

SUB

3-113 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

SUBV

[Mnemonic]

arithmetic operation mstruction
Subtract with overflow checking

SUBV Rdest, Rsrc

[Function]

Subtract

Rdest = Rdest - Rsrc;

C=overflow ? 1:0;

[Description]

SUBV

SUBY subtracts Rsrc from Rdest and puts the result in Rdest.
The condition bit (C) is set when the subtraction results in overflow; otherwise, it is cleared.

[EIT occurrence]

None

[Encoding]

0000

dest

0000

Src

SUBV Rdest, Rsrc

3-114

M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

arithmetic operation instruction
SUBX Subtract with borrow SUBX

[Mnemonic]

SUBX Rdest, Rsrc

[Function]

Subtract
Rdest = (unsigned) Rdest - (unsigned) Rsrc - C;
C =borrow ? 1:0;

[Description]

SUBX subtracts Rsrc and C from Rdest and puts the result in Rdest.
The condition bit (C) is set when the subtraction result cannot be represented by a 32-bit
unsigned integer; otherwise it is cleared.

[EIT occurrence]

None

[Encoding]

0000 | dest | 0001 | src SUBX Rdest, Rsrc

3-115 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

E/T-related instruction
T RA P Trap T RA P

[Mnemonic]

TRAP #i mmd

[Function]

Trap occurrence

BPC =PC + 4;

BSM = SM;

BIE = IE;

BC=C,;

IE =0;

C=0;
call_trap_handler(imm4);

[Description]

TRAP generates a trap with the trap number specified by the 4-bit immediate value.
IE and C bits are cleared to "0".

[EIT occurrence]

Trap (TRAP)

[Encoding]

0001 | 0000 | 1111 |inmm# | TRAP #i nm#;

3-116 M32R-FPU Software Manual (Rev.1.0)

3 INSTRUCTIONS

3.2 Instruction description

UNLOCK Store untocked, UNLOCK

[Mnemonic]

UNLOCK Rsrcl, @Rsrc?2

[Function]

Store unlocked
if (LOCK==1){*(int*)Rsrc2 =Rsrcl;}
LOCK =0;

[Description]

When the LOCK bit is 1, the contents of Rsrcl are stored at the memory location specified by
Rsrc2. When the LOCK bit is 0, store operation is not executed. The condition bit (C) is un-
changed.

This instruction clears the LOCK bit to 0 in addition to the simple storage operation.

The LOCK bit is internal to the CPU and cannot be accessed except by using the LOCK and
UNLOCK instructions.

The user cannot directly read or write to this bit.

The LOCK bit is internal to the CPU and is the control bit for receiving all bus right requests
from circuits other than the CPU.

Refer to the Users Manual for non-CPU bus right requests, as the handling differs according to
the type of M

[EIT occurrence]

Address exception (AE)

[Encoding]

0010 | srcl | 0101 |src2 UNLOCK Rsrcl, @Rsrc2

3-117 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

Floating Point Instructions
UTOF Unsigned integer to float UTOF
[M32R-FPU Extended Instruction]

[Mnemonic]

UTOF Rdest, Rsrc

[Function]

Convert from unsigned integer to floating-point single precision value.
Rdest = (float) (unsigned int) Rsrc ;

[Description]

UTOF converts the 32-bit unsigned integer stored in Rsrc to a floating-point single precision
value, and the result is stored in Rdest. The result is rounded according to the RM field in FPSR.
The condition bit (C) remains unchanged.

H’0000 0000 is treated as “+0” regardless of the Rounding Mode.

[EIT occurrence]

Floating-Point Exceptions (FPE)
* Inexact Exception (IXCT)

[Encoding]

1101 | src | 0000 | 0000 || 0100 | dest | 0100 | 0000

UTOF Rdest, Rsrc

3-118 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

XOR

[Mnemonic]

XOR Rdest, Rsrc

[Function]

Exclusive OR

logic operation Instruction X O R
Exclusive OR

Rdest = (unsigned) Rdest * (unsigned) Rsrc;

[Description]

XOR computes the logical XOR of the corresponding bits of Rdest and Rsrc, and puts the

result in Rdest.
The condition bit (C) is unchanged.

[EIT occurrence]

None

[Encoding]

0000

dest

1101

Src

XOR

Rdest , Rsrc

3-119 M32R-FPU Software Manual (Rev.1.0)

INSTRUCTIONS

3.2 Instruction description

XOR3

[Mnemonic]

XOR3 Rdest, Rsrc, #i nmL6

[Function]

Exclusive OR

logic operation Instruction
Exclusive OR 3-operand XOR3

Rdest = (unsigned) Rsrc ~ (unsigned short) imm16;

[Description]

XOR3 computes the logical XOR of the corresponding bits of Rsrc and the 16-bit immediate
value, which is zero-extended to 32 bits, and puts the result in Rdest.

The condition bit (C) is unchanged.

[EIT occurrence]

None
[Encoding]
1000 | dest | 1101 | src [mpLG
XOR3 Rdest, Rsrc, #i nmL6
3-120

M32R-FPU Software Manual (Rev.1.0)

APPENDIX 1
APPENDIX 2
APPENDIX 3
APPENDIX 4
APPENDIX 5
APPENDIX 6

APPENDICES

Hexadecimal Instraction Code
Instruction List

Pipeline Processing

Instruction Execution Time
IEEE754 Specification Overview
M32R-FPU Specification Supplemental
Explanation

APPENDIX 1
AP P E N D I C ES Appendix 1 Hexadecimal Instraction Code

Appendixl Hexadecimal Instraction Code

The bit pattern of each instruction and correspondence of mnemonic are shown below.
The instructions enclosed in the bold lines are M32R-FPU extended instructions.

Appendix Table 1.1.1 Instruction Code Table

) bs-b11 0000 0001 0010 0011 0100 0101 0110 0111
N hexadecimal
bo-b3 *\\ numeral 0 1 2 3 4 5 6 7
0000 0 SuBV SUBX sus NEG cMP CMPU
Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rsrcl,Rsrc2 Rsrcl,Rsrc2
SRL SRA SLL MUL
0001 1 Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc
0010 2 STB STH STH ST UNLOCK ST ST
_5 Rsrcl,@Rsrc2 Rsrcl,@Rsrc2 Rsrcl @Rsrc2+ Rsrcl,@Rsrc2 Rsrcl,@Rsrc2 Rsrcl,@+Rsrc2 | Rsrcl,@-Rsrc2
g 0011 3 MULHI MULLO MULWHI MULWLO MACHI MACLO MACWHI MACWLO
2 Rsrcl,Rsrc2 Rsrcl,Rsrc2 Rsrcl,Rsrc2 Rsrcl,Rsrc2 Rsrcl1,Rsrc2 Rsrcl,Rsrc2 Rsrcl,Rsrc2 Rsrcl1,Rsrc2
£ ADDI
ﬁ 0100 4 Rdest,#imm8
o SRLI SRAI SLLI MVTACHI,
- 0101 5 Rdest,#imm5 Rdest,#imm5 ‘ Rdest,#imm5 MVTACLO ([12)
LDI
0110 6 Rdest,#imm8
NOP (O 1
0111 7 0D BC, BNC,BL,BRAlSETPSW, CLRPswl(Dl)
CMPI CMPUI
1000 8 Rsrc,#imm16 Rsrc,#imm16
DIv DIVU REM REMU
1001 9 Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc
c 1010 A STB STH ST BSET BCLR
.g Rsrcl,@(disp16,Rsrc2) Rsrcl,@(disp16,Rsrc2) Rsrc1,@(disp16,Rsrc2) #bitpos,@(disp16,Rsrc) [#bitpos,@(disp16,Rsrc)
©
£ 1011 B BEQ BNE
2 Rsrcl,Rsrc2,pedispl6 Rsrcl,Rsrc2,pedispl6
'_'5 1100 Cc
N
3] FPU
1101 D externded instruction
LD24
1110 E Rdest,#imm24
1111 F BC, BNC, BL, BRA (01)
FPU extended instruction (b0-b3 = 1101, b8-b11 = 0000)
X b24-b27 0000 0001 0010 0011 0100 0101 0110 0111
. poxadecimal 0 1 2 3 4 5 6 7
0000 0 FADD FSuB
0001 1 FMUL
s 0010 2 FDIV
B
2 0011 3 FMADO FMSUB
7]
c
% 0100 4 ITOF UTOF
N
™ 0101 5
0110 6
0111 7
b0 3 4 7 8 11 12 b15
| bo-b3 ‘ ‘ bs-b11 ‘ |
- 16-bit instruction - 1
b0 3 4 7 8 11 12 b1l5 b1l6 19 20 23 24 27 28 b31
[bob: | | bebu | | | | | | |
l 32-bit instruction |
b0 3 4 7 8 11 12 b15 b16 19 20 23 24 27 28 b31
| 1101 0000 | | bie-b1ig ‘ ‘ b24-b27 ‘ |

l 32-bit instruction

APPENDICES-2 M32R-FPU Software Manual (Rev.1.0)

