Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER 7700 Family / 7900 Series

Software Manual

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of JAPAN and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST

7900 Series Software Manual

Rev. No.	Revision Description	Rev. date
1.0	First Edition	980731

Preface

This manual describes the software of the Mitsubishi CMOS 16-bit microcomputers, the 7900 Series. After reading this manual, the users will be able to understand the instruction set and the features about software of the 7900 Series, so that they can utilize their capabilities fully.

Table of contents

CHAPTER 1. DESCRIPTION

CHAPTER 2. CENTRAL PROCESSING UNIT (CPU)

2.1 Central processing unit	
2.1.1 Accumulator (Acc)	2-3
2.1.2 Index register X (X)	
2.1.3 Index register Y (Y)	
2.1.4 Stack pointer (S)	
2.1.5 Program counter (PC)	
2.1.6 Program bank register (PG)	
2.1.7 Data bank register (DT)	
2.1.8 Direct page register 0 to 3 (DPR0 to DPR3)	
2.1.9 Processor status register (PS)	
2.2 Access space	
2.3 Addressing modes	
2.3.1 Overview	2-11
2.3.2 Explanation of addressing modes	2-11

CHAPTER 3. HOW TO USE 7900 SERIES INSTRUCTIONS

3.1 Memory access	
3.1.1 Direct addressing	
3.1.2 Absolute addressing and Absolute long addressing	
3.1.3 Indirect addressing and Indirect long addressing	
3.2 Direct page registers (DPR0-DPR3)	
3.3 8- and 16-bit data processing	3-5
3.4 Index registers X and Y	3-6
3.5 Branch instructions	

CHAPTER 4. INSTRUCTIONS

4.1 Instruction set	
4.2 Description of each instruction	4-9
4.3 Notes on software development	4-230
4.3.1 Instruction execution cycles	
4.3.2 Status of flags m and x	
4.3.3 Tips for data area location	
4.3.4 Performing arithmetic operations in decimal	

APPENDIX

Appendix 1. 7900 Series machine instructions5-2	2
Appendix 2. Hexadecimal instruction code tables5-44	ŀ

The 7900 Series is upper compatible with the conventional 7700 Family.

The following outlines the features of the 7900 Series:

- Source-level-compatible with the conventional 7700 Family. (e.g., 7700 and 7751 Series).
- Whereas the 7700 and 7751 Series respectively support 103 and 109 instructions, the 7900 Series has its instruction set expanded to 203 instructions. The following instructions have been added:
 - (i) 32-bit operation instructions
 - (ii) 8-bit-data-dedicated instructions
 - (iii) Memory-to-memory data transfer instructions
 - (iv) Zero-clear instructions for register and memory
 - (v) Add/Subtract without-carry instructions
 - (vi) Add/Subtract instructions for stack pointer
 - (vii) OR, AND, and EOR instructions for memory
 - (viii) Compare instructions for memory
 - (ix) Signed conditional branch instructions
 - (x) Compare & Conditional branch instructions
 - (xi) Decrement & Conditional branch instructions
 - (xii) PC relative subroutine call instructions

Thanks to its expanded instruction set, the 7900 Series allows program sizes to be reduced by 20 to 30% on the average from the conventional 7700 Family.

- 16 Mbytes of memory space. Various addressing modes for accessing this memory space are available.
- A 64-Kbyte space from 000000₁₆ to 00FFFF₁₆ can be accessed at high speed by an instruction which has a small number of bytes. The 7900 Series has 4 direct page registers that can be used for this purpose.
- Reduced instruction execution cycles than the conventional 7700 Family.

CHAPTER 2 CENTRAL PROCESSING UNIT (CPU)

- 2.1 Central processing unit (CPU)
- 2.2 Memory space
- 2.3 Addressing modes

2.1 Central processing unit (CPU)

2.1 Central processing unit

The CPU (Central Processing Unit) has 13 registers as shown in Figure 2.1.1.

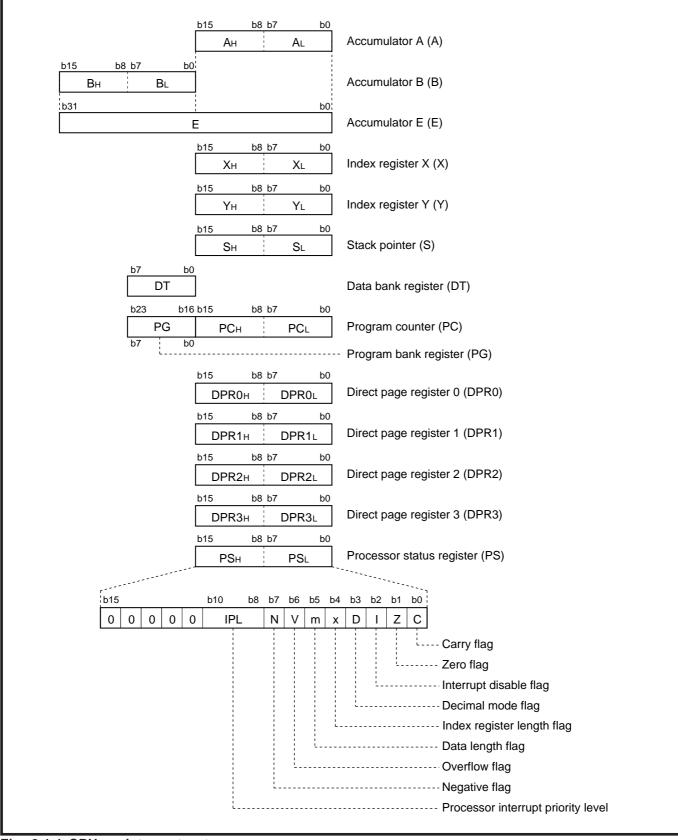


Fig. 2.1.1 CPU registers structure

2.1.1 Accumulator (Acc)

Accumulators A and B are available. Also, accumulators A and B can be connected in series for use as a 32-bit accumulator (accumulator E).

(1) Accumulator A (A)

Accumulator A is the main register of the microcomputer. The transaction of data such as calculation, data transfer, and input/output are performed mainly through accumulator A. It consists of 16 bits, and the low-order 8 bits can also be used separately. The data length flag (m) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag m is a part of the processor status register which is described later. When an 8-bit register is selected, only the low-order 8 bits of accumulator A are used and the contents of the high-order 8 bits is unchanged.

(2) Accumulator B (B)

Accumulator B is a 16-bit register with the same function as accumulator A. Accumulator B can be used instead of accumulator A. The use of accumulator B, however except for some instructions, requires more instruction bytes and execution cycles than that of accumulator A. Accumulator B is also controlled by the data length flag (m) just as in accumulator A.

(3) Accumulator E (E)

This 32-bit accumulator consists of accumulator A for low-order 16 bits and accumulator B for highorder 16 bits. This accumulator is used for instructions that handle 32-bit data. It is not controlled by flag m.

2.1.2 Index register X (X)

Index register X consists of 16 bits and the low-order 8 bits can also be used separately. The index register length flag (x) determines whether the register is used as a 16-bit register or as an 8-bit register. Flag x is a part of the processor status register which is described later. When an 8-bit register is selected, only the low-order 8 bits of index register X are used and the contents of the high-order 8 bits is unchanged. In an addressing mode in which index register X is used as an index register, the address obtained by adding the contents of this register to the operand's contents is accessed.

In the MVP, MVN or RMPA instruction, index register X is used, also.

2.1.3 Index register Y (Y)

Index register Y is a 16-bit register with the same function as index register X. Just as in index register X, the index register length flag (x) determines whether this register is used as a 16-bit register or as an 8-bit register.

2.1 Central processing unit (CPU)

2.1.4 Stack pointer (S)

The stack pointer (S) is a 16-bit register. It is used for a subroutine call or an interrupt. It is also used when addressing modes using the stack are executed. The contents of S indicate an address (stack area) for storing registers during subroutine calls and interrupts. Bank 016 is specified for the stack area. (Refer to "2.2 Memory space."

When an interrupt request is accepted, the microcomputer stores the contents of the program bank register (PG) at the address indicated by the contents of S and decrements the contents of S by 1. Then the contents of the program counter (PC) and the processor status register (PS) are stored. The contents of S after accepting an interrupt request is equal to the contents of S decremented by 5 before accepting of the interrupt request. (Refer to **Figure 2.1.2.**)

When completing the process in the interrupt routine and returning to the original routine, the contents of registers stored in the stack area are restored into the original registers in the reverse sequence ($PS \rightarrow PC \rightarrow PG$) by executing the **RTI** instruction. The contents of S is returned to the state before accepting an interrupt request.

The same operation is performed during a subroutine call, however, the contents of PS is not automatically stored. (The contents of PG may not be stored. This depends on the addressing mode.)

During interrupts or subroutine calls, the other registers are not automatically stored. Therefore, if the contents of these registers need to be held on, be sure to store them by software.

Additionally, the S's contents become "0FFF₁₆" at reset. The stack area changes when subroutines are nested or when multiple interrupt requests are accepted. Therefore, make sure of the subroutine's nesting depth not to destroy the necessary data.

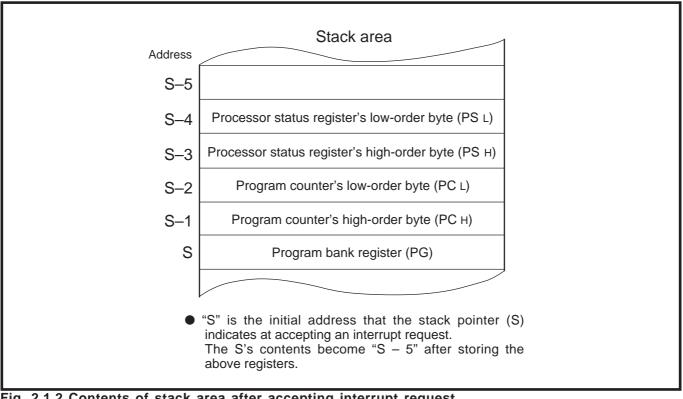


Fig. 2.1.2 Contents of stack area after accepting interrupt request

2.1.5 Program counter (PC)

The program counter is a 16-bit counter that indicates the low-order 16 bits of the address (24 bits) at which an instruction to be executed next (in other words, an instruction to be read out from an instruction queue buffer next) is stored. The contents of the high-order program counter (PCH) become "FF16," and the low-order program counter (PCL) becomes "FE16" at reset. The contents of the program counter becomes the contents of the reset's vector address (addresses FFFE16, FFFF16) just after reset. Figure 2.1.3 shows the program counter and the program bank register.

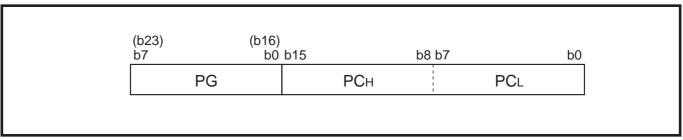


Fig. 2.1.3 Program counter and program bank register

2.1.6 Program bank register (PG)

The memory space is divided into units of 64 Kbytes. This unit is called "bank." (Refer to "2.2 Memory space.")

The program bank register is an 8-bit register that indicates the high-order 8 bits of the address (24 bits) at which an instruction to be executed next (in other words, an instruction to be read out from an instruction queue buffer next) is stored. These 8 bits indicate a bank.

When a carry occurs after adding the contents of the program counter or adding the offset value to the contents of the program counter in the branch instruction and others, the contents of the program bank register is automatically incremented by 1. When a borrow occurs after subtracting the contents of the program counter, the contents of the program bank register is automatically decremented by 1. Therefore, there is no need to consider bank boundaries during programming, usually.

This register is cleared to "0016" at reset.

2.1 Central processing unit (CPU)

2.1.7 Data bank register (DT)

The data bank register is an 8-bit register. In the following addressing modes using the data bank register, the contents of this register is used as the high-order 8 bits (bank) of a 24-bit address to be accessed.

Use the LDT instruction when setting a value to this register. This register is cleared to "0016" at reset.

•Addressing modes using data bank register

- •Direct indirect
- •Direct indexed X indirect
- •Direct indirect indexed Y
- •Absolute
- •Absolute indexed X
- Absolute indexed Y
- Absolute bit relative
- •Stack pointer relative indirect indexed Y
- •Multiplied accumulation

2.1.8 Direct page register 0 to 3 (DPR0 to DPR3)

The direct page register is a 16-bit register. The direct page registers (hereafter called the "DPRn") have been enhanced from the conventional 7700 Family.

These registers are used to access the 64-Kbyte space in bank 0 efficiently.

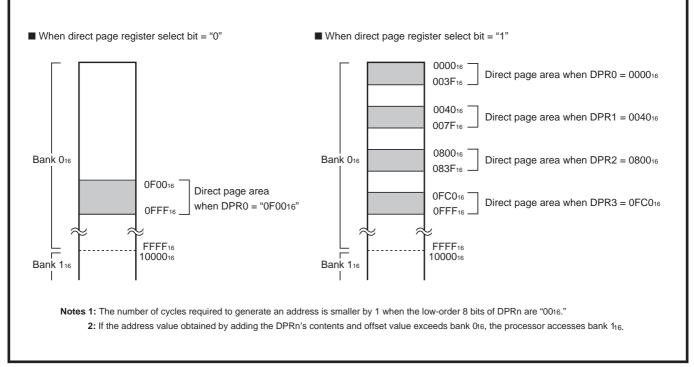

The direct page register select bit of processor mode register 1 determines whether to use DPR0 only or DPR0 through DPR3. The function of this bit is described below.

Table 2.1.1 Direct page register selection

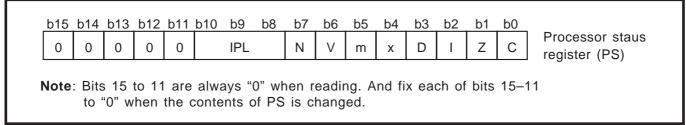
	Direct page register select bit	
	0	1
DPRn that can be used	DPR0	DPR0 to DPR3
Block size accessible from DPRn as base address	256 bytes	64 bytes
Remarks	Compatible with conventional 7700 Family	_

Note : Once the direct page register select bit is set, do not change its value.

2.1 Central processing unit

Fig. 2.1.4 Direct page area selection example

When the contents of low-order 8 bits of the direct page register is "0016," the number of cycles required to generate an address is smaller by 1 than the number when its contents are not "0016." Accordingly, the access efficiency can be enhanced in this case. This register is cleared to "000016" at reset.


- •Addressing modes using direct page register
 - Direct
 - •Direct indexed X
 - •Direct indexed Y
 - •Direct indirect
 - •Direct indexed X indirect
 - •Direct indirect indexed Y
 - •Direct indirect long
 - •Direct indirect long indexed Y
 - •Direct bit relative

2.1 Central processing unit (CPU)

2.1.9 Processor status register (PS)

The processor status register is an 11-bit register.

Figure 2.1.5 shows the structure of the processor status register.

Fig. 2.1.5 Processor status register structure

(1) Bit 0: Carry flag (C)

It retains a carry or a borrow generated in the arithmetic and logic unit (ALU) during an arithmetic operation. This flag is also affected by shift and rotate instructions.

Use the **SEC** or **SEP** instruction to set this flag to "1", and use the **CLC** or **CLP** instruction to clear it to "0".

The contents of this flag is undefined at reset.

(2) Bit 1: Zero flag (Z)

It is set to "1" when the result of an arithmetic operation or data transfer is "0," and cleared to "0" when otherwise. <u>This flag is invalid in the decimal mode addition.</u>

Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." The contents of this flag is undefined at reset.

(3) Bit 2: Interrupt disable flag (I)

It disables all maskable interrupts. Interrupts are disabled when this flag is "1." When an interrupt request is accepted, this flag is automatically set to "1" to avoid multiple interrupts. Use the **SEI** or **SEP** instruction to set this flag to "1," and use the **CLI** or **CLP** instruction to clear it to "0." This flag is set to "1" at reset.

(4) Bit 3: Decimal mode flag (D)

It determines whether addition and subtraction are performed in binary or decimal. Binary arithmetic is performed when this flag is "0." When it is "1," decimal arithmetic is performed with each 8-bit treated as 2-digit decimal (at m = 1) or each 16-bit treated as 4-digit decimal (at m = 0). Decimal adjust is automatically performed. Decimal operation is possible only with the **ADC**, **ADCB**, **SBC** and **SBCB** instructions. Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." This flag is cleared to "0" at reset.