APPENDICES

APPENDIX 1

Appendix 1 Hexadecimal Instraction Code

1000 1001 1010 1011 1100 1101 1110 1111 bs-b11 B
hexadecimal -~
8 9 A B C D E F numeral _—"bo-bz
ADDV ADDX ADD NOT AND XOR OR 0 0000
Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc Rdest,Rsrc
MV MVFC MVTC JL, JMP RTE TRAP 1 0001
Rdest,Rsrc Rdest,CRsrc Rsrc,CRdest (01) #imm4
LDB LDUB LDH LDUH LD LOCK LD 2 0010
Rdest,@Rsrc Rdest,@Rsrc Rdest,@Rsrc Rdest,@Rsrc Rdest,@Rsrc Rdest,@Rsrc Rdest,@Rsrc+
3 0011
ADDI
Rdest,#imm8 4 0100
MVFACHI,
RACH RAC MVFACLO, 5 0101
MVFACMI ((12)
LDI
Rdest,#mm8 6 0110
BC, BNC, BL, BRA (01) 7 0111
ADDV3 ADD3 AND3 XOR3 OR3
Rdest,Rsrc,#imm16 Rdest,Rsrc, #imm16 Rdest,Rsrc,#imm16 Rdest,Rsrc,#imm16 | Rdest,Rsrc,#imm16 8 1000
SRL3 SRA3 SLL3 LDI
Rdest,Rsrc,#imm16 Rdest,Rsrc, #imm16 Rdest,Rsrc,#imm16 Rdest,#imm16 9 1001
LDB LDUB LDH LDUH LD
Rdest,@(disp16,Rsrc) Rdest,@(disp16,Rsrc) Rdest,@(disp16,Rsrc) Rdest,@(disp16,Rsrc) Rdest,@(disp16,Rsrc) A 1010
BEQZ BNEZ BLTZ BGEZ BLEZ BGTZ B 1011
Rsrc,pedispl6 Rsrc,pcdispl6 Rsrc,pcdispl6 Rsrc,pcdispl6 Rsrc,pedispl6 Rsrc,pedispl6
C 1100
SETH
Rdest,#imm16 D 1101
LD24
Rdest,#imm24 E 1110
BC, BNC, BL, BRA (O1) F 1111
1000 1001 1010 1011 1100 1101 1110 1111 b24-b27
hexadecimal
0 1 2 3 4 5 6 7 numeral " bie6-b19
FCMP FCMPE 0 0000
1 0001
2 0010
3 0011
FTOI FTOS 4 0100
5 0101
6 0110
7 0111

‘4— 32-bit instruction —>| }4— 32-bit instruction —»‘4— 16-bit instruction —>|

Note. In addition to b0-b3, b8-b11, instructions shown the above 01, 02 in the table are

decided by the following bit patterns.
As for details of bit patterns of each instruction, refer to "3.2 Instruction description."
01: b4-b7, 02: b12-b15

APPENDICES-3 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDLX 2

Appendix 2 Instruction List

Appendix 2 Instruction List

The M32R-FPU instruction list is shown below (in alphabetical order).

mnemonic function condition bit (C)
ADD Rdest, Rsrc Rdest = Rdest + Rsrc -
ADD3 Rdest, Rsrc, #i nml6 Rdest = Rsrc + (sh)imml6 -
ADDI Rdest , #i B Rdest = Rdest + (sb)inmB8 -
ADDV Rdest, Rsrc Rdest = Rdest + Rsrc change
ADDV3 Rdest, Rsrc, #i 6 Rdest = Rsrc + (sh)imil6 change
ADDX Rdest, Rsrc Rdest = Rdest + Rsrc + C change
AND Rdest, Rsrc Rdest = Rdest & Rsrc -
AND3 Rdest, Rsrc, #i nmlL6 Rdest = Rsrc & (uh)i mm6 -
BC pcdi sp8 i f(C) PC=PC+((sb)pcdi sp8<<2) -
BC pcdi sp24 i f(C) PC=PC+((s24) pcdi sp24<<?2) -

BCLR #bitpos, @di spl6, Rsrc) *(sb *)(Rsrc + (sh)displ6) & = ~(1<<(7-bitpos))
BEQ Rsrcl, Rsrc2, pcdi spl6 i f(Rsrcl == Rsrc2) PC=PC+((sh)pcdi spl6<<2) -

BEQZ Rsrc, pcdi spl6 i f(Rsrc == 0) PC=PC+((sh)pcdi spl6<<2) -
BGEZ Rsrc, pcdi spl6 i f(Rsrc >= 0) PC=PC+((sh)pcdi spl6<<2) -
BGTZ Rsrc, pcdi spl6 i f(Rsrc > 0) PC=PC+((sh)pcdi spl6<<2) -
BL pcdi sp8 R14=PC+4, PC=PC+((sb) pcdi sp8<<2) -
BL pcdi sp24 R14=PC+4, PC=PC+((s24) pcdi sp24<<2) -
BLEZ Rsrc, pcdi spl6 i f(Rsrc <= 0) PC=PC+((sh)pcdi spl6<<2) -
BLTZ Rsrc, pcdi spl6 i f(Rsrc < 0) PC=PC+((sh)pcdi spl6<<2) -
BNC pcdi sp8 i f(!C PC=PC+((sb)pcdisp8<<2) -
BNC pcdi sp24 i f(!C PC=PC+((s24)pcdi sp24<<2) -
BNE Rsrcl, Rsrc2, pcdi spl6 if(Rsrcl !'= Rsrc2) PC=PC+((sh)pcdi spl6<<2) -
BNEZ Rsrc, pcdi spl6 if(Rsrc !'= 0) PC=PC+((sh)pcdi spl6e<<2) -
BRA pcdi sp8 PC=PC+((sb) pcdi sp8<<2) -
BRA pcdi sp24 PC=PC+((s24) pcdi sp24<<2) -
BSET #bitpos, @di spl6, Rsrc) *(sb *)(Rsrc + (sh)displ6) | = (1<<(7-bitpos)) -
BTST #bitpos, Rsrc (Rsrc>>(7-bitpos)) &l change
CLRPSW#i nmB PSW& = ~immB | OxffffffoO change
CwP Rsrc1, Rsrc2 (s)Rsrcl < (s)Rsrc2 change
CWPI Rsrc, #i mmL6 (s)Rsrc < (sh)imil6 change
CWPU Rsrcl, Rsrc2 (u)Rsrcl < (u)Rsrc2 change
CMPU Rsrc, #i mmL6 (uRsrc < (u)((sh)imil6) change
Dl Vv Rdest , Rsrc Rdest = (s)Rdest / (s)Rsrc -

DI VU Rdest, Rsrc Rdest = (u)Rdest / (u)Rsrc -

FADD Rdest, Rsrcl, Rsrc2 Rdest = Rsrcl + Rsrc2 -

FCMP Rdest, Rsrcl, Rsrc2 Rdest = (Rsrcl == Rsrc2)?32' h00000000: ((Rsrcl< -
Rsrc2) ?{1. 31" bx}:{0. 31" bx}

FCMPE Rdest, Rsrcl, Rsrc2 FCMP wi th Exception when unordered -

FDIV Rdest, Rsrcl, Rsrc2 Rdest = Rsrcl / Rsrc2 -

APPENDICES4 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDL 2

Appendix 2 Instruction List

mnemonic function condition bit (C)
FMADD Rdest, Rsrcl, Rsrc2 Rdest = Rdest + Rsrcl * Rsrc2 -
FMSUB Rdest, Rsrcl, Rsrc2 Rdest = Rdest - Rsrcl * Rsrc2 -
FMJL Rdest,Rsrcl, Rsrc2 Rdest = Rdest * Rsrc2 -
FSUB Rdest, Rsrcl, Rsrc2 Rdest = Rsrcl - Rsrc2 -
FTA Rdest, Rsrc Rdest = (s)Rsrc2 -
FTOS Rdest, Rsrc Rdest = (sh)Rsrc -
| TOF Rdest, Rsrc Rdest = (float)Rsrc -
JL Rsrc R14 = PC+4, PC = Rsrc -
JMP Rsrc PC = Rsrc -

LD Rdest, @di sp16, Rsrc) Rdest = *(s *)(Rsrc+(sh)di spl6) -

LD Rdest, @rsrc Rdest = *(s *)Rsrc -
LD Rdest, @src+ Rdest = *(s *)Rsrc, Rsrc += 4 -
LD24 Rdest, #i 4 Rdest = imR4 & OxO00ffffff -
LDB Rdest, @ di sp1l6, Rsrc) Rdest = *(sb *)(Rsrc+(sh)displ6) -
LDB Rdest, @Rsrc Rdest = *(sb *)Rsrc -
LDH Rdest, @ di sp1l6, Rsrc) Rdest = *(sh *)(Rsrc+(sh)displ6) -
LDH Rdest, @Rsrc Rdest = *(sh *)Rsrc -
LDI Rdest , #i nmlL6 Rdest = (sh)i mml6 -
LDl Rdest , #i mmB Rdest = (sb)i mB -
LDUB Rdest, @displ6, Rsrc) Rdest = *(ub *)(Rsrc+(sh)displ6) -
LDUB Rdest, @Rsrc Rdest = *(ub *)Rsrc -
LDUH Rdest, @displ6, Rsrc) Rdest = *(uh *)(Rsrc+(sh)displ6) -
L DUH Rdest, @Rsrc Rdest = *(ub *)Rsrc -
LOCK Rdest, @Rsrc LOCK = 1, Rdest = *(s *)Rsrc -
MACHI Rsrcl, Rsrc2 accurul ator += (s)(Rsrcl & Oxffff0000) -
* (s)((s)Rsrc2>>16)
MACLO Rsrcl, Rsrc2 accunmul ator += (s)(Rsrcl<<16) * (sh)Rsrc2 -
MACWHI Rsrcl, Rsrc2 accunul ator += (s)Rsrcl * (s)((s)Rsrc2>>16) -
MACW.O Rsrcl, Rsrc2 accumul ator += (s)Rsrcl * (sh)Rsrc2 -
MUL Rdest, Rsrc Rdest = (s)Rdest * (s)Rsrc -
MULHI Rsrcl, Rsrc2 accurul ator = (s)(Rsrcl & Oxffff0000) -

* (s)((s)Rsrc2>>16)

MULLO Rsrcl, Rsrc2 accurmul ator = (s)(Rsrcl<<16) * (sh)Rsrc2 -
MULWHI Rsrc1, Rsrc2 accunul ator = (s)Rsrcl * (s)((s)Rsrc2>>16) -
MULMWLO Rsrcl, Rsrc2 accunmul ator = (s)Rsrcl * (sh)Rsrc2 -
\Y\Y Rdest, Rsrc Rdest = Rsrc -
MVFACHI Rdest Rdest = accumul ater >> 32 -
MVFACLO Rdest Rdest = accumnul at or -
MVFACM Rdest Rdest = accumul ator >> 16 -
MVFC Rdest, CRsrc Rdest = CRsrc -
MVTACHI Rsrc accurul ator[0: 31] = Rsrc -
MVTACLO Rsrc accumul ator[32:63] = Rsrc -
WTC Rsrc, CRdest CRdest = Rsrc change

APPENDICES-5 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDLX 2

Appendix 2 Instruction List

mnemonic function condition bit (C)
NEG Rdest, Rsrc Rdest = 0 - Rsrc -
NOP / *no-operation*/ -
NOT Rdest, Rsrc Rdest = ~Rsrc -
OR Rdest, Rsrc Rdest = Rdest | Rsrc -
OR3 Rdest, Rsrc, #i nmL6 Rdest = Rsrc | (uh)inmml6 -
RAC Round the 32-bit value in the accunul ator -
RACH Round the 16-bit value in the accunul ator -
REM Rdest, Rsrc Rdest = (s)Rdest % (s)Rsrc -
REMU Rdest, Rsrc Rdest = (u)Rdest % (u)Rsrc -
RTE PC = BPC & Oxfffffffc, change
PSW SM | E, C] = PSW BSM BI E, BC]
SETH Rdest, #i nmlL6 Rdest = imml6 << 16 -
SETPSW#i mmB8 PSW | = i mmB&0x000000f f change
SLL Rdest, Rsrc Rdest = Rdest << (Rsrc & 31) -
SLL3 Rdest, Rsrc, #i nml6 Rdest = Rsrc << (inmml6 & 31) -
SLLI Rdest, #i b Rdest = Rdest << imb -
SRA Rdest, Rsrc Rdest = (s)Rdest >> (Rsrc & 31) -
SRA3 Rdest, Rsrc, #i mml6 Rdest = (s)Rsrc >> (imml6 & 31) -
SRAI Rdest, #i b Rdest = (s)Rdest >> immb -
SRL Rdest, Rsrc Rdest = (u)Rdest >> (Rsrc & 31) -
SRL3 Rdest, Rsrc, #i nmlL6 Rdest = (u)Rsrc >> (imml6 & 31) -
SRLI Rdest, #i nmb Rdest = (u) Rdest >> i mmb -
ST Rsrcl, @ di spl6, Rsrc2) *(s *)(Rsrc2+(sh)displ6) = Rsrcl -
ST Rsrcl, @Rsrc2 Rsrc2 += 4, *(s *)Rsrc2 = Rsrcl —
ST Rsrcl, @ Rsrc?2 Rsrc2 -= 4, *(s *)Rsrc2 = Rsrcl -
ST Rsrcl, @src2 *(s *)Rsrc2 = Rsrcl —
STB Rsrcl, @ di spl6, Rsrc2) *(sb *)(Rsrc2+(sh)displ6) = Rsrcl -
STB Rsrcl, @Rsrc2 *(sb *)Rsrc2 = Rsrcl -
STH Rsrcl, @ di spl6, Rsrc2) *(sh *)(Rsrc2+(sh)displ6) = Rsrcl -
STH Rsrcl, @src2 *(sh *)Rsrc2 = Rsrcl -
STH Rsrcl, @Rsrc2+ *(sh *)Rsrc2 = Rsrcl, Rsrc2 += 2 —
SUB Rdest, Rsrc Rdest = Rdest - Rsrc -
SUBV Rdest, Rsrc Rdest = Rdest - Rsrc change
SUBX Rdest, Rsrc Rdest = Rdest - Rsrc - C change
TRAP #n PSW BSM BI E, BC] = PSW SM | E, C] change

PSW SM I E, C] = PSW SM 0, 0]
Call trap-handl er number-n

UNLOCK Rsrcl, @src2 if(LOCK) { *(s *)Rsrc2 = Rsrcl; } LOCK=0 -
UTOF Rdest, Rsrc Rdest = (float)(unsigned int) Rsrc; -
XOR Rdest, Rsrc Rdest = Rdest ~ Rsrc -
XOR3 Rdest, Rsrc, #i mml6 Rdest = Rsrc ~ (uh)i mml6 -

APPENDICES-6 M32R-FPU Software Manual (Rev.1.0)

APPENDICES

APPENDIX 2
Appendix 2 Instruction List

wher e:

typedef
t ypedef
typedef
t ypedef
typedef
t ypedef

singed int
unsi gned i nt
si gned short
unsi gned short
si gned char
unsi gned char

/*
/*
/*
/*
/*
/*

32
32
16
16

bi
bi
bi
bi
bi
bi

— o o~ o o~

signed integer (word)*/

unsi gned i nteger (word)?*/
signed integer (hal fword)*/
unsi gned i nteger (hal fword)*/
signed integer (byte)*/

unsi gned i nteger (byte)*/

APPENDICES-7 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDIX S

Appendix 3 Pipeline Processing

Appendix 3 Pipeline Processing

Appendix 3.1 Instructions and Pipeline Processing

Appendix Figure 3.1.1 shows each instruction type and the pipeline process.

m Load/Store instruction

6 stages

>/
g

k«
PipelineStage‘ IF ‘ D ‘ E ‘MEMl‘MEMZ‘ WB‘

*The number of cycles required by the MEM1 stage varies according to the access,
but the MEM2 stage is normally executed in 1 cycle.

m All other integer instructions

4 stages

>
~1

S
PipelineStage‘ IF ‘ D ‘ E ‘WB

*Multi-cycle instructions such as the multiply instruction are executed in multiple

cycles in the E stage.