(5) Bit 4: Index register length flag (x)

It determines whether each of index register X and index register Y is used as a 16-bit register or an 8-bit register. That register is used as a 16-bit register when this flag is "0," and as an 8-bit register when it is "1" **(Note)**. Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." This flag is cleared to "0" at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred with the length of the destination register, but except for the **TXA**, **TYA**, **TXB**, **TYB**, and **TXS** instructions.

2.1 Central processing unit

(6) Bit 5: Data length flag (m)

It determines whether to use data as a 16-bit unit or as an 8-bit unit. A data is treated as a 16-bit unit when this flag is "0," and as an 8-bit unit when it is "1" (Note).

Use the **SEM** or **SEP** instruction to set this flag to "1," and use the **CLM** or **CLP** instruction to clear it to "0." This flag is cleared to "0" at reset.

Note: When transferring data between registers which are different in bit length, the data is transferred with the length of the destination register, but except for the **TXA**, **TYA**, **TXB**, **TYB**, and **TXS** instructions.

(7) Bit 6: Overflow flag (V)

It is used when adding or subtracting with a word regarded as signed binary. The overflow flag is set to "1" when the result of addition or subtraction exceeds the range between -2147483648 and +2147483647 (when 32-bit length operation), the range between -32768 and +32767 (when 16-bit length operation), or the range between -128 and +127 (when 8-bit length operation).

The overflow flag is also set to "1" when the result of division exceeds the length of the register which will store the result, in the **DIV** or **DIVS** instruction. This flag is invalid in the decimal mode. Use the **SEP** instruction to set this flag to "1," and use the **CLV** or **CLP** instruction to clear it to "0." The contents of this flag is undefined at reset.

(8) Bit 7: Negative flag (N)

It is set to "1" when the result of arithmetic operation or data transfer is negative. (The most significant bit of the result is "1.") It is cleared to "0" in all other cases. This flag is invalid in the decimal mode. Use the **SEP** instruction to set this flag to "1," and use the **CLP** instruction to clear it to "0." The contents of this flag is undefined at reset.

(9) Bits 10 to 8: Processor interrupt priority level (IPL)

These 3 bits can determine the processor interrupt priority level to one of levels 0 to 7. The interrupt is enabled when <u>the interrupt priority level</u> of a required interrupt, which is set in each interrupt control register, is higher than IPL. When an interrupt request is accepted, IPL is stored in the stack area, and IPL is replaced by the interrupt priority level of the accepted interrupt request.

There are no instruction to directly set or clear the bits of IPL. IPL can be changed by storing the new IPL into the stack area and updating the processor status register with the **PUL** or **PLP** instruction. The contents of IPL is cleared to "0002" at reset.

2.2 Access space

2.2 Access space

The memory space of the 7900 Series is a 16-Mbyte space from addresses 0₁₆ to FFFFF₁₆. (Refer to the **Figure 2.2.1**.) However, addresses FF0000₁₆ to FFFFF₁₆ cannot be used because this area is reserved. A 24-bit address is generated by combination of the program counter (PC), which is 16 bits of structure, and the program bank register (PG), which is 8 bits of structure. The memory space of the 7900 Series is divided into units of 64 Kbytes. This unit is called "bank." The PG indicates the bank number.

The memory and I/O devices are assigned in the same access space. Accordingly, it is possible to perform transfer and arithmetic operations using the same instructions without discrimination of the memory from I/O devices.

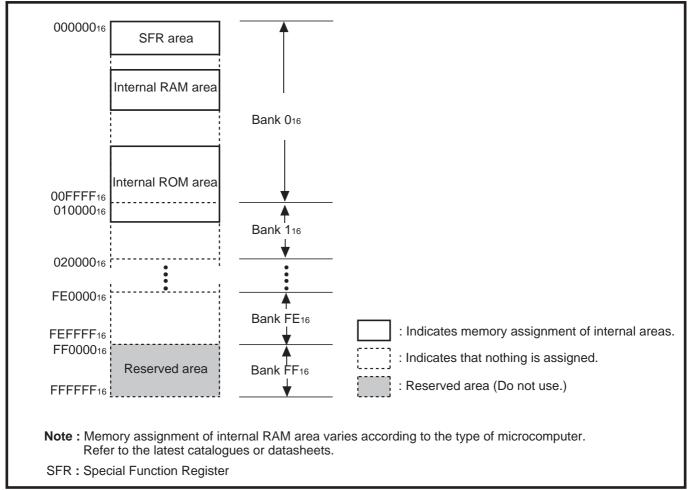


Fig. 2.2.1 7900 Series's access space

2.3 Addressing modes

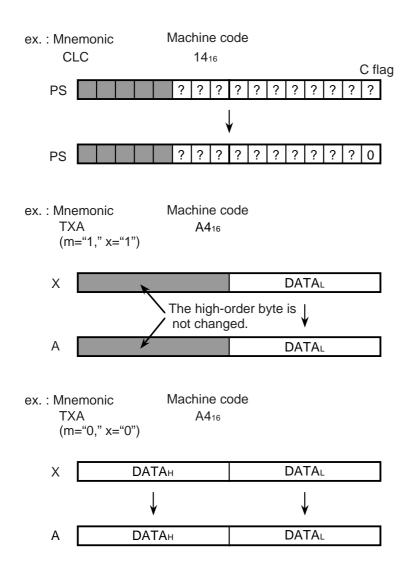
2.3.1 Overview

To execute an instruction, when the data required for the operation is retrieved from a memory or the result of the operation is stored to it, it is necessary to specify the address of the memory location in advance. Address specification is also necessary when the control is to jump to a certain memory address during program execution. Addressing means the method of specifying the memory address.

The memory access of the 7900 Series microcomputers is reinforced with 27 different addressing modes.

2.3.2 Explanation of addressing modes

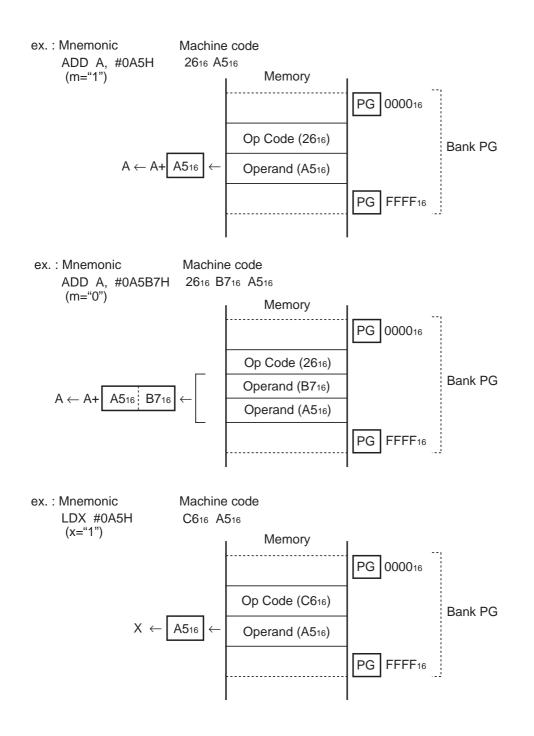
Each addressing mode is explained on the corresponding page indicated below:

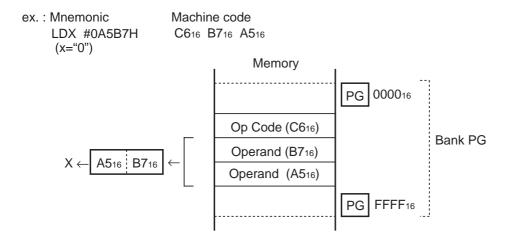

Immediate addressing mode (IMM)2-13 Accumulator addressing mode (A)2-15
Accumulator addressing mode (A)2-15
Direct addressing mode (DIR)2-16
Direct indexed X addressing mode (DIR,X)2-19
Direct indexed Y addressing mode (DIR,Y)2-22
Direct indirect addressing mode ((DIR))2-23
Direct indexed X indirect addressing mode ((DIR,X))2-25
Direct indirect indexed Y addressing mode ((DIR,Y))2-28
Direct indirect long addressing mode (L (DIR))2-31
Direct indirect long indexed Y addressing mode (L (DIR),Y)2-33
Absolute addressing mode (ABS)2-36
Absolute indexed X addressing mode (ABS,X) 2-39
Absolute indexed Y addressing mode (ABS,Y) 2-42
Absolute long addressing mode (ABL)2-45
Absolute long indexed X addressing mode (ABL,X) 2-47
Absolute indirect addressing mode ((ABS))2-49
Absolute indirect long addressing mode (L (ABS))
Absolute indexed X indirect addressing mode ((ABS,X))2-51
Stack addressing mode (STK)2-52
Relative addressing mode (REL)2-55
Direct bit relative addressing mode (DIR,b,R)2-56
Absolute bit relative addressing mode (ABS,b,R)2-58
Stack pointer relative addressing mode (SR)2-60
Stack pointer relative indirect indexed Y addressing mode ((SR),Y) 2-61
Block transfer addressing mode (BLK)2-64
Multiplied accumulation addressing mode (Multiplied accumulation) 2-66

Note: Unless otherwise noted, in each explanation diagram for the addressing mode of which name includes "direct," "Direct page register" means DPR0 only.

Implied

Mode : Implied addressing mode


Function : These instructions do not have an operand in the mnemonic.



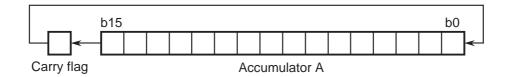
Immediate

Mode : Immediate addressing mode

Function : These instructions operate with a register and a immediate value.


Accumulator

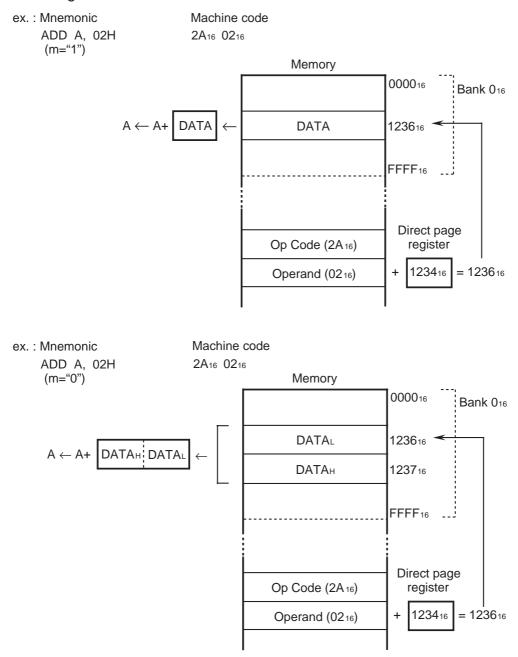
Mode : Accumulator addressing mode


Function : These instructions manipulate the contents of an accumulator.

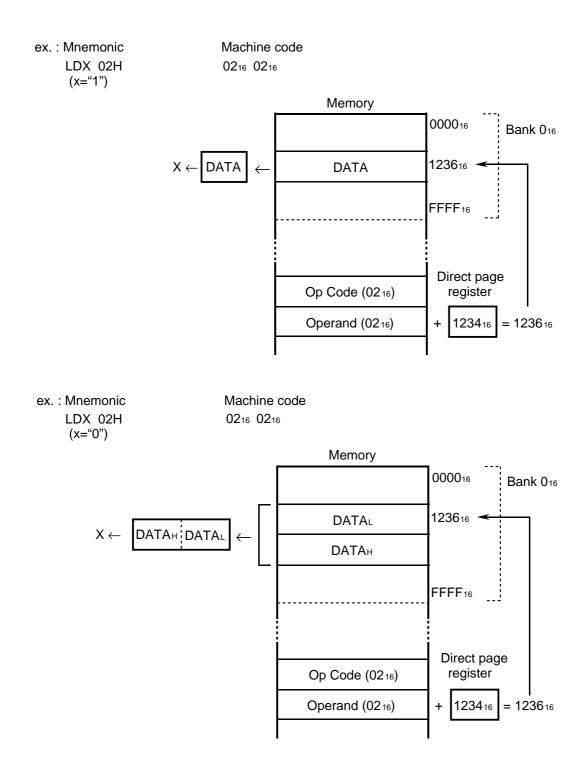
- ex. : Mnemonic
 - ROL A (m="1")

Machine code 1316

ex. : Mnemonic ROL A (m="0") Machine code 13₁₆

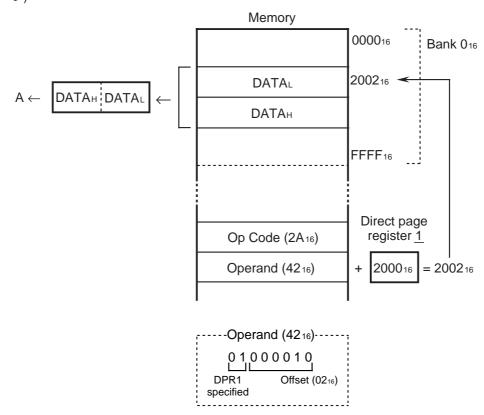

Mode : Direct addressing mode

Function : The memory contents in bank 0 specified by the result of adding the instruction's operand and the contents of the direct page register are an actual data. However, if the value derived by adding the instruction's operand and the direct page register's content's exceeds the bank 0₁₆ range, memory in bank 1 is specified.

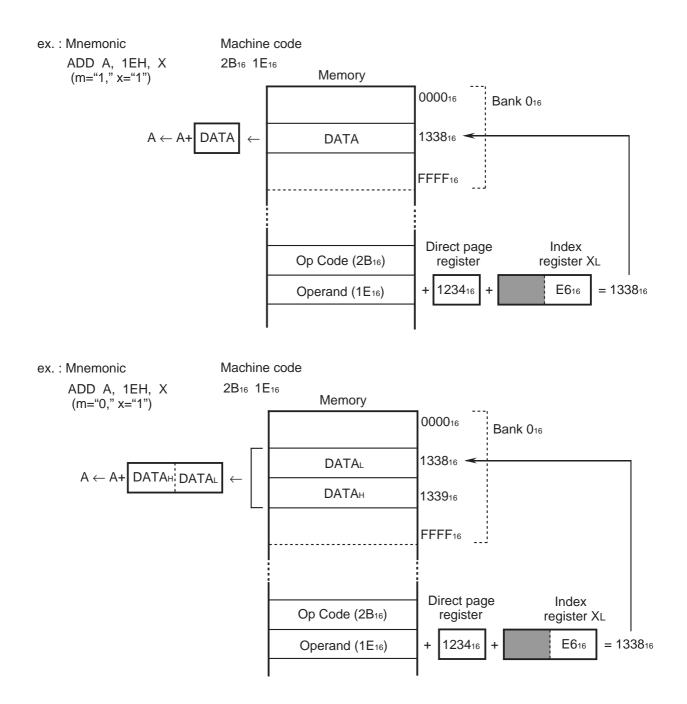

The direct page register select bit of processor mode register 1 allows the user to choose one of the following options :

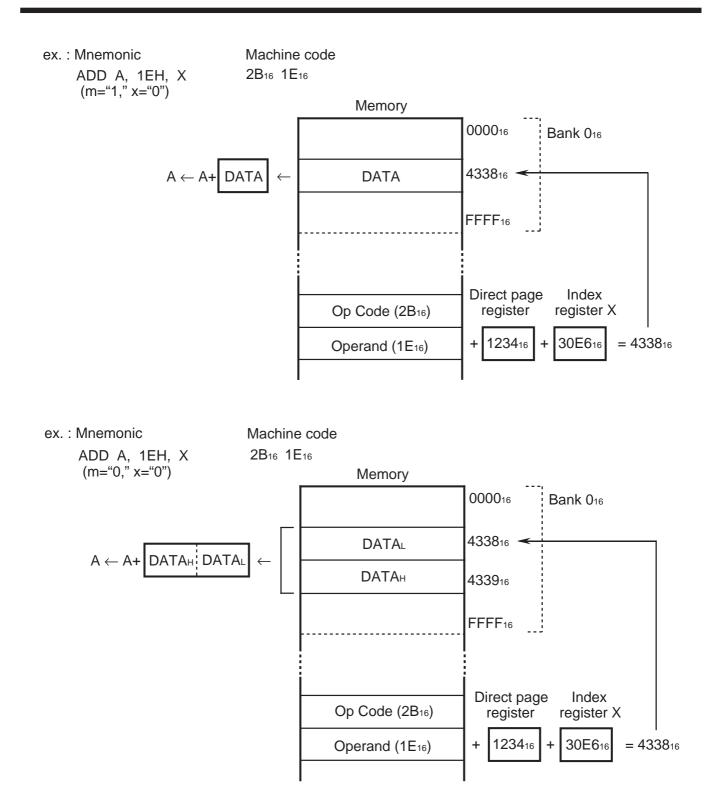
- Use direct page register 0 (DPR0) only. In this case, specify the offset from DPR0 in length of 8 bits.
- Use direct page registers 0 through 3 (DPR0 through 3). In this case, use the high-order 2 bits of the operand (8 bits) to specify the direct page register and the low-order 6 bits to specify the offset.

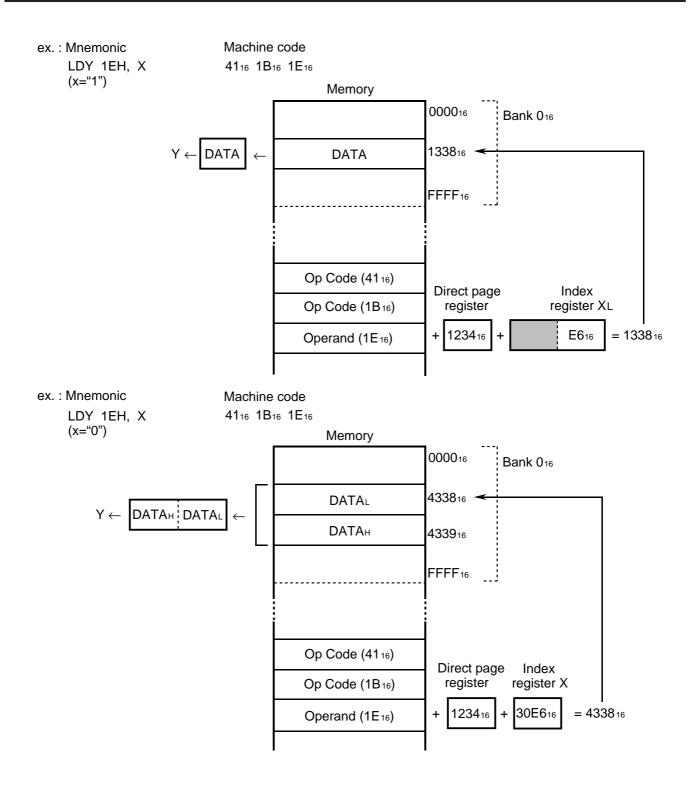
< Diect addressing mode>



Direct

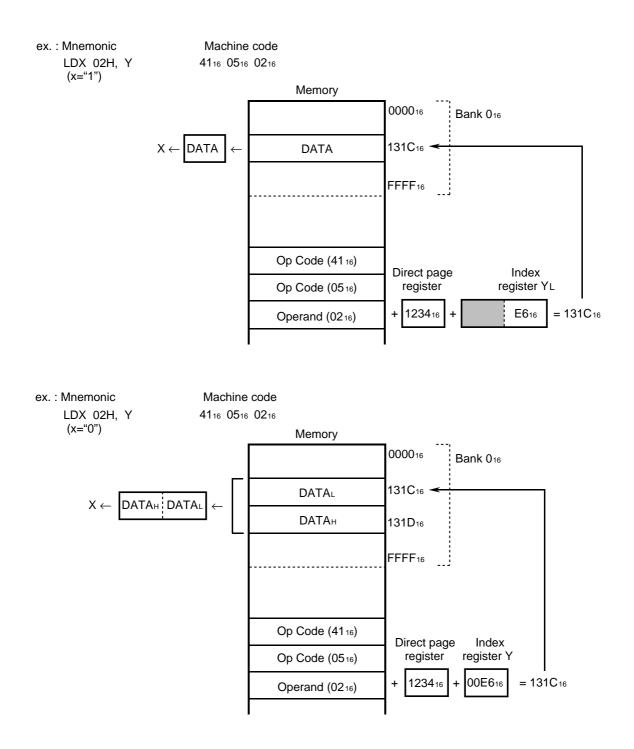

<Extension direct addressing mode>

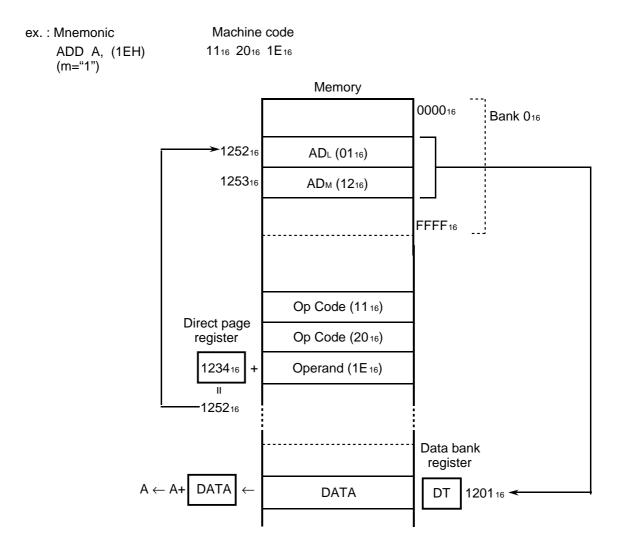

ex. : Mnemonic ADD A, 42H (x="0") Machine code 2A₁₆ 42₁₆

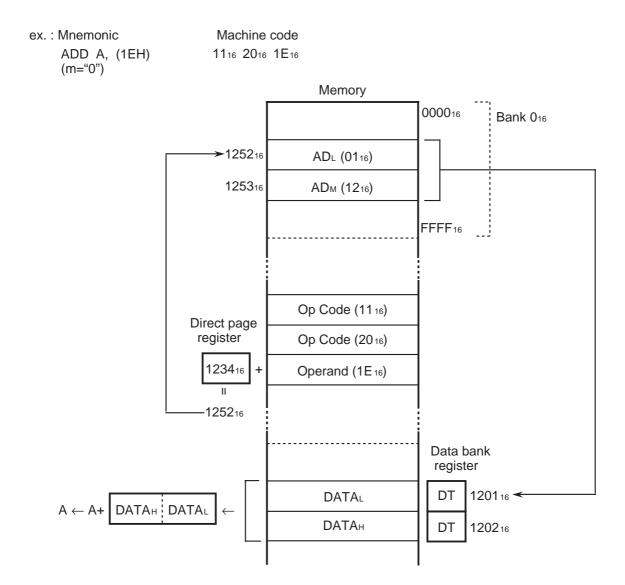


Mode : Direct indexed X addressing mode

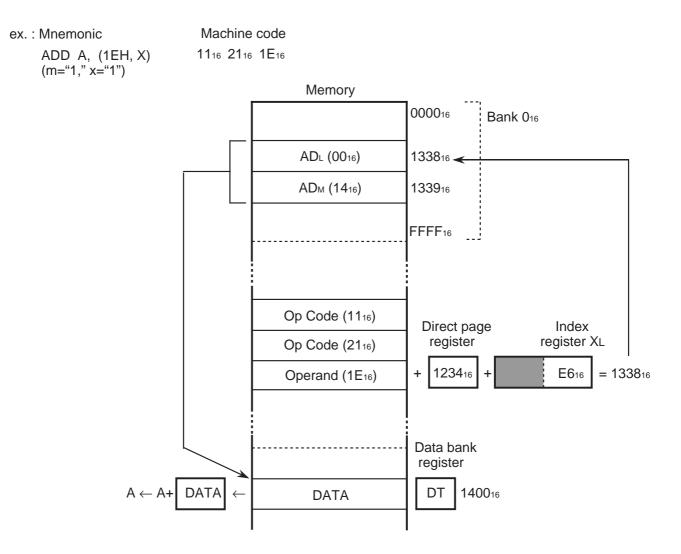
Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by the result of adding the instruction's operand, the direct page register's contents and the index register X's contents. When, however, the result of adding the instruction's operand, the direct page register's contents and the index register X's contents exceeds the bank 016 or bank 116 range, the memory location in bank 116 or bank 216 is specified.

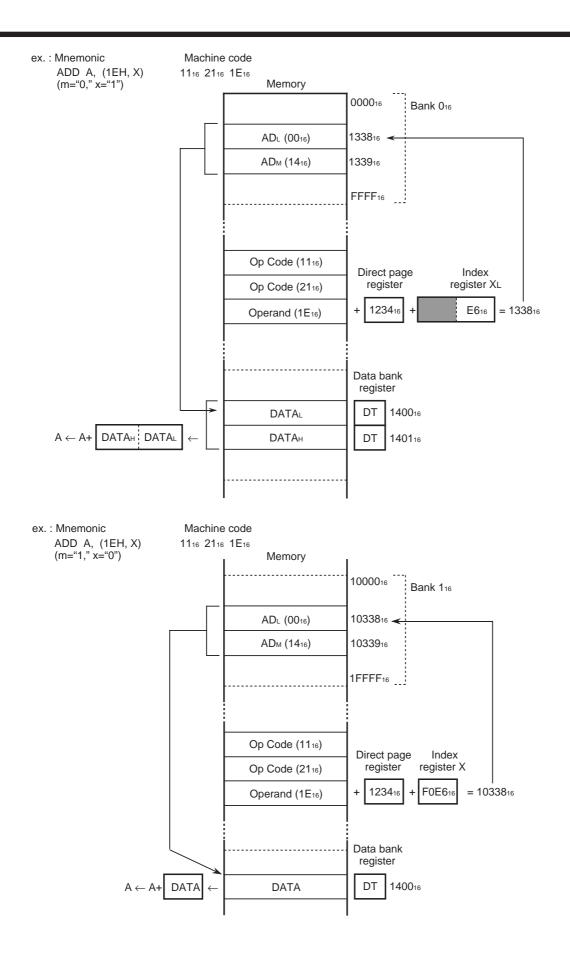



Mode : Direct indexed Y addressing mode

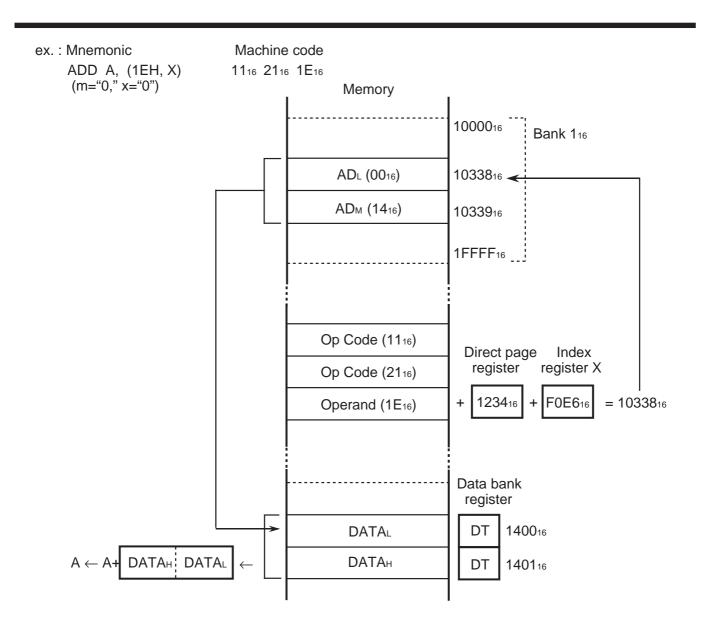

Function : The contents of a memory in bank 016 are an actual data. This memory location is specified by the result of adding the instruction's operand, the direct page register's contents and the index register Y's contents. When, however, the result of adding the instruction's operand, the direct page register's contents and the index register Y's contents exceeds the bank 016 or bank 116 range, the memory location in bank 116 or bank 216 is specified.

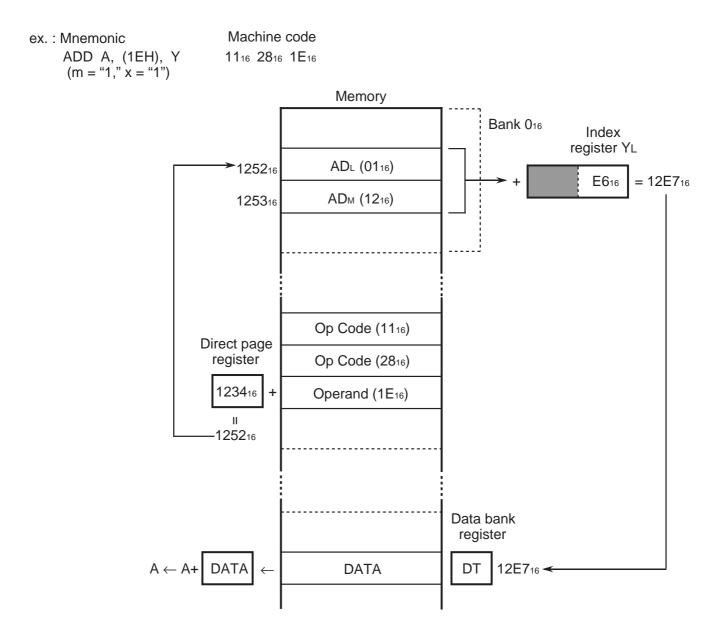
Mode : Direct indirect addressing mode

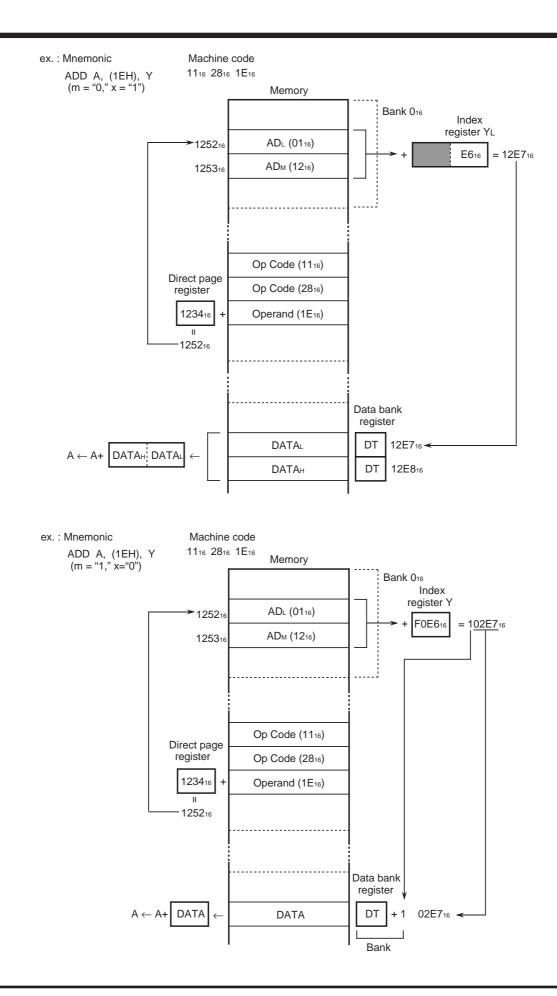

Function : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction's operand to the direct page register's contents. The contents of the memory location specified by these 2 bytes in bank DT (DT is the data bank register's contents) are an actual data. When, however, the result of adding the instruction's operand to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified.