PipelineStage‘ IF ‘ D ‘ E

FPU instruction (excluding FMADD, FMSUB)

5 stages

>

k<
PipelineStage‘ IF ‘ D ‘ El ‘ E2 ‘ WB

*The E1 and E2 stages cannot be executed at the same time as the E stage.
*The E1 stage of the FDIV instruction requires 13 cycles.

m FPU instruction (FMADD, FMSUB)

6 stages

>
“1

S
PipelineStage‘ IF ‘ D ‘ EM ‘ EA ‘ E2 ‘ WB

*The EM and EA stages cannot be executed at the same time as the E or E1 stage.

*QOperation stages with the same name cannot be executed at the same time. In general, stages with
different names can be executed in parallel, but the following combinations are not acceptable.

« E stage executed with E1, E2, EM or EA stage.
« E1 stage executed with EM or EA stage.

*Bypass process: When using the result of one instruction in a subsequent instruction, the first result
may bypass the register file and be sent on to the execution stage of the subsequent instruction.
The following is an example of a bypass process:

« E stage continuing to WB stage - E, E1, EM stages
* MEM2 stage continuing to WB stage — E, E1, EM, EA stages

Appendix Figure 3.1.1 Instructions and Pipeline Process

APPENDICES-8 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDI S

Appendix 3 Pipeline Processing

The overview of each pipeline stage is shown below.

e |F stage (instruction fetch stage)

The instruction fetch (IF) is processed in this stage. There is an instruction queue

and instructions are fetched until the queue is full regardless of the completion of
decoding in the D stage.

If there is an instruction already in the instruction queue, the instruction read out
of the instruction queue is passed to the instruction decoder.
e D stage (decode stage)

Instruction decoding is processed in the first half of the D stage (DEC1).
The subsequent instruction decoding (DEC2) and a register fetch (RF) is

processed in the second half of the stage.
e E stage (execution stage)
Operations and address calculations (OP) are processed in the E stage.
If an operation result from the previous instruction is required, bypass process
(BYP) is performed in the first half of the E stage.
e E1, EM, EA stage (execution stage)

These are the initial stages for execution of the FPU instructions. The EM and EA
stages only use instructions FMADD and FMSUB. All other instructions are used

in the Elstage

e E2 stage (execution stage)
This is the secondary stage for the execution of FPU instructions and mainly
rounding is performed.

e MEM stage (memory access stage)
Operand accesses (OA) are processed in the MEM stage. This stage is used only
when the load/store instruction is executed.

e \WB stage (write back stage)

The operation results and fetched data are written to the registers in the WB
stage.

APPENDICES9 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDIX S

Appendix 3 Pipeline Processing

Appendix 3.2 Pipeline Basic Operation

(1) Pipeline Flow with no Stall

The following diagram shows an ideal pipeline flow that has no stall and executes each
instruction in 1 clock cycle. (Since this is just an ideal case, all instructions may not be
piplined in.)

<Case 1> Integer instructions (register-to-register) are executed continuously

LDl RO, #1 IF D E WB

ADD RO, R1 IF D E WB

OR RO, R2 IF D E wB

CWP RO, R3 IF D E WB

* A multi-cycle instruction, such as multiply or divide, executes
multiple cycles in the E stage.

<Case 2> Load/store instructions to destination are accessed in 1 cycle continuously

ST RO, @R15 | IF D E |MEM1|MEM2| WB

ST R1, @ R15 IF D E |MEM1|MEM2| WB

LD R2, @15+ IF D E |MEM1|MEM2| WB

LD R3, @15+ IF D E |MEM1|MEM2| WB

<Case 3> Register-register instructions are executed with no register dependency following
a load/store instruction (out-of-order-completion)

LD RO, @2 IF D E |MEM1|MEM1|MEM2| WB
LDl R1, #1 IF D E | wB

ADD R1, R3 IF D E wB

OR RL, R4 IF D E wB

* A multi-cycle instruction, such as multiply or divide, executes multiple
cycles in the E stage.

Appendix Figure 3.2.1 Pipeline Flow with no Stall (1)

APPENDICES-10 M32R-FPU Software Manual (Rev.1.0)

APPENDIX 3
AP P E N D I C ES Appendix 3 Pipeline Processing

<Case 4> Three FPU instructions continue consecutively with no register dependency

FADD RO, R5, R6 IF D E1l E2 | WB

FSUB R1, R6, R7 IF D El | E2 | wB

FMJL R2, R7, R8 IF D E1l E2 WB
FCVMP RO, RO, R3 IF D El E2 wB

* The FDIV instruction takes 14 cycles in E1 stage.

<Case 5> Four FMADD or FMSUB instructions continue consecutively with no register dependency

FMADD RO, R5, R6 IF D EM | EA | E2 | WB

FMADD R1, R6, R7 IF D EM EA E2 WB

FMADD R2, R7, R8 IF D EM | EA | E2 | WB
FMADD R3, R80, RO IF D EM | EA | E2 WB

Appendix Figure 3.2.2 Pipeline Flow with no Stall (2)

APPENDICES-11 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDIX S

Appendix 3 Pipeline Processing

(2) Pipeline Flow with Stalls

A pipeline stage may stall due to execution of a process or branch instruction.
The following diagrams show typical stall cases.

<Case 1> An instruction which requires several cycles is executed in E

DV R1, R2 IF D E E |eoee E wB

ADD R3, R4 IF D stall | eees | stall E :]

ADD R5, R6 IF | stall [eees | stall D E wB

ADD R7, R8 stall | eees | stall IF D E WB

<Case 2> An instruction which requires more than 1 cycle for its operand access is executed

Other than no-wait
memory access

LD R1, @R2 IF D E |MEM1|MEM1| ¢see |MEM1|MEM2| WB
LD R3, @4 IF D E stall | seee | stall | MEM1|MEM2| WB
ADD R5, R6 IF D stall | eees | stall E WB
ADD R7, R8 IF | stall |eeee | stall D E WB

stall: a pipeline stall

Appendix Figure 3.2.3 Pipeline Flow with Stalls (1)

APPENDICES-12 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDI S

Appendix 3 Pipeline Processing

<Case 3> A branch instruction is executed (except for the case in which no branch occurs
at a conditional branch instruction)

branch instruction is executed

v

Branch Instruction IF D E wWB
IF D stall IF D E WB
IF stall stall IF D E WB
stall | stall | stall IF D E wB

<Case 4> The subsequent instruction uses an operand read from the memory

LDRL, @2 | D E |MEM1| MEM2| wWB

Bypass process
ADD R3, R1 IF D stall | stall eYl we
LDRL, @2 | D E |MEM1| MEM2| wB

Bypass process
ADD R4, R5 IF D E WB
ADD R3, R1 IF D stall eYl ws
LDRL, @2 | D E |MEM1| MEM2| wB

Bypass process
ADD R4, R5 IF D E WB
ADD R6, R7 IF D E WB
ADD R3, R1 IF D eYl we
LDRL, @2 | D E |MEM1| MEM2| wB

Bypass process
ADD R4, R5 IF D E WB
ADD R1, R6, R7 IF D em | eaY| g2 | we

Appendix Figure 3.2.4 Pipeline Flow with Stalls (2)

APPENDICES-13 M32R-FPU Software Manual (Rev.1.0)

APPENDICES o e Provi

Appendix 3 Pipeline Processing

<Case 5> The PSW is written by an MVTC, SETPSW, or CLRPSW instruction and
the subsequent instruction reads R15

MWTC R1, PSW/| e D E | ws

SUB R3, R15 IF D | stal E WB

<Case 6> FPSR is accessed by an MVFC instruction after the FPU instruction is executed

FADD RO, R1, R2 IF D El E2 wB

MVFC R3, FPSR IF D | stall | stall E WB

<Case 7> The operation result of the FPU instruction is used by the subsequent instruction

FADD RO, R1, R2 IF D El E2 | ws

FADD R3, RO, R4 IF D | stall | stal | E1 | E2 | wB

FMADD RO, R1,R2 | IF D EM | EA | E2 | wB

FMADD RO, R3, R4 IF D stall | stall | Em EA | E2 wB

FMADD RO, R1,R2 | D EM | EA | E2 | wB

FMADD R3, RO, R4 IF D | stall | stall | stall | EMm | EA | E2 | WB

Appendix Figure 3.2.5 Pipeline Flow with Stalls (3)

APPENDICES-14 M32R-FPU Software Manual (Rev.1.0)

APPENDIX 3
AP P E N D I C ES Appendix 3 Pipeline Processing

<Case 8> The FPU and integer instructions run consecutively (with no register dependency)