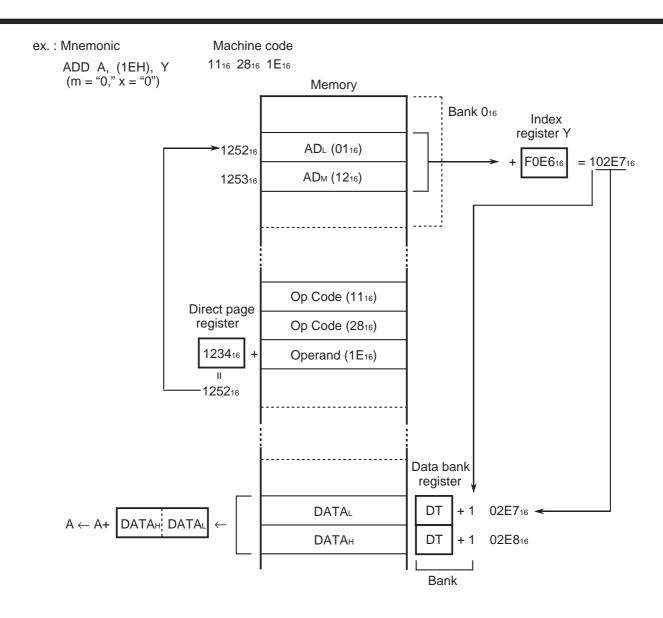


Direct Indexed X Indirect

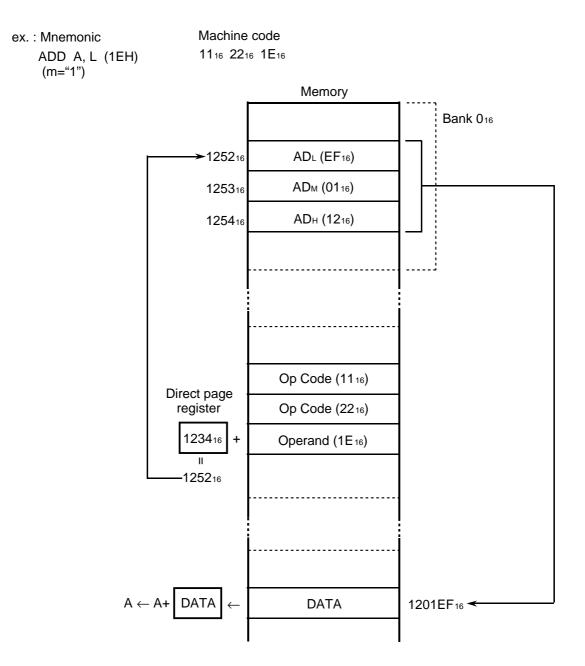

- Mode : Direct indexed X indirect addressing mode
- **Function** : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction's operand, the direct page register's contents and the index register X's contents. The contents of the memory location specified by these bytes in bank DT (DT is the data bank register's contents) are an actual data. When, however, the result of adding the instruction's operand, the direct page register's contents and the index register X's contents exceeds the bank 016 or bank 116 range, the memory location in bank 116 or bank 216 is specified.

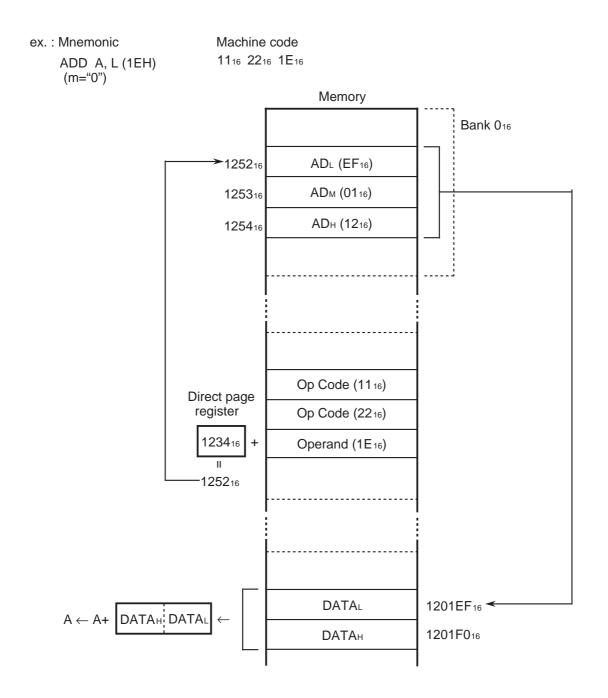

Direct Indexed X Indirect

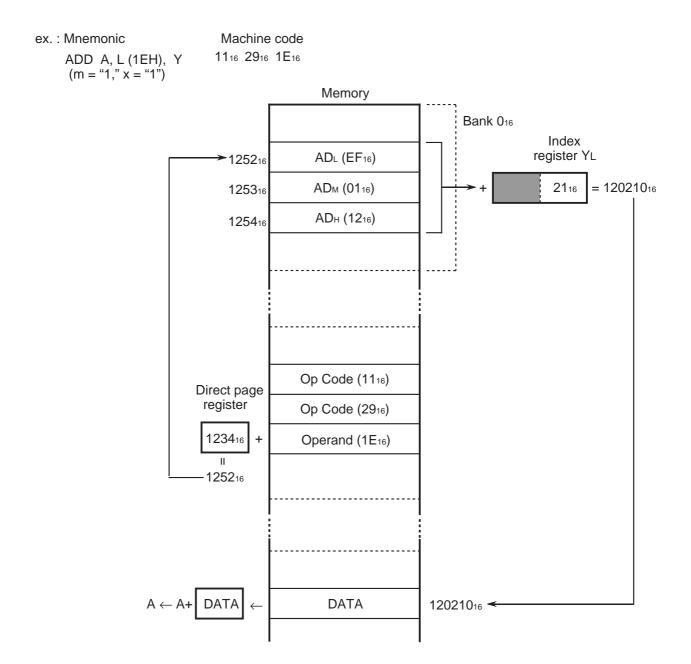




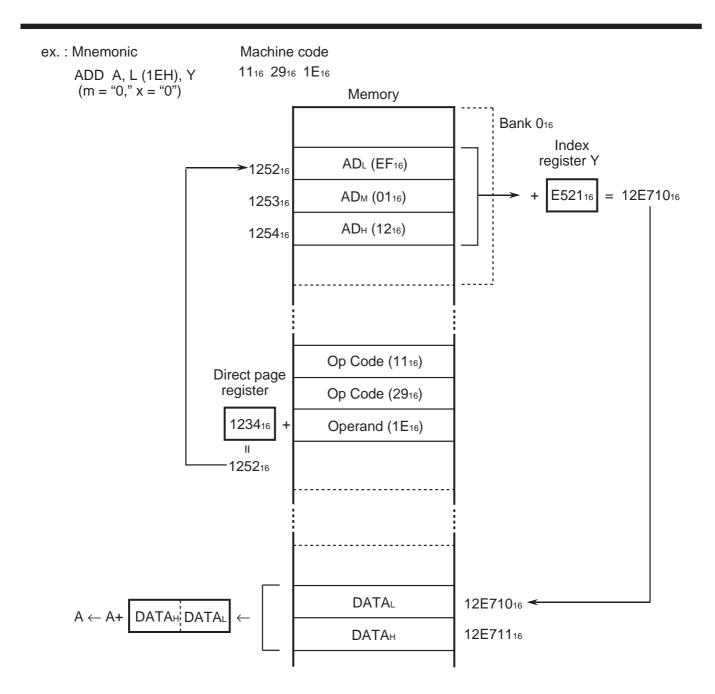
- Mode : Direct indirect indexed Y addressing mode
- **Function** : Specifies a sequence of 2-byte memory in bank 016 by the result of adding the instruction's operand to the direct page register's contents. The following is an actual data: the contents of the memory location specified by the result of adding the contents of these 2 bytes to the index register Y's contents and the contents of the data bank register. When, however, the result of adding the instruction's operand to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified. Additionally, if the addition of the memory's contents and the index register Y's contents generates a carry, the value which is 1 larger than the contents of the data bank register indicates the bank.



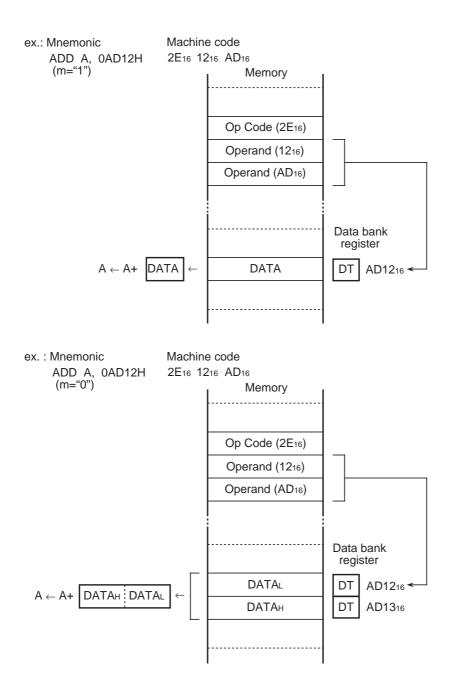

Direct Indirect Indexed Y

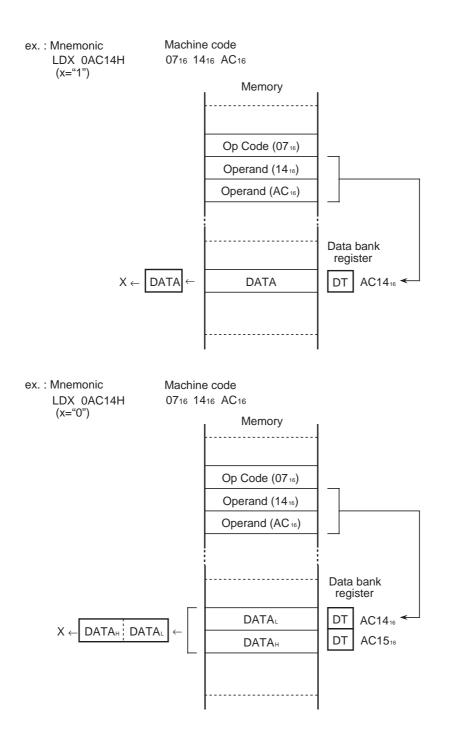

- Mode : Direct indirect long addressing mode
- **Function :** Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction's operand to the direct page register's contents. The contents at the address specified by the contents of these 3 bytes are an actual data. When, however, the result of adding the instruction's operand to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified. A sequence of 3-byte memory can cross over the bank boundary.

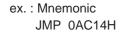
Direct Indirect Long Indexed Y


- Mode : Direct indirect long indexed Y addressing mode
- **Function** : Specifies a sequence of 3-byte memory in bank 016 by the result of adding the instruction's operand to the direct page register's contents. The contents at the address specified by the result of adding the contents of these 3 bytes to the index register Y's contents are an actual data. When, however, the result of adding the instruction's operand to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified. A sequence of 3-byte memory can cross over the bank boundary.

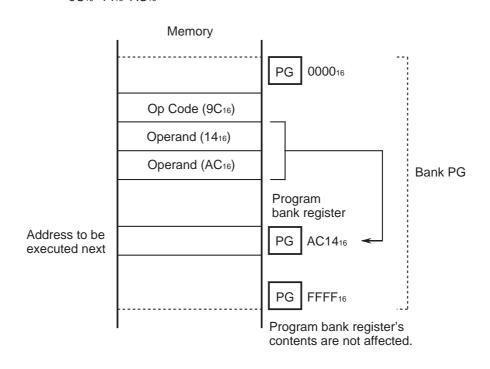
Direct Indirect Long Indexed Y





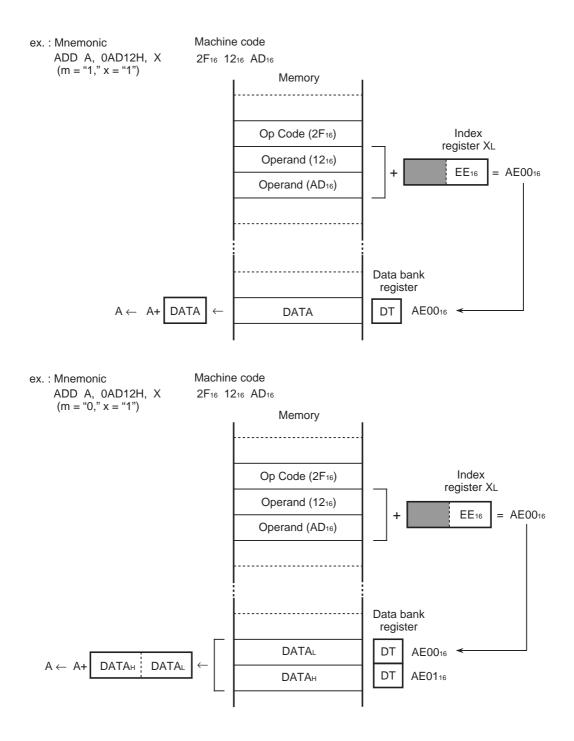

Mode : Absolute addressing mode

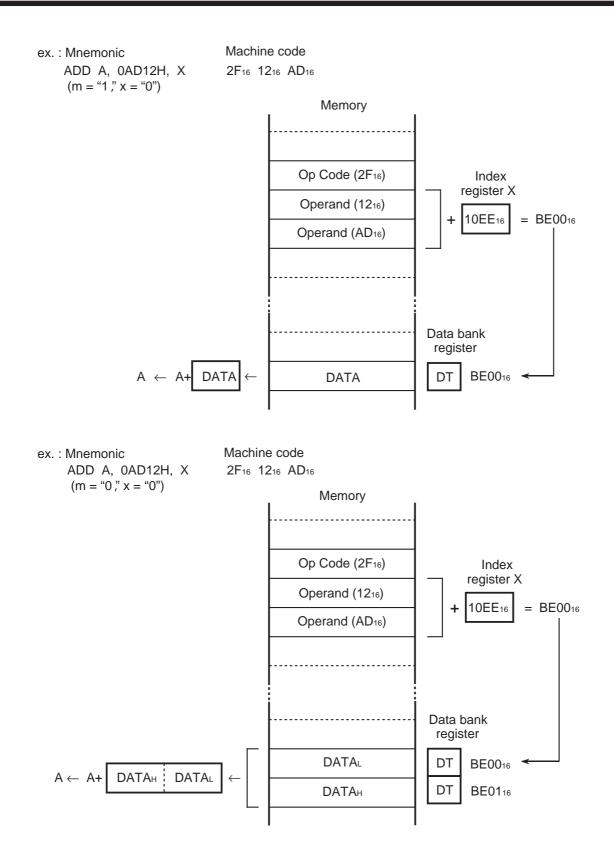
Function : The following is an actual data: the contents of the memory location specified by the instruction's operands and the contents of the data bank register. Note that, in the cases of the JMP and JSR instructions, the instruction's operands are transferred to the program counter.

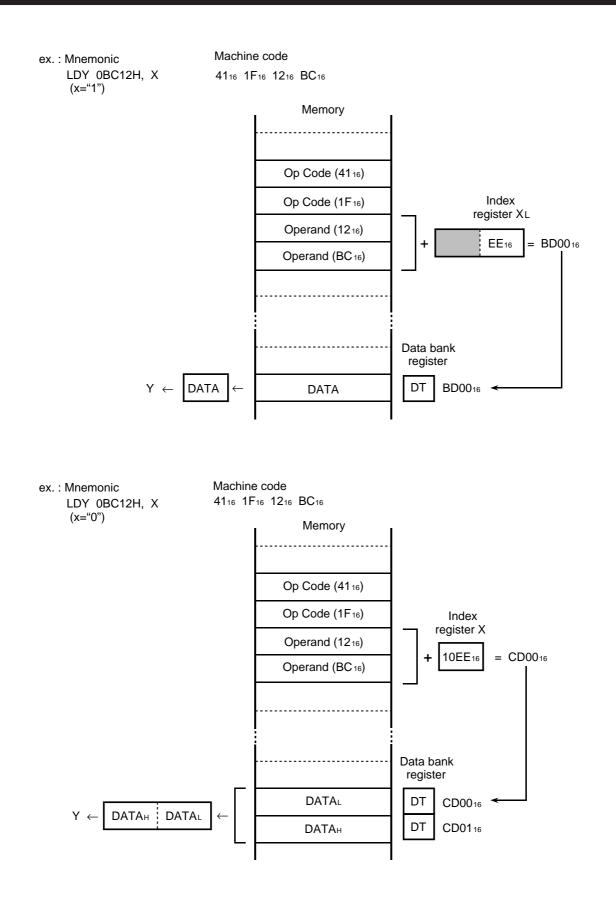


Absolute

Machine code

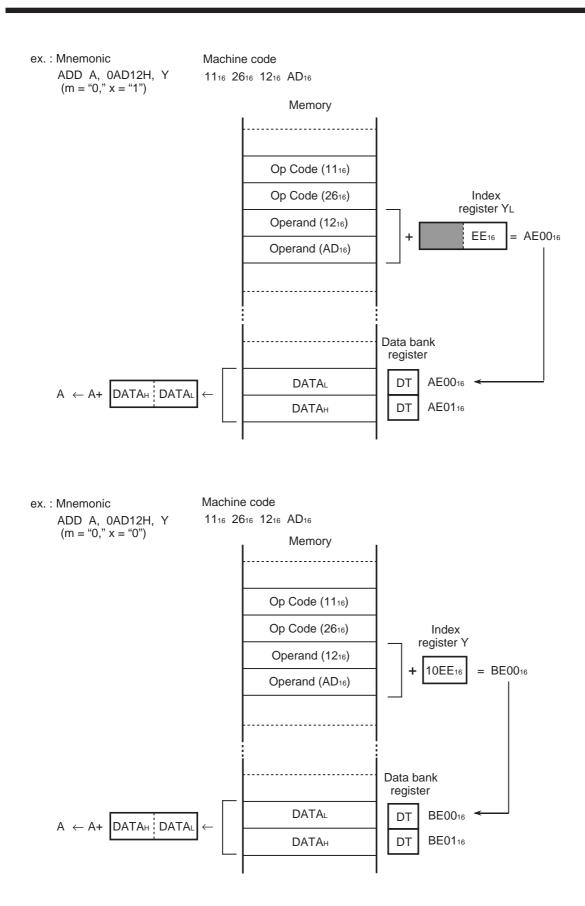

9C16 1416 AC16

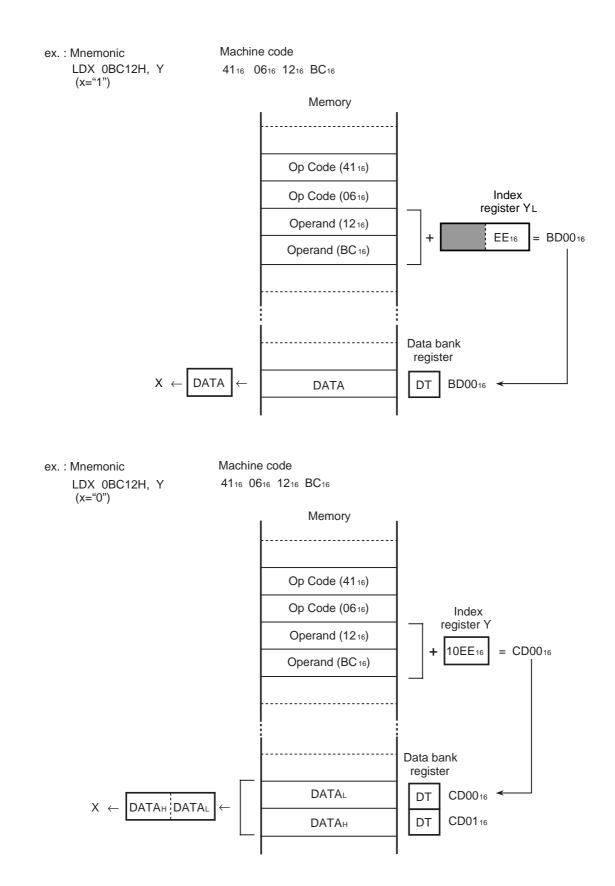



- **Note :** Note the branch destination bank in the case where a JMP or a JSR instruction is located near a bank boundary.
 - ⇒Refer to the description of a JMP/JMPL instruction (Page 4-111). Refer to the description of a JSR/JSRL instruction (Page 4-112).

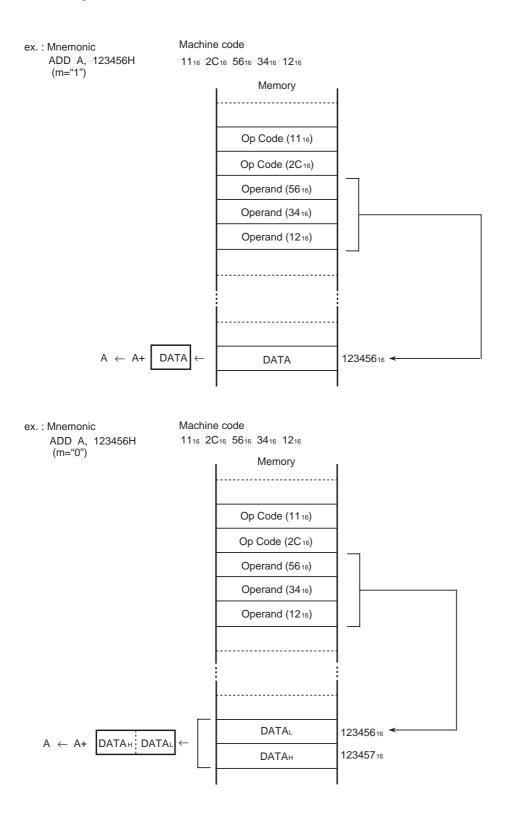
Mode : Absolute indexed X addressing mode

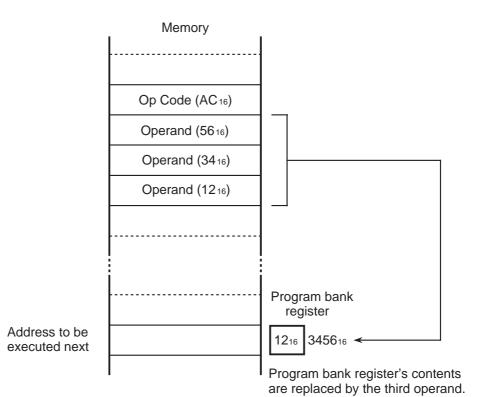

Function : The following is an actual data: the contents of the memory location specified by the result of adding a 16-bit length numerical value expressed with the instruction's operands to the index register X's contents, and the contents of the data bank register. If, however, the addition of the numerical value expressed with the instruction's operands and the index register X's contents generates a carry, the value which is 1 larger than the contents of the data bank register indicates the bank.





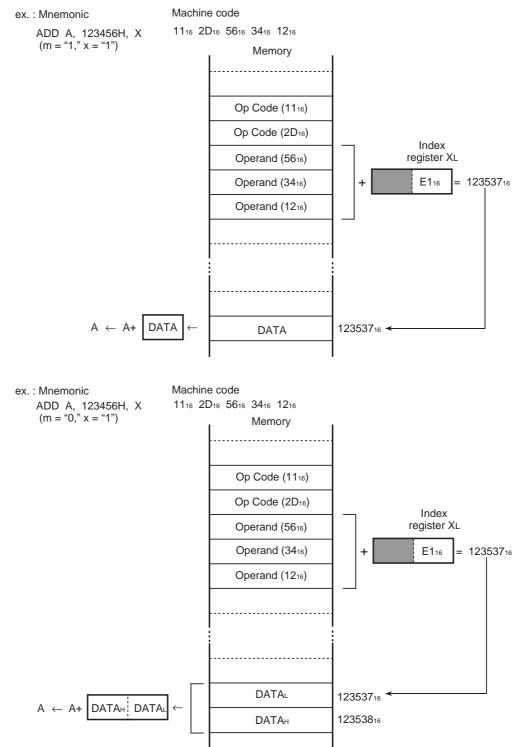
- Mode : Absolute indexed Y addressing mode
- **Function** : The following is an actual data: the contents of the memory location specified by the result of adding a 16-bit length numerical value expressed with the instruction's operands to the index register Y's contents, and the contents of the data bank register. If, however, the addition of the numerical value expressed with the instruction's operands to the index register Y's contents generates a carry, the value which is 1 larger than the contents of the data bank register indicates the bank.

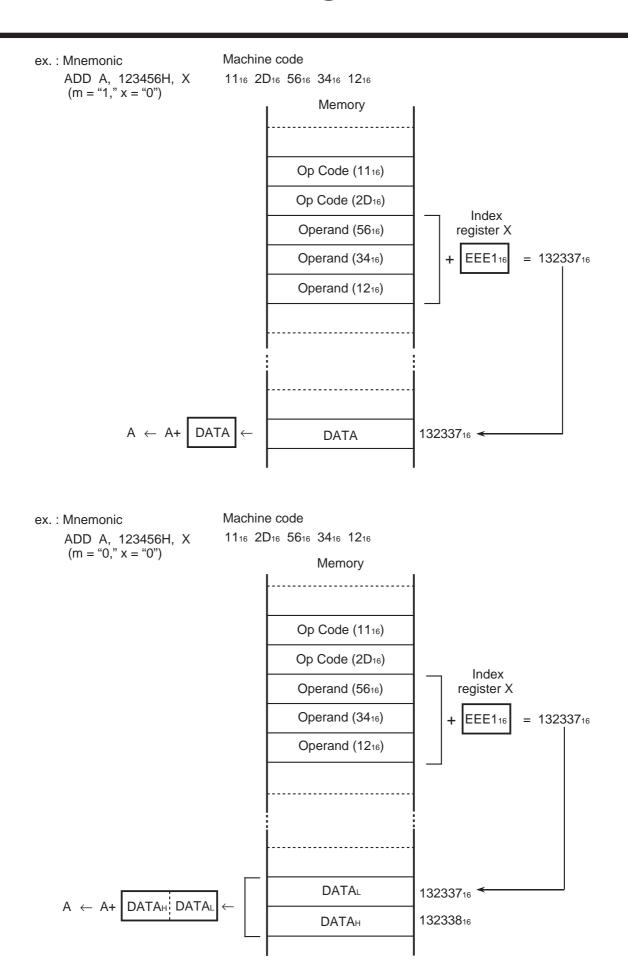



Absolute Long

Mode : Absolute long addressing mode

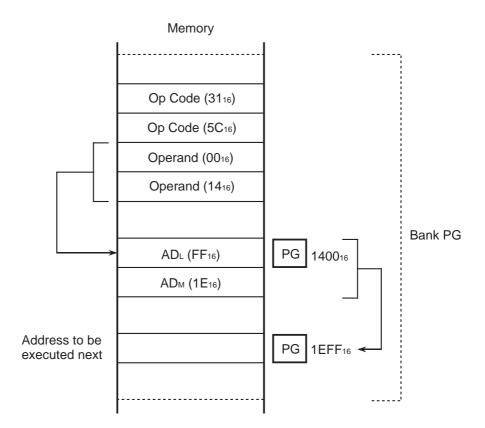
Function : The contents of the memory location specified by the instruction's operands are an actual data. Note that, in the cases of the JMPL and JSRL instructions, the instruction's second and third bytes are transferred to the program counter and the fourth byte is transferred to the program bank register.




ex. : Mnemonic JMPL 123456H Machine code AC16 5616 3416 1216

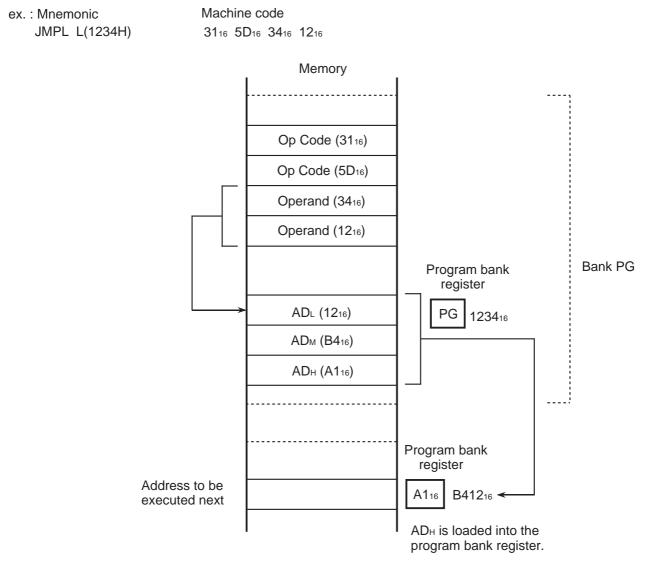
Absolute Long Indexed X

- Mode : Absolute long indexed X addressing mode
- **Function** : The following is an actual data: the contents of the memory location specified by the result of adding a numerical value expressed with the instruction's operands to the index register X's contents.



- Mode : Absolute indirect addressing mode
- **Function** : A sequence of 2-byte memory is specified by the instruction's third and fourth bytes in the same program bank. The contents of this 2-byte memory specify the branch destination address within the same program bank.

This addressing mode is used by a JMP instruction.


ex. : Mnemonic Machine code JMP (1400H) 31₁₆ 5C₁₆ 00₁₆ 14₁₆

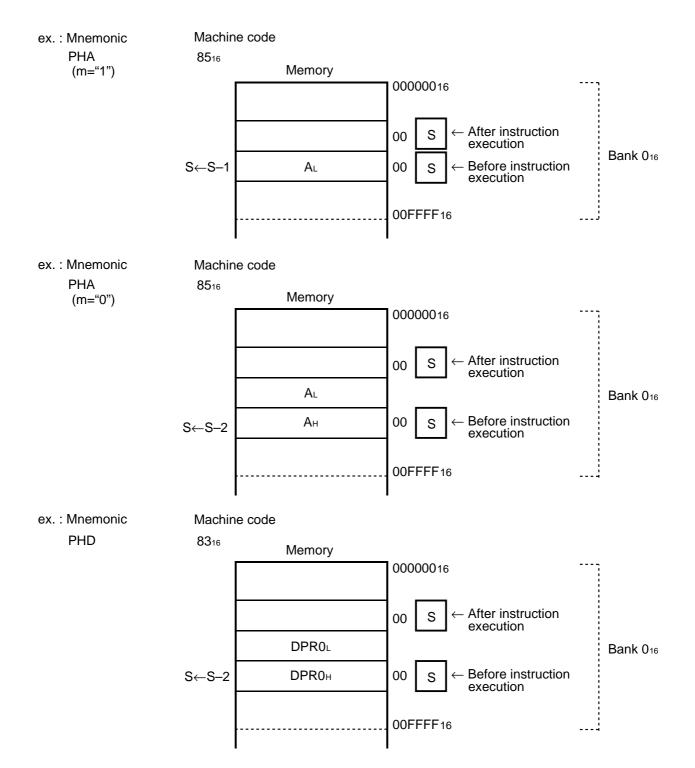
Note : Note the reference/branch destination bank when an instruction or a reference destination is located near a bank boundary.
 ⇒ Refer to the description of a JMP/JMPL instruction (Page 4-111).

Absolute Indirect Long

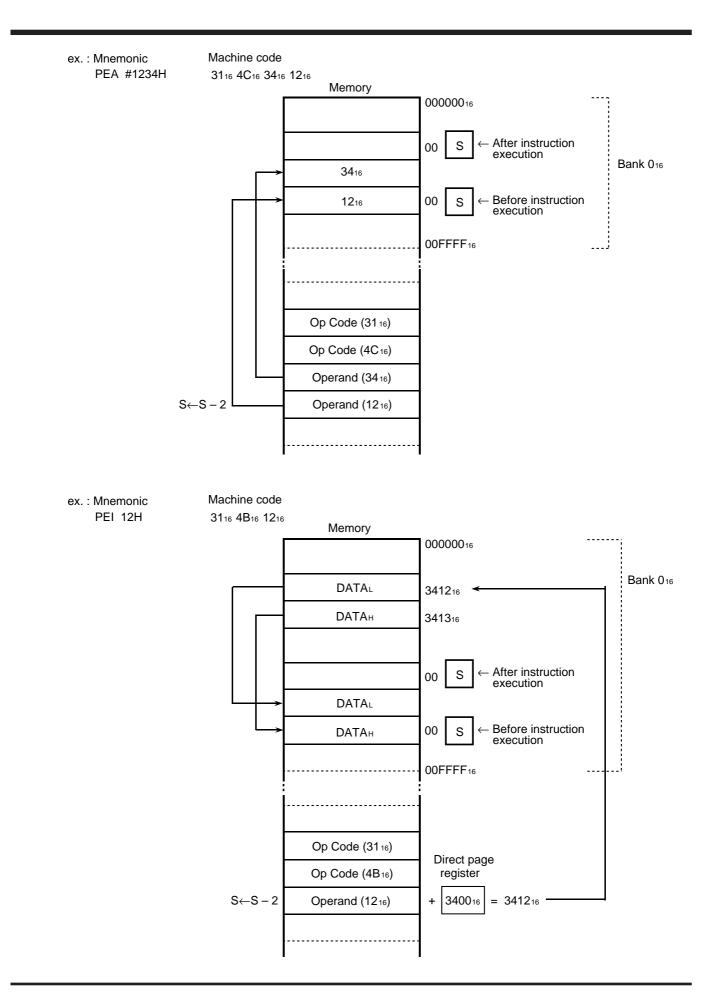
- Mode : Absolute indirect long addressing mode
- **Function** : A sequence of 3-byte memory is specified by the instruction's third and fourth bytes in the same program bank. The contents of this 3-byte memory specify the branch destination address. This addressing mode is used by a JMPL instruction.