ADD RO, R1 IF D E | WB
FADD R2, R3, R4 IF D E1l E2 WB

ADD R5, R6 IF D stall E WB

FADD R7, R8, R9 IF stall D El E2 WB

<Case 9> The FPU and integer instructions run consecutively (with register dependency)

ADD RO, R1 IF D E | ws
Bypass process
FADD RO, RO, R4 F | b | E2Y| E2 | ws
ADD RO, R6 IF D stall | stall E WB
Bypass process
FADD RO. RO. R9 IF | stall | stal | D | EY| E2 | WB

<Case 10> The FMADD/FMSUB instructions run consecutively with the integer instruction
(with no register dependency)

ADD RO, R1 IF D E WB
FMADD R2, R3, R4 IF D EM EA E2 WB

ADD R5, R6 IF D stall | stall E WB

FMADD R7, R8, RO IF | stall | stal | D | EM | EA | E2 | WB

<Case 11> The FMADD/FMSUB instructions run consecutively with the integer instruction
(with register dependency)

ADD RO, R1 IF D E WB

Bypass process

FMADD RO, RO, R4 IF D | em| EA | E2 | wB

ADD RO, R6 IF D stall | stall | stall E WB

EMADD RO. R8. R9 IF stall stall stall D EM EA E2 WB

Appendix Figure 3.2.6 Pipeline Flow with Stalls (4)

APPENDICES-15 M32R-FPU Software Manual (Rev.1.0)

APPENDICES o e Provsa

Appendix 3 Pipeline Processing

<Case 12> The FPU and FMADD/FMSUB instructions run consecutively (with no register dependency)

FADDRO,Rl,RlO‘ IF ‘ b ‘ El‘EZ ‘WB‘

FMADD R2, R3, R4 ‘IF‘D‘EM‘EA‘EZ‘WB‘

FADD R5, R6, R11 ‘ IF‘ D staII‘El‘EZ‘WB‘

FMADD R7, R8, R9 ‘ IF stall‘ D‘EM‘EA‘E2‘WB‘

<Case 13> The FPU and FMADD/FMSUB instructions run consecutively (with register dependency)

FADDRO,Rl,RlO‘ IF ‘ D ‘ El‘EZ ‘WB‘

FMADD RO, RO, R4 ‘ IF ‘ D | stall | stal ‘ EM ‘ EA ‘ E2 ‘ wB ‘
FADD RO, RO, R11 ‘ IF | stall | stal ‘ D | stall | stall | stall ‘ E1 ‘ E2 ‘ wB ‘
FMADD RO, R8, RO stall | stall ‘ IF stall | stall | stall ‘ D stall ‘ EM ‘ EA ‘ E2 ‘ WB ‘

Appendix Figure 3.2.7 Pipeline Flow with Stalls (5)

APPENDICES-16 M32R-FPU Software Manual (Rev.1.0)

APPENDICES

APPENDIX 4

Appendix 4 Instruction Execution Time

Appendix 4 Instruction Execution Time

Normally, the E stage is considered as representing as the instruction execution time,
however, because of the pipeline processing the execution time for other stages may
effect the total instruction execution time. In particular, the IF, D, and E stages of the
subsequent instruction must be considered after a branch has occurred.

The following shows the number of the instruction execution cycles for each pipeline
stage.

The execution time of the IF and MEM stages depends on the implementation of each
product of the M32R family.

Refer to the user's manual of each product for the execution time of these stages.

Note 1: FPU instruction uses E1 and EM stages.

Appendix Table 4.1.1 Instruction Execution Cycles per Pipeline Stage [excluding FPU instructions]

the number of execution cycles in each stage

instruction IF D E MEM1 MEM2 WB

load instruction (LD, LDB, LDUB, LDH, LDUH, LOCK) R (note 1) 1 1 R(notel) 1 1

store instruction (ST, STB, STH, UNLOCK) R (note1l) 1 1 W (notel) 1 (1) (note2)

BSET, BCLR instructions R (note 1) 1 R (note 1) W (note 1) 1 -
+3

multiply instruction (MUL) R (note1l) 1 3 - - 1

divide/reminder instruction (DIV, DIVU, REM, REMU) R (notel) 1 37 - - 1

other instructions (DSP function instructions, R (note1l) 1 1 - - 1

including BTST, SETPSW, CLRPSW)

Note 1: R, W: Refer to the user's manual prepared for each product.

Note 2: Within the store instruction, only instructions which include the register indirect and
register update addressing mode require 1 cycle in the WB stage. All other instructions
do not require extra cycles.

Appendix Table 4.1.2 Instruction Execution Cycles per Pipeline Stage [FPU instructions]

the number of execution cycles in each stage

instruction IF D El EM EA E2 WB
FMADD, FMSUB instructions R (notel) 1 - 1 1 1 1
FDIV instruction R (notel) 1 14 - - 1 1
other FPU instructions R (notel) 1 1 - - 1 1

Note 1: R, W: Refer to the user's manual prepared for each product.

APPENDICES-17 M32R-FPU Software Manual (Rev.1.0)

APPENDICES ABPENDIX S

Appendix 5 IEEE754 Specification Overview

Appendix 5 IEEE754 Specification Overview

The following is a basic overview of the IEEE754 specification. M32R-FPU fulfills the
IEEE754 requirements through a combination of software and hardware features.

Appendix 5.1 Floating Point Formats

The following describes the floating-point formats.

01 89 31
Single Precision e (8 hit) f (23 bit)
T
s (1 bit)

01 11 12 63

Double Precision e (11 bit) f (52 bit)
T
s (1 bit)

Appendix Figure 5.1.1 Floating-Point Formats

s: Sign bit. 0 = positive number, 1 = negative numbers

e: Exponent. This represents a value that was made positive by adding 127 to a single
precision value or 1023 to a double precision value (biased exponent).

f : Fraction. Represents the fraction field of the value.

Using these symbols, the floating-point values (normalized numbers) can be described
by the following expressions:

Single-Precision Format: (-1) ~s 0 1.f 0 2 * (e-127)
Double-Precision Format: (-1) ~s O 1.f 0 2 * (e-1023)

» Certain values do not fit into the above expressions, such as £, +0, NaN (Not a
Number), denormalized numbers, etc.

» Other formats, such as expanded double precision, can also be used.

0 M32R-FPU only supports the single-precision format. The double precision format is
supported in the software library.

APPENDICES-18 M32R-FPU Software Manual (Rev.1.0)

APPENDIX 5
AP P E N D I C ES Appendix 5 IEEE754 Specification Overview

Appendix Table 5.1.1 Single Precision Floating-Point Bit Values

Exponent Expressed value
Before adding bias After adding bias
(=0111 1111)
0111 1111 (+127) 1111 1110 Normalized number
o o L (The absolute value can be described for the range
1000 0010 (-126) 0000 0001 0of 1.0..0x27-126t01.1...1 x 2" 127)
(1000 0001 (-127)) 0000 0000 Fraction field = all 0: +0

Fraction field all 0: denormalized number

(1000 0000 (-128)) 1111 1111 Fraction field = all 0: +

Fraction field all 0: NaN (the value is split into SNaN and
QNaN according to the value of high-order bit of the
fraction field)

(1) Denormalized Numbers

Denormalized numbers represent numbers (values??) that have an absolute value
less than 1. 0...0 x 2 ~ -126. Single-precision denormalized numbers are expressed as
follows:

(-1) s x0fx27-126

(2) NaN (Not a Number)

SNaN (Signaling NaN): a NaN in which the MSB of the decimal fraction field is "0".
When SNaN is used as the source operand in an operation, an IVLD occurs. SNaNs
are useful in identifying program bugs when used as the initial value in a variable.
However, SNaNs cannot be generated by hardware.

QNaN (Quiet NaN): a NaN in which the MSB of the decimal fraction field is "1". Even
when QNaN is used as the source operand in an operation, an IVLD will not occur
(excluding comparison and format conversion). Because a result can be checked by
the arithmetic operations, QNaN allows the user to debug without executing an EIT
processing. QNaNs are created by hardware.

APPENDICES-19 M32R-FPU Software Manual (Rev.1.0)

APPENDICES ABPENDIX S

Appendix 5 IEEE754 Specification Overview

Appendix 5.2 Rounding

The following 4 rounding modes are specified by IEEE754.

Appendix Table 5.2.1 Four Rounding Modes

Rounding Mode Operation

Round to Nearest (default) Assuming an infinite range of precision, round to the best
approximation of the result. Round an interval arithmetic
result to an even number.