Note : Note the reference destination bank when an instruction is located near a bank boundary.
 ⇒Refer to the description of a JMP/JMPL instruction (Page 4-111).

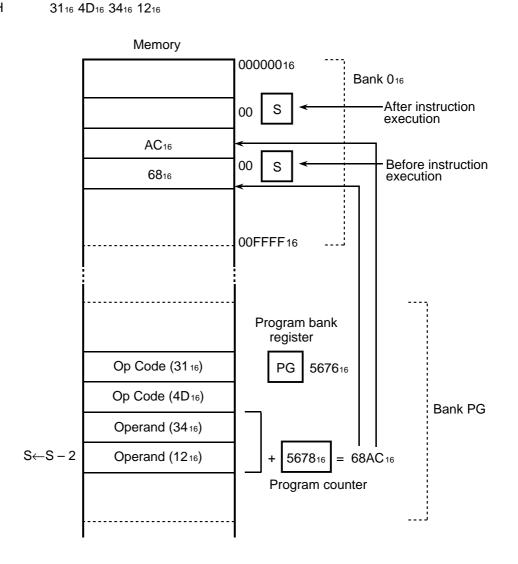
Absolute Indexed X Indirect


- Mode : Absolute indexed X indirect addressing mode
- **Function** : A sequence of 2-byte memory is specified by the result of adding a numerical value expressed with the instruction's second and third bytes to the index register X's contents; the memory bank is specified by program bank register PG at this time. The contents of this 2-byte memory specify the branch destination address.

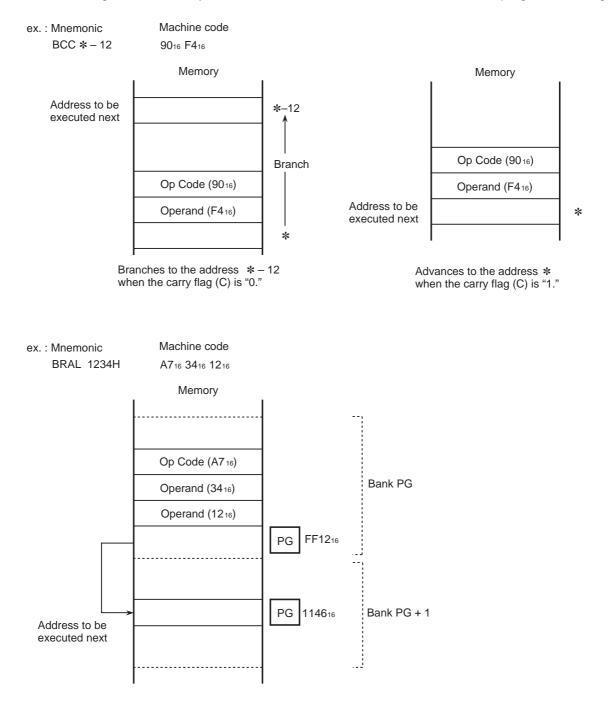
This addressing mode is used by a JMP and a JSR instructions.


- ex.: Mnemonic Machine code JMP (1234H, X) BC16 3416 1216 (x = "1")Memory . , Index Op Code (BC16) register X∟ Operand (3416) 1216 = 124616 Operand (1216) Bank PG 124616 ADL (1216) 124716 ADM (BC16) Program bank register Address to be BC1216 PG executed next
 - **Note :** Note the reference/branch destination bank in the case of a JMP or a JSR instruction when the instruction or the branch destination address is located near a bank boundary.
 - ➢ Refer to the description of a JMP/JMPL instruction (Page 4-111).
 - Refer to the description of a JSR/JSRL instruction (Page 4-112).

Mode : Stack addressing mode


Function : The contents of a register or others are stored to or restored from the memory of which location is specified by the stack pointer; this memory is called "stack area." The stack area is set in bank 016.

Stack



ex. : Mnemonic PER #1234H Machine code

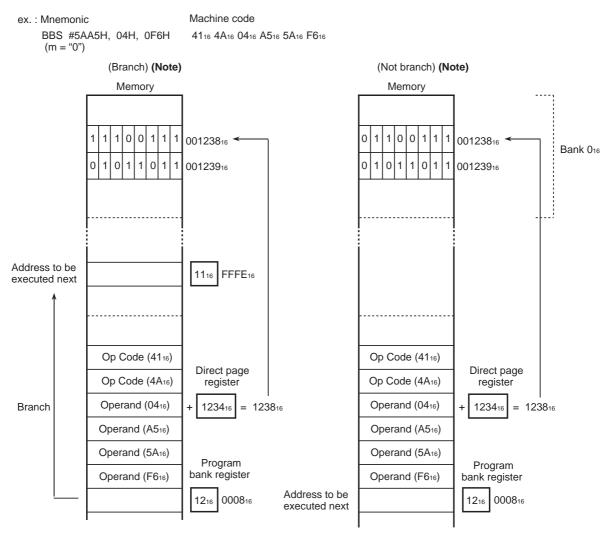
Mode : Relative addressing mode

Function : Branches to the address specified by the result of adding the program counter's contents to the instruction's second byte. In the case of a long branch with the BRA instruction, the instruction's second and third bytes are added to the program counter's contents as a 15-bit signed numerical value. In the case of the BSR instruction, the instruction's 3 bits of the first byte and the second byte are added to the program counter's contents as a 11-dit signed numerical value. If the addition generates a carry or a borrow, 1 is added to or subtracted from the program bank register.

Mode : Direct bit relative addressing mode

Function : • BBC and BBS instructions

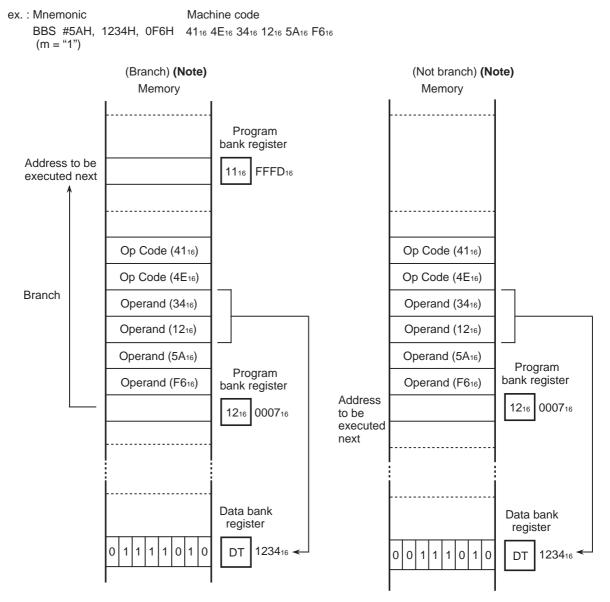
Specifies the memory location in bank 016 by the result of adding the instruction's third byte to the direct page register's contents; specifies the multiple bits' position in that memory by the bit pattern of the instruction's fourth and fifth bytes (when the m flag is "1," the fourth byte only). Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's sixth byte (or when the m flag is "1," the fifth byte) as a signed numerical value to the program counter's contents. When, however, the result of adding the instruction's second byte to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified.


• BBCB and BBSB instructions

Specifies the memory location in bank 016 by the result of adding the instruction's second byte to the direct page register's contents; specifies the multiple bits' position in that memory by the bit pattern of the instruction's third byte. Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's fourth byte as a signed numerical value to the program counter's contents. When, however, the result of adding the instruction's second byte to the direct page register's contents exceeds the bank 016 range, the memory location in bank 116 is specified.

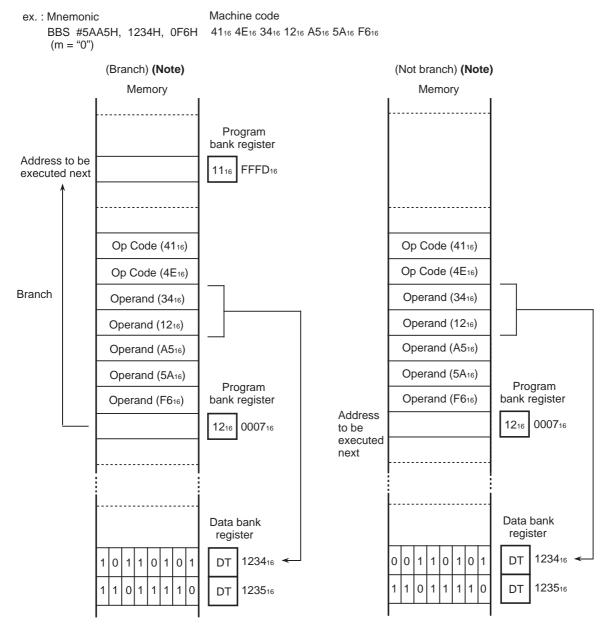
Note: Whether to branch or not depends on the branching conditions.

Direct Bit Relative

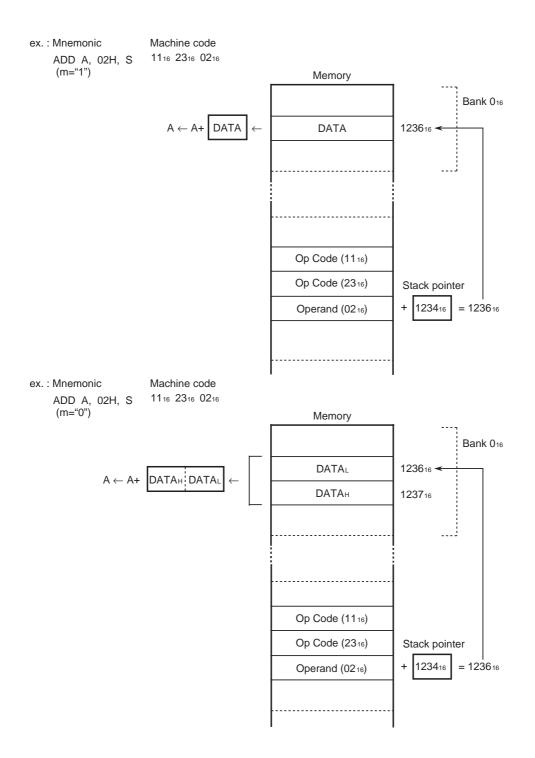

Note: Whether to branch or not depends on the branching conditions.

- Mode : Absolute bit relative addressing mode
- Function : BBC and BBS instructions

Specifies the memory location by the instruction's third and fourth bytes and the contents of the data bank register; specifies the multiple bits' position in that memory by the bit pattern of the instruction's fifth and sixth bytes (when the m flag is "1," the fifth byte only). Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's seventh byte (or when the m flag is "1," the sixth byte) as a signed numerical value to the program counter's contents.

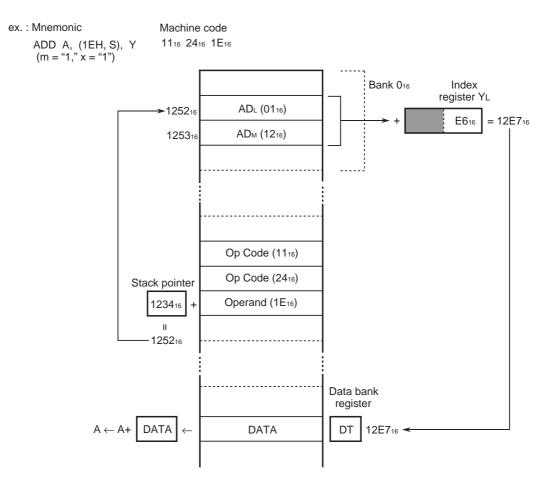

• BBCB and BBSB instructions

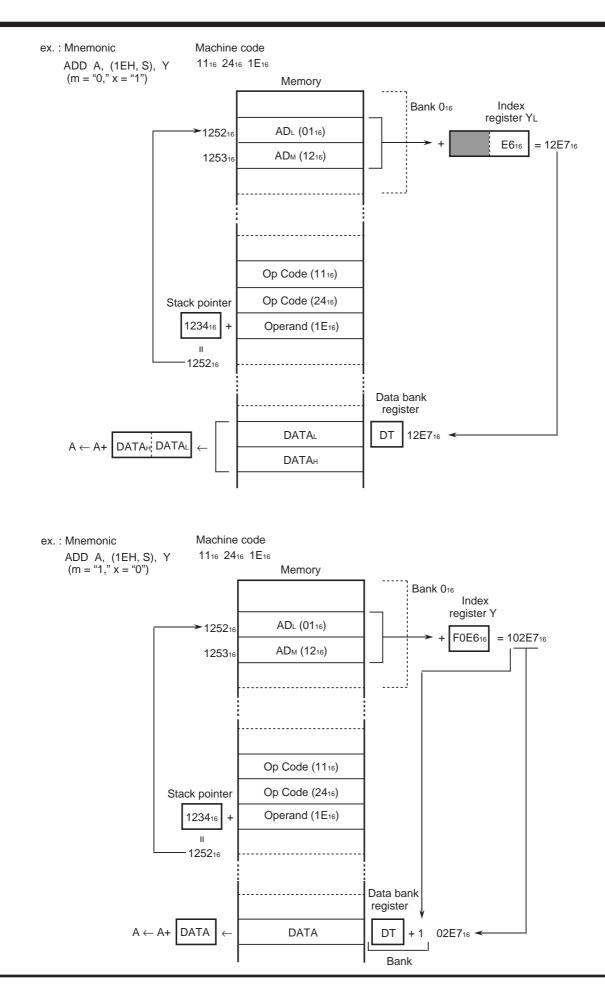
Specifies the memory location by the instruction's second and third bytes and the contents of the data bank register; specifies the multiple bits' position in that memory by the bit pattern of the instruction's fourth byte. Then, when the specified bits all satisfy the branching conditions, branches to the address specified by the result of adding the instruction's fifth byte as a signed numerical value to the program counter's contents.


Note: Whether to branch or not depends on the branching conditions.

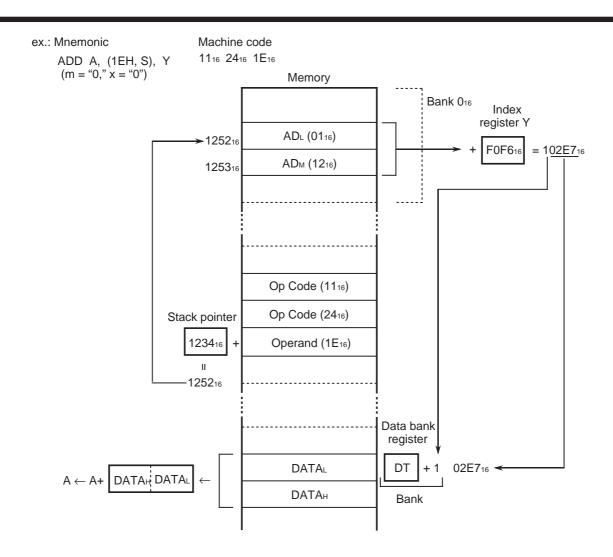
Absolute Bit Relative

Note: Whether to branch or not depends on the branching conditions.

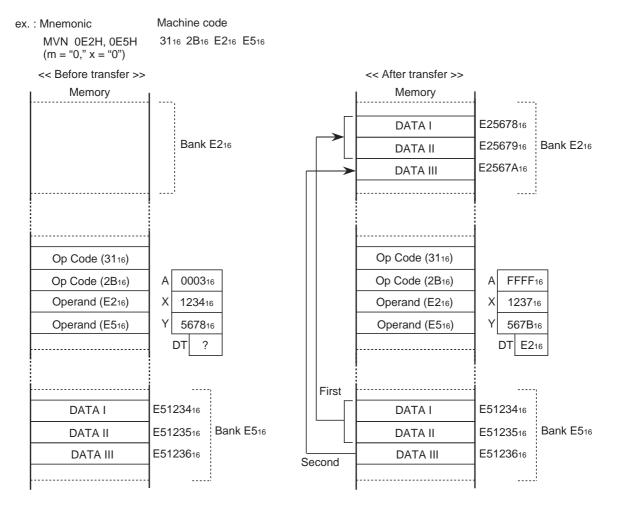

- Mode : Stack pointer relative addressing mode
- **Function** : The contents of the memory location in bank 016 are an actual data. This memory is specified by the result of adding the instruction's operand to the stack pointer's contents. When, however, the result of adding the instruction's operand to the stack pointer's contents exceeds the bank 016 range, the memory location in bank 116 is specified.

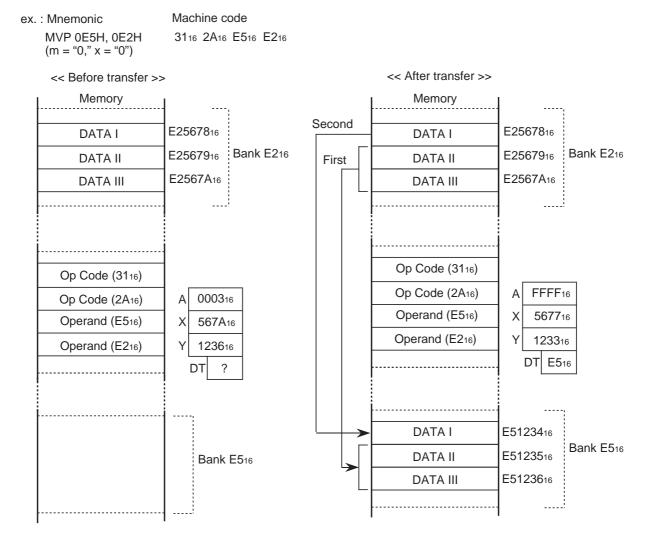

Stack Pointer Relative Indirect Indexed Y

Mode : Stack pointer relative indirect indexed Y addressing mode


Function : Specifies a sequence of 2-byte memory by the result of adding the instruction's operand to the stack pointer's contents. The contents of the memory location specified by the above addition are added to the index register Y's contents. The result of second addition and the contents of data bank register DT indicate the memory location which contents an actual data. If, however, the result of adding the contents of that sequence of 2-byte memory to the index register Y's contents generates a carry, the value which is 1 larger than the contents of the data bank register DT indicates the bank.

Stack Pointer Relative Indirect Indexed Y


Stack Pointer Relative Indirect Indexed Y



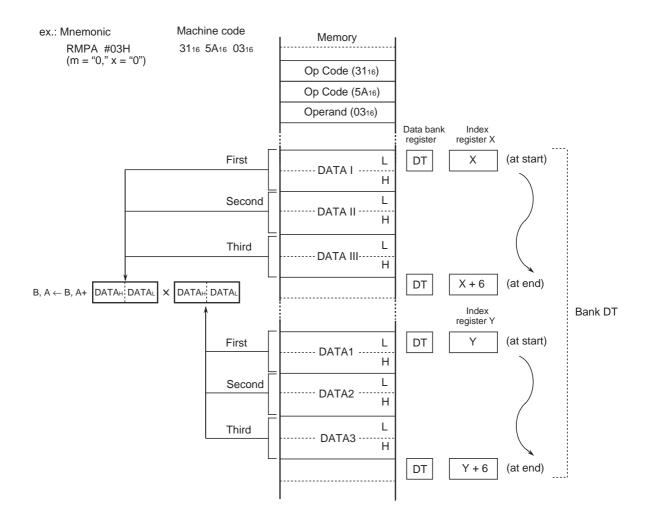
Mode : Block transfer addressing mode

- **Function** : Specifies the transfer destination data bank by the instruction's third byte, and specifies the transfer destination address within the data bank by the index register Y's contents. Specifies the transfer source data bank by the instruction's fourth byte, and specifies the address of transfer data within the data bank by the index register X's contents. The accumulator A's contents are the number of bytes to be transferred. At termination of transfer, the data bank register's contents specify the transfer destination data bank.
 - MVN instruction The MVN instruction is used for transfer toward lower addresses. In this case, the contents of index registers X and Y are incremented each time data is transferred.
 - MVP instruction

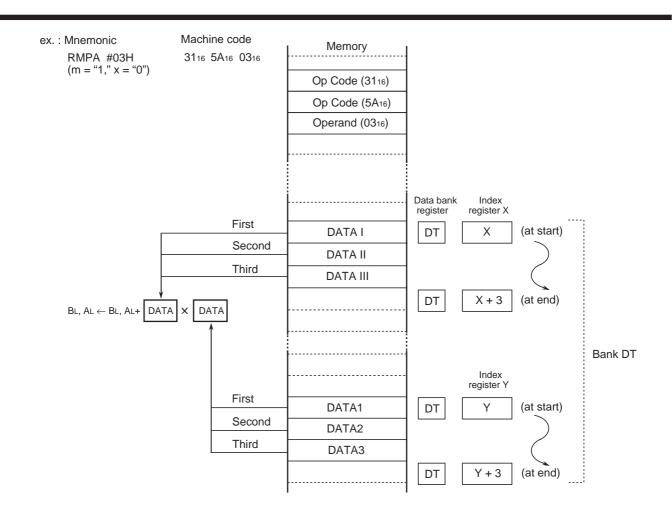
The MVP instruction is used for transfer toward higher addresses. In this case, the contents of index registers X and Y are decremented each time data is transferred. The transfer data can cross over the bank boundary.

Note : For block transfer instructions, the number of bytes to be transferred and the range can be specified as transfer source/destination addresses change with the state of the m and x flags. However, the transfer unit is unaffected. The transfer unit is "word" (16 bits). However, only 1 byte is transferred when transferring the last byte at odd-byte transfer.

Multiplied accumulation


Mode : Multiplied accumulation addressing mode

Function : The following is a multiplicand and a multiplier: the contents of the memory location specified by the contents of index registers X and Y, and the data bank register's contents. The instruction's third byte is the repeat number of arithmetic operation. The contents of index registers X and Y are incremented each time the addition of the contents of accumulators B and A to the multiplication result finishes. Accordingly, the contents of index registers X and Y specify the next address where the multiplicand and the multiplier are read at last.


Allocate a multiplicand and a multiplier within the same bank and do not cross them over the bank boundary.

Set index register length flag x to "0" before executing this instruction.

This addressing mode is used by an RMPA instruction.

Multiplied accumulation

CHAPTER 3 HOW TO USE 7900 SERIES INSTRUCTIONS

- 3.1 Memory access
- 3.2 Direct page registers (DPR0-DPR3)
- 3.3 8- and 16-bit data processing
- 3.4 Index registers X and Y
- 3.5 Branch instructions

HOW TO USE 7900 SERIES INSTRUCTIONS

3.1 Memory access

3.1 Memory access

Memory access modes are typically classified into the following 3 categories:

- Direct addressing
- Absolute addressing and Absolute long addressing
- Indirect addressing and Indirect long addressing

Their features are described below.

3.1.1 Direct addressing

- Each instruction has a length of 2 or 3 bytes.
- Reduced number of consumed instruction execution cycles.
- A block (within bank 0: addresses 00000016-00FFF16) of which base address is specified by DPRn is addressable.
 - (i) Direct page register select bit is "0": Block size = 256 bytes
 - (ii) Direct page register select bit is "1":

Block size = 64 bytes

When a sum of DPRn's contents and an offset value exceeds the bank boundary, however, access over the boundary is enabled.

3.1.2 Absolute addressing and Absolute long addressing

(1) Absolute addressing

- Each instruction has a length of 3 or 4 bytes.
- A 64-Kbyte space (a bank within addresses 000000₁₆-FFFFF₁₆) is addressable, where the high-order 8 bits of 24-bit address are specified by DT. For the JMP and JSR instructions, however, these high-order 8 bits are specified by PG.

(2) Absolute long addressing

- Each instruction has a length of 4 or 5 bytes.
- Addresses 00000016-FFFFF16 are addressable. All of 24 bits of the address are directly specified.

3.1.3 Indirect addressing and Indirect long addressing

(1) Direct indirect addressing

- Each instruction has a length of 2 or 3 bytes.
- 16-bit pointer data is placed in the space specified by DPRn, and the specified memory is accessed.
- A 64-KB space (a bank within addresses 00000016-FFFFFF16) is addressable, where the highorder 8 bits of 24-bit address are specified by DT.

(2) Direct indirect long addressing

- Each instruction has a length of 2 or 3 bytes.
- 24-bit pointer data is placed in the space specified by DPRn, and the specified memory is accessed.
- An address within the 16-Mbyte space (addresses 00000016-FFFFFF16) is addressable.

(3) Absolute indirect addressing

- This addressing mode can be used only for the indirect branch and indirect subroutine call instructions.
- Each instruction has a length of 3 or 4 bytes.
- 16-bit pointer data is placed in the space specified by PG, and the specified memory is accessed.
- A 64-KB space (a bank within addresses 00000016-FFFFFF16) is addressable, where the highorder 8 bits of 24-bit address are specified by PG.

(4) Absolute indirect long addressing

- This addressing mode can be used only for the indirect branch instruction.
- Each instruction has a length of 3 or 4 bytes.
- 24-bit pointer data is placed in the space specified by PG, and the specified memory is accessed.
- Any address of the 16-Mbyte space (addresses 00000016-FFFFF16) is addressable.

Figure 3.1.1 shows a usage example of indirect addressing mode.

Here, the data of the pointers pointing to memory areas are processed in the program, and the results are referenced as effective addresses.

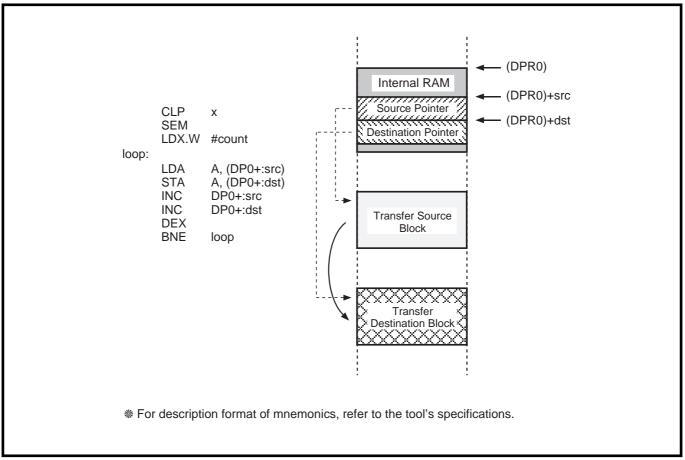


Fig. 3.1.1 Usage example of indirect addressing mode: block transfer

The 7900 Series also provides many other useful addressing modes. For details, refer to section "2.3 Addressing modes."

3.2 Direct page registers (DPR0–DPR3)

3.2 Direct page registers (DPR0-DPR3)

The 7900 Series provides more enhanced direct addressing modes than those of the conventional 7700 Family. These powerful addressing modes greatly improve programming efficiency, especially in a range of addresses $000000_{16}-00FFFF_{16}$.

In the 7900 Series, just after a reset, only DPR0 can be used. When the direct page register select bit of the processor mode register 1 is set to "1," however, direct page registers DPR0–DPR3 can be used. Figure 3.2.1 shows an usage example of DPR0–DPR3.

In the conventional 7700 Family, since only one direct page register can be used, it is required to frequently change the contents of the direct page register for efficient memory access using direct page addressing mode. On the contrary, the 7900 Series does not need such a procedure as in the conventional 7700 Family because it can assign a direct page register to each base address of each block.

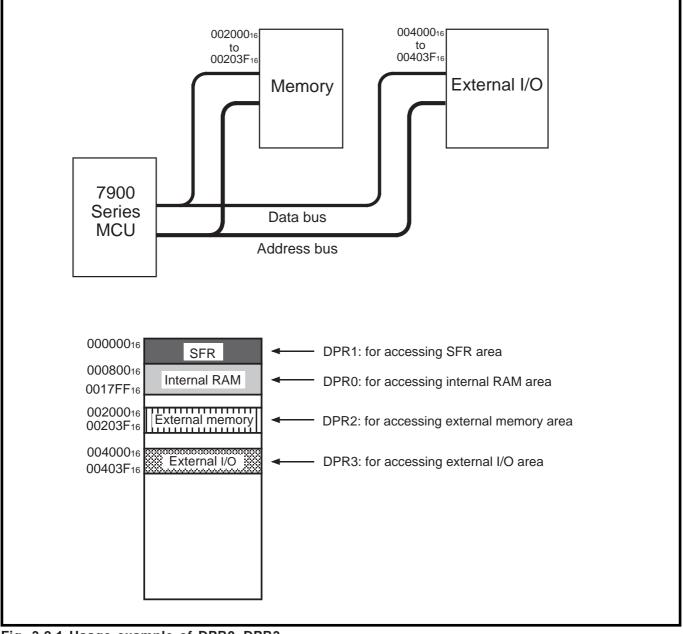


Fig. 3.2.1 Usage example of DPR0–DPR3

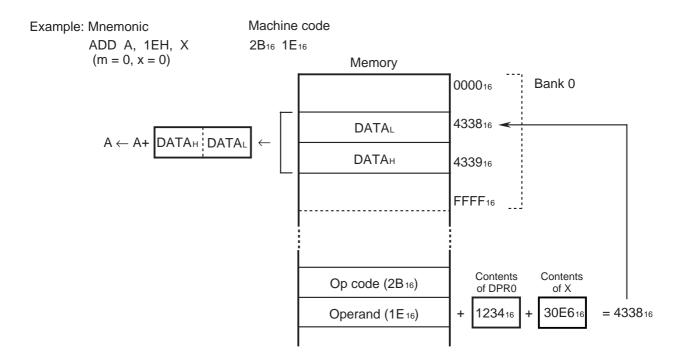
3.3 8- and 16-bit data processing

In the conventional 7700 Family, the same machine code is assigned to an 8- and its corresponding 16-bit instruction in order to reduce program size, so that it is necessary to specify whether 8- or 16-bit data is processed, by using flags m and x. The 7900 Series incorporates new instructions with the conventional instructions. These new instructions enable 8-bit operation independent of flags m and x. By using these new instructions, 8-bit data can be processed while flags are set for 16-bit data length, preventing an overhead generated by setting flags. Figure 3.3.1 shows an 8-bit operation example.

Fig. 3.3.1 8-bit operation example

When executing the instructions that require the data length setting by flags m and x, the number of bytes or execution cycles is affected by this setting. For details, refer to section "4.2 Description of each instruction" or "Appendix 1. 7900 Series machine instructions."

HOW TO USE 7900 SERIES INSTRUCTIONS


3.4 Index registers X and Y

3.4 Index registers X and Y

The contents of index register X or Y facilitate to specify an effective address. For example, the direct indexed X addressing mode is described below. Refer to section "**2.3 Addressing modes**" for details.

<Example> Direct indexed X addressing mode

A sum of the instruction's operand, the contents of a direct page register, and the contents of index register X indicates a memory location in bank 0. The contents in this memory location are data to be processed. However, when the above sum exceeds the boundary of bank 0 or bank 1, a memory location in bank 1 or bank 2 is specified, respectively.

3.5 Branch instructions

3.5 Branch instructions

The branch instructions are classified into the following 6 categories:

- (1) Relative branch
- (2) Absolute branches (absolute and absolute long)
- (3) Indirect branches (absolute indirect and absolute indirect long)
- (4) Relative subroutine call
- (5) Absolute subroutine calls (absolute and absolute long)
- (6) Indirect subroutine call (absolute Indexed X indirect)

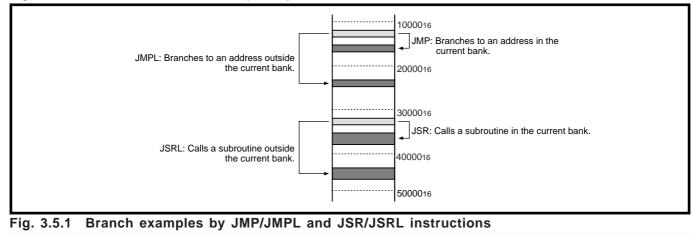
Relative branch and relative subroutine call instructions have the following features:

- Each instruction has a length of 2 or 3 bytes.
- Program area can be reallocated dynamically during program execution.
- Addresses to which the program can branch are limited within a specified range. Refer to section "4.2 Description of each instruction" for details.