Round toward —Infinity Round to the smaller magnitude of the result.
Round toward +Infinity Round to the larger magnitude of the result.
Round toward 0 Round to the smaller in magnitude of the absolute value

of the result.

* “Round to Nearest” is the default mode and produces the most accurate value.
« “Round toward —Infinity,” “Round toward +Infinity” and “Round toward Zero” are used
for interval arithmetic to insure precision

Appendix 5.3 Exceptions

IEEE754 allows the following 5 exceptions. The floating-point status register is used to
determine whether the EIT process will be executed when an Exception occurs.
(1) Overflow Exception (OVF)

The exception occurs when the absolute value of the operation result exceeds the
largest describable precision in the floating-point format. Appendix Table 5.3.1 shows
the operation results when an OVF occurs.

Appendix Table 5.3.1 Operation Result due to OVF Exception

Result
Rounding Mode Sign of Result when the OVF EIT when the OVF EIT
processing is masked processing is executed

—Infinity + +MAX round (x2 * -a)

- —Infinity a = 192 (single-precision)
+Infinity + +Infinity a = 1536 (double-precision)

- -MAX
0 + +MAX

— —MAX
Nearest + +Infinity

- —Infinity

Note : « When the Underflow Exception Enable (EU) bit (FPSR register bit 18) = "0"
* When the Underflow Exception Enable (EU) bit (FPSR register bit 18) = "1"

APPENDICES-20 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDIX S

Appendix 5 IEEE754 Specification Overview

(2) Underflow Exception (UDF)

The exception occurs when the absolute value of the operation result is less then the
largest describable precision in the floating-point format. Appendix Table 5.3.2 shows
the operation results when a UDF occurs.

Appendix Table 5.3.2 Operation Results due to UDF Exception

Result
when the UDF EIT processing is masked when the UDF EIT processing is executed
Denormalized Numbers round (x2 * a)
(The denomalize flag is set only when a = 192 (single-precision),
rounding occurs.) a = 1536 (double-precision)

Note: « When the operation result is rounded, an Inexact Exception is generated simultaneously.

(3) Inexact Exception (IXCT)

The exception occurs when the operation result differs from a result led out with an
infinite range of precision. Appendix Table 5.3.3 shows operation results and the
respective conditions in which each IXCT occurs.

Appendix Table 5.3.3 Operation Results and Respective Conditions for IXCT Exception

Result
Occurrence Condition when the IXCT EIT when the IXCT EIT
processing is masked processing is executed
Overflow occurs in OVF Exception Reference OVF Exception Same as left
masked condition table
Rounding occurs Rounded value Same as left

(4) Zero Division Exception (DIVO)

The exception occurs when a finite, nonzero value is divided by zero. Appendix Table
5.3.4 shows the operation result when a DIVO occurs.

Appendix Table 5.3.4 Operation Results for DIVO Exception

Result

Dividend when the DIVO EIT when the IXCT EIT
processing is masked processing is executed

Nonzero finite value + Infinity (Sign of result is Destination unchanged
exclusive-OR (EXOR) of
signs of divider and dividend.)

Please note that the DIVO EIT operation does not occur in the following factors.

Dividend Operation
0 Invalid Operation Exception occurs
Infinity No Exception occurs (result is “Infinity”)

APPENDICES-21 M32R-FPU Software Manual (Rev.1.0)

APPENDICES ABPENDIX S

Appendix 5 IEEE754 Specification Overview

(5) Invalid Operation Exception (IVLD)

The exception occurs when an invalid operation is executed. Appendix Table 5.3.5
shows operation results and the respective conditions in which each IVLD occurs.

Appendix Table 5.3.5 Operation Results due to IVLD Exception

Result
Occurrence Condition when the IVLD EIT when the IVLD EIT
processing is masked processing is executed
Operation for SNaN operand QNaN (Destination unchanged)

+Infinity— (+Infinity), —Infinity— (—Infinity)

0 O Infinity

0 + 0, Infinity + Infinity

oute operation for values less then 0

Integer conversion overflow: Undefined
NaN and are converted to integers

When < or > comparison was performed on NaN | (No change)

Important: The following operations never generate an Exception.
(-0): returns -0
/ 0: returns (Sign of result is exclusive-OR (EXOR) of signs of divider and
dividend.)

m Definition of Terms
« Exception

Special conditions generated by execution of floating-point instructions. The
corresponding enable bits of the floating-point status register are used to determine
whether the EIT processing will be executed when an Exception occurs. However, the
actual generation of an exception cannot be masked.

« EIT Processing

An operation triggered by the generation of an Exception, in which the flow jumps to a
floating-point Exception vector address, or a string of related Exception operation
sequences is triggered. The corresponding enable bits of the floating-point status
register are used to determine whether the EIT processing will be executed when an
Exception occurs.

« Intermediate Result of Operation

The value resulting from calculations of infinite and unbounded exponent and mantissa
bits. In actual implementation, the number of exponent and mantissa bits is finite and
the intermediate result is rounded so that the final operation result can be determined.

APPENDICES-22 M32R-FPU Software Manual (Rev.1.0)

APPENDIX 6
A P P E N D I C E S Appendix 6 M32R-FPU Specification Supplemental Explanation

Appendix 6 M32R-FPU Specification Supplemental Explanation

Appendix 6.1 Operation Comparision: Using 1 instruction (FMADD or FMSBU) vs. two
instructions (FMUL and FADD)

The following is an explanation of the differences between an operation using just one
instruction (FMADD or FMSUB) and an operation using 2 instructions (FMUL and
FADD).

Appendix 6.1.1 Rounding Mode

The rounding mode for an operation using both FMUL and FADD rounds both FMUL
and FADD according to the setting of the FPSR RM field. However, the result of the
FMADD or FMSUB instruction in Step 1 (multiply stage) is not rounded according to
the setting of FPSR RM field, rather it is rounded toward zero.

Appendix 6.1.2 Exception occurring in Step 1

Two instructions are compared below as examples of Exception occurring in Step 1.

e FMUL + FADD:
FMUL R3, R1, R2 (R3 =Rl *R2)
FADD RO, R3, RO (RO = R3 + RO)

e FMADD or FMSUB:
FMADD RO, R1,R2 (RO =RO +R1* R2)

Note: If the register supports different operations than those described above, the
operations may differ in some ways to those shown below.

APPENDICES-23 M32R-FPU Software Manual (Rev.1.0)

APPENDICES

APPENDIX 6

Appendix 6 M32R-FPU Specification Supplemental Explanation

(1) Overflow occurs in Step 1

<When EO = 0, EX = 0: OVF and IXCT occur>

Type of RO Condition FMUL + FADD Operation FMADD Operation
Normalized - RO = OVF immediate RO = OVF immediate
number, 0 value (Note 1) + RO value (Note 2)
Infinity when OVF immediate value | EV=0 IVLD occurs same as left
RO=H'7FFF FFFF
is RO and the opposite sign | EV=1 IVLD occurs, EIT occurs same as left
of the infinity sign RO = maintained
factors other than above - RO = same as left
(same as original value)
Denormalized | DN=0 UIPL occurs, EIT occurs same as left
number RO = maintained
DN=1 RO = OVF immediate value | same as left
(Note 1)
QNaN - RO = maintained (QNaN) same as left
SNaN EV=0 IVLD occurs same as left
RO = RO converted to QNaN
EV=0 IVLD occurs, EIT occurs same as left
RO = maintained (SNaN)

Note 1: Refer to [Appendix Table 5.3.1 Operation Result due to OVF Exception] for immediate
values if an overflow occurs due to Overflow Exclusion when the EIT processing is
masked.

Note 2: In Step 1, the rounding mode is set to [Round toward 0]. However, when an overflow
occurs, the immediate value is rounded according to the rounding mode. Refer to
[Appendix Table 5.3.1 Operation Result due to OVF Exception] for these values.
However, when the rounding mode is [round toward nearest], the OVF immediate value =
infinity and the RO value becomes the same as that of FMUL + FADD.

<When EO = 1: OVF occurs>

Type of RO Condition FMUL + FADD Operation FMADD Operation
Normalized - EIT occurs when FMUL is EIT occurs,
number, O, completed RO = maintained
Infinity RO = maintained
Denormalized | DN=0 Same as above UIPL occurs,
number EIT occurs
RO = maintained
DN=1 Same as above EIT occurs
RO = maintained
QNaN - Same as above Same as above
SNaN EV=0 Same as above IVLD occurs,
EIT occurs
RO = maintained
Ev=1 Same as above Same as above

APPENDICES-24 M32R-FPU Software Manual (Rev.1.0)

APPENDICES

APPENDIX 6

Appendix 6 M32R-FPU Specification Supplemental Explanation

(2) When underflow occurs in Step 1

<When EU = 0, DN = 1: UDF occurs>

Type of RO Condition FMUL + FADD Operation FMADD Operation

Normalized - RO=R0+0 Same as left

number, O,

Infinity

Denormalized | — RO=0 Same as left

number

QNaN - RO = maintained (QNaN) Same as left

SNaN EV=0 RO = RO converted to QNaN | Same as left
IVLD occurs

EvV=1 RO = maintained (SNaN) Same as left

IVLD occurs, EIT occurs

<When EU = 0, DN = 0: UDF and UIPL occur>

Type of RO Condition FMUL + FADD Operation FMADD Operation
Normalized - EIT occurs when FMUL is EIT occurs,
number, O, completed RO = maintained
Infinity RO = maintained
Denormalized | — Same as above Same as above
number
QNaN - Same as above Same as above
SNaN EV=0 Same as above IVLD occurs,
EIT occurs
RO = maintained
EV=1 Same as above Same as above

<When EU = 1: UDF occurs>

Type of RO Condition FMUL + FADD Operation FMADD Operation
Normalized - EIT occurs when FMUL is EIT occurs,
number, O, completed RO = maintained
Infinity RO = maintained
Denormalized | DN=0 Same as above UIPL occurs,
number EIT occurs
RO = maintained
DN=1 Same as above EIT occurs
RO = maintained
QNaN - Same as above Same as above
SNaN EV=0 Same as above IVLD occurs,
EIT occurs
RO = maintained
Ev=1 Same as above Same as above

APPENDICES-25 M32R-FPU Software Manual (Rev.1.0)

APPENDICES

APPENDIX 6
Appendix 6 M32R-FPU Specification Supplemental Explanation

(3) When Invalid Operation Exception occurs in Step 1

m If at least one of [R1, R2] is an SNaN

<When EV = 0: IVLD occurs>
Type of RO Condition FMUL + FADD Operation FMADD Operation
Normalized - RO =R3 Same as left
(SNaN converted to QNaN)
Denormalized | DN=0 RO =R3 Same as left
number (SNaN converted to QNaN)
DN=1 RO =R3 Same as left
(SNaN converted to QNaN)
QNaN - RO = maintained (QNaN) Same as left
SNaN - RO = RO converted to QNaN | Same as left
<When EV = 1: IVLD occurs>
Type of RO Condition FMUL + FADD Operation FMADD Operation
Normalized - EIT occurs when FMUL is EIT occurs,
number, O, completed RO = maintained
Infinity RO = maintained
Denormalized | DN=0 Same as above UIPL occurs,
number EIT occurs
RO = maintained
DN=1 Same as above EIT occurs,
RO = maintained
QNaN - Same as above Same as above
SNaN - Same as above Same as above

m [f“00 " occurs in [R1, R2]

<When EV = 0: IVLD occurs>
Type of RO Condition FMUL + FADD Operation FMADD Operation
Normalized - RO = H'7FFF FFFF Same as left
Denormalized | DN=0 RO = H'7FFF FFFF Same as left
number DN=1 RO = H'7FFF FFFF Same as left
QNaN - RO = maintained (QNaN) Same as left
SNaN - RO = RO converted to QNaN | Same as left
<When EV = 1: IVLD occurs>

Same results as when “If at least one of [R1,

R2] is an SNaN.”

APPENDICES-26 M32R-FPU Software Manual (Rev.1.0)

APPEN

DICES

APPENDIX 6
Appendix 6 M32R-FPU Specification Supplemental Explanation

(4) When Inexact Operation Exception occurs in Step 1

m If an Inexact Operation occurs due to rounding:

<When EX = 0: IXCT occurs>
Type of RO Condition FMUL + FADD Operation FMADD Operation
Normalized - RO = rounded value of Same as left
number, O, R1*R2 + RO
Infinity
Denormalized | DN=0 UIPL occurs, EIT occurs Same as left
number RO = maintained
DN=1 RO = rounded value of Same as left
R1*R2
QNaN - RO = maintained (QNaN) Same as left
SNaN EV=0 IVLD occurs Same as left
RO = RO converted to QNaN
EV=1 IVLD occurs, EIT occurs Same as left
RO = maintained (SNaN)
<When EX = 1: IXCT occurs>
Type of RO Condition FMUL + FADD Operation FMADD Operation
Normalized - EIT occurs when FMUL is EIT occurs,
number, O, completed RO = maintained
Infinity RO = maintained
Denormalized | DN=0 Same as above UIPL occurs,
number EIT occurs
RO = maintained
DN=0 Same as above EIT occurs
RO = maintained
QNaN - Same as above Same as above
SNaN EV=0 Same as above IVLD occurs,
EIT occurs
RO = maintained
EV=1 Same as above Same as above

m When an Inexact Operation occurs due to an OVF at EO = 0:

<When EV = 0:

IXCT occurs>

Refer to “(1) Overflow occurs in Step 1 <When EO = 0, EX = 0: OVF and IXCT occur>".

<When EV = 1;

IXCT occurs>

Same results as “m If an Inexact Operation occurs due to rounding <when EX = 1: IXCT

occurs>",

APPENDICES-27 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDIX ©

Appendix 6 M32R-FPU Specification Supplemental Explanation

Appendix 6.2 Rules concerning Generation of QNaN in M32R-FPU

The following are rules concerning generating a QNaN as an operation result.
Instructions that generate NaNs as operation results are FADD, FSUB, FMUL, FDIV,
FMADD, and FMSUB.

[Important Note]

This rule does not apply when the data that is sent to Rdest, the results of the FCMP or
FCMPE comparison, comprise a NaN bit pattern.

<FADD, FSUB, FMUL, FDIV>

Source Operand (Rsrcl, Rsrc2) Rdest
SNaN and QNaN SNaN converted to QNaN (Note 1)
Both SNaN Rsrc2 converted to QNaN (Note 1)
Both QNaN Rscr2
SNaN and actual number SNaN converted to QNaN (Note 1)
QNaN and actual number QNaN
Neither operand is NaN; IVLD occurs H'7FFF FFFF

Note 1: SNaN b9 is set to “1” and the operand is converted to QNaN.

<FMADD, FMSUB>

Source Operand Rdest
Rdest Rsrcl, Rsrc2

Actual number SNaN and QNaN SNaN converted to QNaN (Note 1)
Both SNaN Rsrc2 converted to QNaN (Note 1)
Both QNaN Rscr2
SNaN and actual number SNaN converted to QNaN (Note 1)
QNaN and actual number QNaN
Neither operand is NaN; IVLD occurs| H'7FFF FFFF

QNaN Don't care Rdest (maintained)

SNaN Don't care Rdest converted to QNaN (Note 1)

Note 1: SNaN b9 is set to “1” and the operand is converted to QNaN.

APPENDICES-28 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDL® 7

Appendix 7 Precautions

Appendix 7 Precautions

Appendix 7.1 Precautions to be taken when aligning data

When aligning or allocating the data area following the code area in a program, the
alignment must be done from an address that has an adjusted word alignment.

If the data area is aligned or allocated without adjusting the word alignment, a 16-bit
instruction may exist in the high-order halfword of the word, and data with MSB of “1”
may be aligned to the following halfword. In this case, the M32R family upward-
compatible CPU recognizes the 16-bit instruction and the data as a pair of parallel
executable instructions and executes the instructions as such.

In consideration of the upward compatibility of software when programming, if the high-
order halfword has a 16-bit instruction, make sure that the following data area is aligned
or allocated from an address that has an adjusted word alignment.

1 word
+0 +1 ‘ +2 +3
MSB MSB
0 16-bit instruction 1 data
data

APPENDICES-29 M32R-FPU Software Manual (Rev.1.0)

APPENDICES APPENDD 7

Appendix 7 Precautions

This page left blank intentionally.

APPENDICES-30 M32R-FPU Software Manual (Rev.1.0)

INDEX

INDEX

Symbol

#imm 1-15, 3-2
@(disp,R) 1-15, 3-2
@+R 1-15, 3-2
@-R 1-15, 3-2

@R 1-15, 3-2

@R+ 1-15, 3-2

A

Accumulator(ACC) 1-11
Addressing Mode 1-15, 3-2
Arithmetic operation instructions 2-4

ADD 3-6

ADD3 3-7

ADDI 3-8

ADDV 3-9

ADDV3 3-10

ADDX 3-11

NEG 3-86

SUB 3-113

SUBvV 3-114

SUBX 3-115

B

Backup PC(BPC) 1-5
Bit operation instructions 2-11
BCLR 3-15
BSET 3-27
BTST 3-28
CLRPSW 3-29
SETPSW 3-99
Branch instructions 2-6
BC 3-14
BEQ 3-16
BEQzZ 3-17
BGEZ 3-18
BGTZ 3-19
BL 3-20
BLEZ 3-21
BLTZ 3-22
BNC 3-23
BNE 3-24

BNEZ 3-25
BRA 3-26
JL 3-59
JMP 3-60
NOP 3-87

C

Compare instructions 2-4
CMP 3-30
CMPI 3-31
CMPU 3-32
CMPUI 3-33

Condition Bit Register(CBR) 1-5

Control registers 1-3

CPU Programming Model 1-1
CPU Register 1-2

CR 1-3,1-15

CRO 1-3,1-4

CR1 1-3,1-5

CR2 1-3,1-5

CR3 1-3,1-5

CR6 1-3,1-5

CR7 1-3,1-6

D

Data format 1-13, 1-14
Data format in a register 1-13
Data format in memory 1-14
Data type 1-12, 3-3
DSP function instructions 2-8
MACHI 3-69
MACLO 3-70
MACWHI 3-71
MACWLO 3-72
MULHI 3-74
MULLO 3-75
MULWHI 3-76
MULWLO 3-77
MVFACHI 3-79
MVFACLO 3-80
MVFACMI 3-81
MVTACHI 3-83
MVTACLO 3-84
RAC 3-91
RACH 3-93

INDEX-2

M32R-FPU Software Manual (Rev.1.0)

INDEX

E

ElT-related instructions 2-8
RTE 3-97
TRAP 3-116

F

Floating-point instruction 2-11
FADD 3-36
FCMP 3-38
FCMPE 3-40
FDIV 3-42
FMADD 3-44
FMSUB 3-47
FMUL 3-50
FSUB 3-52
FTOS 3-56
FTOl 3-54
ITOF 3-58
UTOF 3-118

Floating-point Status Register 1-6

G

General-purpose Registers 1-2

H

Hexadecimal Instruction Code APPENDICES-2

immediate 1-15, 3-2

Instruction Execution Time APPENDICES-17
Instruction format 2-12

Instruction List APPENDICES-4

Instruction set overview 2-2

Interrupt Stack Pointer(SPI) 1-2,1-3, 1-5

L

Load/store instructions 2-2

LD 3-61

LDB 3-63

LDH 3-64

LDUB 3-66

LDUH 3-67

LOCK 3-68

ST 3-109

STB 3-111

STH 3-112

UNLOCK 3-117
Logic operation instructions 2-5

AND 3-12

AND3 3-13

NOT 3-88

OR 3-89

OR3 3-90

XOR 3-119

XOR3 3-120

M

Multiply/divide instructions 2-5
DIV 3-34
DIVU 3-35
MUL 3-73
REM 3-95
REMU 3-96

O

Operation expression 3-2, 3-3
Operation instructions 2-4

Operand List 3-2

P

PC relative(pcdisp) 1-14, 3-2
Processor Status Register(PSW) 1-3, 1-4
Program Counter(PC) 1-11

INDEX-3

M32R-FPU Software Manual (Rev.1.0)

INDEX

R

R 1-15, 3-2

Register direct(R or CR) 1-15, 3-2

Register indirect(@R) 1-15, 3-2

Register indirect and register update 1-15, 3-2
Register relative indirect(@(disp, R)) 1-15, 3-2

S

Shift instructions 2-5
SLL 3-100
SLL3 3-101
SLLI 3-102
SRA 3-103
SRA3 3-104
SRAl 3-105
SRL 3-106
SRL3 3-107
SRLI 3-108

Stack pointer 1-2, 1-5

T

Transfer instructions 2-4
LD24 3-62
LDI 3-65
MV 3-78
MVFC 3-82
MVTC 3-85
SETH 3-98

U

User Stack Pointer(SPU) 1-2, 1-3, 1-5

INDEX-4

M32R-FPU Software Manual (Rev.1.0)

MITSUBISHI SEMICONDUCTORS
M32R-FPU SOFTWARE MANUAL

Jan. First Edition 2003

Editioned by
Committee of editing of Mitsubishi Semiconductor User’'s Manual

Published by
Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission
of Mitsubishi Electric Corporation.
©2003 MITSUBISHI ELECTRIC CORPORATION

Software Manual
M32R-FPU

RenesasTechnology Corp.

Nippon Bldg.,6-2,0temachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

New publication, effective Jan. 2003.
© 2003 MITSUBISHI ELECTRIC CORPORATION. Specifications subject to change without notice.

	REVISION HISTORY
	Table of contents
	CHAPTER 1 CPU PROGRAMMIING MODEL
	1.1 CPU Register
	1.2 General-purpose Registers
	1.3 Control Registers
	1.3.1 Processor Status Word Register: PSW (CR0)
	1.3.2 Condition Bit Register: CBR (CR1)
	1.3.3 Interrupt Stack Pointer: SPI (CR2)
User Stack Pointer: SPU (CR3)
	1.3.4 Backup PC: BPC (CR6)
	1.3.5 Floating-point Status Register: FPSR (CR7)
	1.3.6 Floating-point Exceptions (FPE)

	1.4 Accumulator
	1.5 Program Counter
	1.6 Data Format
	1.6.1 Data Type
	1.6.2 Data Format

	1.7 Addressing Mode

	CHAPTER 2
INSTRUCTION SET
	2.1 Instruction set overview
	2.1.1 Load/store instructions
	2.1.2 Transfer instructions
	2.1.3 Operation instructions
	2.1.4 Branch instructions
	2.1.5 EIT-related instructions
	2.1.6 DSP function instructions
	2.1.7 Floating-point Instructions
	2.1.8 Bit Operation Instructions

	2.2 Instruction format

	CHAPTER 3
INSTRUCTIONS
	3.1 Conventions for instruction description
	3.2 Instruction description
	ADD
	ADD3
	ADDI
	ADDV
	ADDV3
	ADDX
	AND
	AND3
	BC
	BCLR
	BEQ
	BEQZ
	BGEZ
	BGTZ
	BL
	BLEZ
	BLTZ
	BNC
	BNE
	BNEZ
	BRA
	BSET
	BTST
	CLRPSW
	CMP
	CMPI
	CMPU
	CMPUI
	DIV
	DIVU
	FADD
	FCMP
	FCMPE
	FDIV
	FMADD
	FMSUB
	FMUL
	FSUB
	FTOI
	FTOS
	ITOF
	JL
	JMP
	LD
	LD24
	LDB
	LDH
	LDI
	LDUB
	LDUH
	LOCK
	MACHI
	MACLO
	MACWHI
	MACWLO
	MUL
	MULHI
	MULLO
	MULWHI
	MULWLO
	MV
	MVFACHI
	MVFACLO
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	NEG
	NOP
	NOT
	OR
	OR3
	RAC
	RACH
	REM
	REMU
	RTE
	SETH
	SETPSW
	SLL
	SLL3
	SLLI
	SRA
	SRA3
	SRAI
	SRL
	SRL3
	SRLI
	ST
	STB
	STH
	SUB
	SUBV
	SUBX
	TRAP
	UNLOCK
	UTOF
	XOR
	XOR3

	APPENDICES
	Appendix1 Hexadecimal Instraction Code
	Appendix 2 Instruction List
	Appendix 3 Pipeline Processing
	Appendix 3.1 Instructions and Pipeline Processing
	Appendix 3.2 Pipeline Basic Operation

	Appendix 4 Instruction Execution Time
	Appendix 5 IEEE754 Specification Overview
	Appendix 5.1 Floating Point Formats
	Appendix 5.2 Rounding
	Appendix 5.3 Exceptions

	Appendix 6 M32R-FPU Specification Supplemental Explanation
	Appendix 6.1 Operation Comparision: Using 1 instruction (FMADD or FMSBU) vs. two
instructions (FMUL and FADD)
	Appendix 6.1.1 Rounding Mode
	Appendix 6.1.2 Exception occurring in Step 1

	Appendix 6.2 Rules concerning Generation of QNaN in M32R-FPU

	Appendix 7 Precautions
	Appendix 7.1 Precautions to be taken when aligning data

	INDEX