Examples:

Exampleoi	
(i) BRA instruction	Within a range of -128 to +127 referenced to PC just after instruction
	execution
(ii) BRAL instruction	Within a range of -32768 to +32767 referenced to PC just after instruction
	execution
(iii) BSR instruction	Within a range of -1024 to +1023 referenced to PC just after instruction
	execution

On the other hand, absolute branch, absolute subroutine call, indirect branch and indirect subroutine call instructions have the following features:


• Any address within the 16-Mbyte space can be directly specified as a branch destination address (absolute long).

• Any address limited within the 64-Kbyte space (a bank), containing PC being used, also can be specified as a branch destination address. In this case, byte length of an instruction and the number of instruction execution cycles can be reduced. Refer to section **"4.2 Description of each instruction"** for details.

Examples:

(i) JMP instruction	Branches to a 64-Kbyte space specified by PG in which the last byte of an instruction is located.
(ii) JMPL instruction …	Branches to a specified address within the 16-Mbyte space.
(iii) JSR instruction …	Branches to a 64-Kbyte space specified by PG in which the last byte of an instruction is located. Returns from the branch destination address by the RTS instruction.
(iv) JSRL instruction	Branches to a specified address within the 16-Mbyte space. Returns from the branch destination address by the RTL instruction.

Figure 3.5.1 shows the branch examples by JMP/JMPL and JSR/JSRL instructions.

CHAPTER 4 INSTRUCTIONS

4.1 Instruction set

4.2 Description of each instruction

4.3 Notes for software development

4.1 Instruction set

4.1 Instruction set

The 7900 Series CPU uses the instruction set with 203 instructions.

Instructions marked by * are the new instructions that have been added to the 7751 Series instruction set. The remarks column shows that a conventional 7700 Family's instruction is included in the corresponding new instruction.

Category	Instruction	Description	Remarks
Load	LDA	Acc ←M	
	* LDAB	Acc ←M8 (Extended with "0"s.)	
	* LDAD	E ←M32	
	* LDD n	DPRn←IMM16 (n = 0 to 3. Multiple operations can be specified.)	
	LDT	DT ←IMM8	
	LDX	$X \leftarrow M$	
	* LDXB	X \leftarrow IMM8 (Extended with "0"s.)	
	LDY	Y ←M	
	* LDYB	Y ←IMM8 (Extended with "0"s.)	
Store	STA	M ←Acc	
	* STAB	M8 ←Acc∟	
	* STAD	M32 ←E	
	STX	M ←X	
	STY	M ←Y	
Transfer between	* TAD n	$DPRn \leftarrow A (n = 0 \text{ to } 3)$	including TAD instruction
registers	TAS	S ←A	
	TAX	$X \leftarrow A$	
	TAY	Y ←A	
	* TBD n	$DPRn \leftarrow B (n = 0 \text{ to } 3)$	including TBD instruction
	TBS	S ←B	
	ТВХ	X ←B	
	TBY	Y ←B	
	* TDA n	A \leftarrow DPRn (n = 0 to 3)	including TDA instruction
	* TDB n	B \leftarrow DPRn (n = 0 to 3)	including TDB instruction
	* TDS	S ←DPR0	
	TSA	A ←S	
	TSB	B ←S	
	* TSD	DPR0←S	
	TSX	X ←S	
	ТХА	A ←X	
	ТХВ	B ←X	
	TXS	S ←X	
	TXY	Y ←X	
	TYA	A ←Y	
	TYB	B ←Y	
	TYX	$X \leftarrow Y$	
	XAB	A	

Category	Instruction	Description	Remarks
Transfer between	* MOVM	$M \rightarrow M$	including LDM instruction
memories	* MOVMB	M8 ←M8	
	* MOVR	$M(dest n) \leftarrow M(source n)$ (Multiple operations can	
		be specified.) $(n = 0 \text{ to } 15)$	
	* MOVRB	M8(dest n) ←M8(source n) (Multiple operations can	
		be specified.) $(n = 0 \text{ to } 15)$	
Block transfer	MVN	M (n to $n + i - 1$) \leftarrow M (m to $m + i - 1$) (i:transfer byte number)	
	MVP	M (n - i + 1 to n) \leftarrow M (m - i + 1 to m) (i:transfer byte number)	
Stack operation	PEA	Stack ←IMM16	
	PEI	Stack \leftarrow M16 (DPRn + dd) (n = 0 to 3)	
	PER	Stack←PC + IMM16	
	PHA	Stack ← A	
	PHB	Stack ← B	
	PHD	Stack ← DPR0	
	* PHD n	Stack ← DPRn (n = 0 to 3. Multiple operations can be specified.)	
	PHG	Stack ← PG	
	PHP	Stack←PS	
	PHT	Stack ← DT	
	PHX	Stack←X	
	PHY	Stack←Y	
	PLA	A ←Stack	
	PLB	B ←Stack	
	PLD	DPR0←Stack	
	* PLD n	DPRn←Stack (n = 0 to 3. Multiple operations can be specified.)	
	PLP	PS ←Stack	
	PLT	DT ←Stack	
	PLX	X ←Stack	
	PLY	Y ←Stack	
	PSH	Stack \leftarrow Any specified register among A, B, X, Y,	
		DPR0, DT, PG, and PS. (Multiple operations	
		can be specified)	
		M (S to $S-i+1$) $\leftarrow A, B, X, Y, DPR0, DT, PG, PS$	
		$S \leftarrow S - i$	
		(i : Number of bytes corresponding to the registers	
		saved to the stack.)	
	PUL	Any specified register among A, B, X, Y, DPR0,	
		DT, and PS. ←Stack (Multiple operations can be specified)	
		A, B, X, Y, DPR0, DT, PS \leftarrow M (S + 1 to S + i)	
		$S \leftarrow S+i$	
		(i : Number of bytes corresponding to the registers	
		restored from the stack.)	

Category	Instruction	Description	Remarks
Stack operation & Load	* PHLD n	stack \leftarrow DPRn, DPRn \leftarrow IMM16 (n = 0 to 3. Multiple	
		operations can be specified)	
Clearance	* CLR	Acc ←0	
	* CLRB	Acc∟ ←0	
	* CLRM	M ←0	
	* CLRMB	M8 ←0	
	* CLRX	$X \leftarrow 0$	
	* CLRY	Y ←0	
Addition	ADC	Acc \leftarrow Acc + M + C	
	* ADCB	Acc∟ ←Acc∟ + IMM8 + C	
	* ADCD	$E \leftarrow E + M32 + C$	
	* ADD	Acc \leftarrow Acc + M	
	* ADDB	Acc∟ ←Acc⊾ + IMM8	
	* ADDD	$E \leftarrow E + M32$	
	* ADDM	$M \leftarrow M + IMM$	
	* ADDMB	M8 \leftarrow M8 + IMM8	
	* ADDMD	M32 ←M32 + IMM32	
	* ADDS	S ←S + IMM8	
	* ADDX	$X \leftarrow X + IMM (IMM = 0 \text{ to } 31)$	
	* ADDY	$Y \leftarrow Y + IMM (IMM = 0 \text{ to } 31)$	
Increment	INC	Acc \leftarrow Acc + 1 or M \leftarrow M + 1	
	INX	$X \leftarrow X + 1$	
	INY	$Y \leftarrow Y + 1$	
Subtraction	SBC	Acc \leftarrow Acc - M - \overline{C}	
	* SBCB	$Acc \leftarrow Acc \leftarrow - IMM8 - \overline{C}$	
	* SBCD	$E \leftarrow E - M32 - \overline{C}$	
	* SUB	Acc ←Acc - M	
	* SUBB	Acc∟ ←Acc∟ − IMM8	
	* SUBD	$E \leftarrow E - M32$	
	* SUBM	$M \leftarrow M - IMM$	
	* SUBMB	M8 \leftarrow M8 - IMM8	
	* SUBMD	M32 ←M32 - IMM32	
	* SUBS	S ←S – IMM8	
	* SUBX	$X \leftarrow X - IMM (IMM = 0 \text{ to } 31)$	
	* SUBY	Y \leftarrow Y - IMM (IMM = 0 to 31)	
Decrement	DEC	Acc \leftarrow Acc - 1 or M \leftarrow M - 1	
	DEX	$X \leftarrow X - 1$	
	DEY	$Y \leftarrow Y - 1$	
Multiplication	MPY	(B, A) \leftarrow A (Multiplicand) X M (Multiplier), Unsigned	
-	MPYS	$(B, A) \leftarrow A$ (Multiplicand) X M (Multiplier), Signed	
Division	DIV	A (Quoitent), B (remainder) \leftarrow (B, A) \div M, Unsigned	
	DIVS	A (Quoitent), B (remainder) \leftarrow (B, A) \div M, Signed	
Multiplied	RMPA	$(B, A) \leftarrow (B, A) + M (DT:X) \times M (DT:Y)$	
accumulation		(repeating 0 to 255 times)	

Category	Instruction	Description	Remarks
Logical OR	ORA	Acc ←Acc∨M	
	* ORAB	Acc∟ ←Acc∟∨IMM8	
	* ORAM	$M \leftarrow M \lor IMM$	Including SEB
			instruction
	* ORAMB	M8 \leftarrow M8 \vee IMM8	
	* ORAMD	M32 ←M32∨IMM32	
Logical AND	AND	Acc ←Acc∧M	
	* ANDB	Acc∟ ←Acc∟∧IMM8	
	* ANDM	$M \leftarrow M \land MM$	Including CLB
			instruction
	* ANDMB	M8 \leftarrow M8 MM8	
	* ANDMD	M32 ←M32∧IMM32	
Logical exclusive OR	EOR	Acc ←Acc∀M	
	* EORB	Acc∟ ←Acc∟∀IMM8	
	* EORM	$M \leftarrow M \forall IMM$	
	* EORMB	$M8 \leftarrow M8 \forall IMM8$	
	* EORMD	M32 ←M32∀IMM32	
Comparison	CMP	Acc – M	
	* CMPB	Accl – IMM8	
	* CMPD	E – IMM32	
	* CMPM	M – IMM	
	* CMPMB	M8 – IMM8	
	* CMPMD	M32 – IMM32	
	CPX	X – M	
	CPY	Y – M	
Arithmetic shift left	ASL	Shifts the contents of Acc or M to the left by 1 bit.	
	* ASL #n	Shifts the contents of A to the left by n bits ($n = 0$ to 15).	
	* ASLD #n	Shifts the contents of E to the left by n bits (n = 0 to 31).	
Arithmetic shift right	ASR	Shifts the contents of Acc or M holding a sign to the	
		right by 1 bit.	
	* ASR #n	Shifts the contents of A holding a sign to the right by n	
		bits (n = 0 to 15).	
	* ASRD #n	Shifts the contents of E holding a sign to the right by n	
		bits (n = 0 to 31).	
Logical shift right	LSR	Shifts the contents of Acc or M to the right by 1 bit.	
	* LSR #n	Shifts the contents of A to the right by n bits ($n = 0$ to 15).	
	* LSRD #n	Shifts the contents of E to the right by n bits ($n = 0$ to 31).	

Category	Instruction	Description	Remarks
Rotation to left	RLA	Rotates the contents of A to the left by n bits. (When m =	
		0:n = 0 to 65535, when m = 1:n = 0 to 255)	
	ROL	Links the contents of Acc or M with C, and rotates the	
		result to the left by 1 bit.	
	* ROL #n	Links the contents of A with C, and rotates the result to	
		the left by n bits (n = 0 to 15).	
	* ROLD #n	Links the contents of E with C, and rotates the result to	
		the left by n bits (n = 0 to 31).	
Rotation to right	ROR	Links the contents of Acc or M with C, and rotates the	
-		result to the right by 1 bit.	
	* ROR #n	Links the contents of A with C, and rotates the result to	
		the right by n bits (n = 0 to 15).	
	* RORD #n	Links the contents of E with C, and rotates the result to	
		the right by n bits (n = 0 to 31).	
Extension Sign	EXTS	Acc ←Acc∟ (Extended with a sign.)	
Extended eight	* EXTSD	$E \leftarrow E_{L}$ (= A) (Extended with a sign.)	
Extension Zero	EXTZ	Acc \leftarrow Acc (Extended with "0"s.)	
	* EXTZD	$E \leftarrow E_{L} (= A)$ (Extended with "0"s.)	
Sign invertion	* NEG	$Acc \leftarrow -Acc$	
0	* NEGD	$E \leftarrow -E$	
Absolute value	* ABS	$Acc \leftarrow Acc $	
	* ABSD	$E \leftarrow E $	
Flag manipulation	CLC	$\begin{array}{c} c \\ c \\ c \\ c \\ \end{array} \leftarrow 0 \end{array}$	
i ag inanpalation	CLI	$I \leftarrow 0$	
	CLM	$m \leftarrow 0$	
	CLP	$PS_{L}(bit n) \leftarrow 0$ (n = 0 to 7. Multiple operations can be	
		specified.)	
	CLV	$V \leftarrow 0$	
	SEC	$C \leftarrow 1$	
	SEI		
	SEM	$m \leftarrow 1$	
	SEP	PS_{L} (bit n) \leftarrow 1 (n = 0 to 7. Multiple operations can be	
	0L1	specified.)	
Conditional branch	BRA/BRAL	$PC \leftarrow PC + cnt + REL$	
		(cnt : bytes number of BRA/BRAL instruction)	
	JMP	PC ←Destination address	
		PC ←mmll	
	JMPL	PG, PC ←Destination address	
	JIVIT	PG, PC ← Destination address PC ← mmll	
		PC ←mmm PG ←hh	

Category	Instruction	Description	Remarks
Subroutine call	* BSR	Stack ← PC	
		$PC \leftarrow PC + 2 + REL$	
	JSR	Stack ← PC	
		PC ←Destination address	
		$PC \leftarrow PC + 3$	
		M(S, S−1) ←PC	
		$S \leftarrow S-2$	
		PC ←mmll	
	JSRL	Stack ←PG, PC	
		PG, PC ←Destination address	
		$PC \leftarrow PC + 4$	
		$M(S, S-2) \leftarrow PG, PC$	
		$S \leftarrow S-3$	
		PC ←mmll	
		PG ←hh	
Conditional branch	BBC	Branches relatively when the specified bits of M are all "0."	
	* BBCB	Branches relatively when the specified bits of M8 are	
		all "0."	
	BBS	Branches relatively when the specified bits of M are all "1."	
	* BBSB	Branches relatively when the specified bits of M8 are	
		all "1."	
	BCC	Branches relatively when $C = 0$.	
	BCS	Branches relatively when $C = 1$.	
	BEQ	Branches relatively when $Z = 1$.	
	* BGE	Branches relatively when $N \forall V = 0$.	
	* BGT	Branches relatively when $Z = 0$ and $N \forall V = 0$.	
	* BGTU	Branches relatively when $C = 1$ and $Z = 0$.	
	* BLE	Branches relatively when $Z = 1$ or $N \forall V = 1$.	
	* BLEU	Branches relatively when $C = 0$ and $Z = 1$.	
	* BLT	Branches relatively when $N \forall V = 1$.	
	BMI	Branches relatively when $N = 1$.	
	BNE	Branches relatively when $Z = 0$.	
	BPL	Branches relatively when $N = 0$.	
	* BSC	Branches relatively when the specified one bit of A	
		or M is "0."	
	* BSS	Branches relatively when the specified one bit of A	
		or M is "1."	
	BVC	Branches relatively when $V = 0$.	
	BVS	Branches relatively when V = 1.	
Compare &	* CBEQ	Branches relatively when Acc = IMM or M = IMM.	
Conditional branch	* CBEQB	Branches relatively when AccL = IMM8 or M8 = IMM8.	
	* CBNE	Branches relatively when Acc \neq IMM or M \neq IMM.	
	* CBNEB	Branches relatively when $Acc \neq IMM8$ or $M8 \neq IMM8$.	

Category	Instruction	Description	Remarks
Decrement &	* DEBNE	$M \leftarrow M - IMM$. Branches relatively when $M \neq 0$ (IMM)	
Conditional branch		= 0 to 31).	
	* DXBNE	$X \leftarrow X - IMM$. Branches relatively when $X \neq 0$ (IMM)	
		= 0 to 31).	
	* DYBNE	$Y \leftarrow Y - IMM$. Branches relatively when $Y \neq 0$ (IMM)	
		= 0 to 31).	
Return	RTI	PG, PC, PS ←Stack	
	RTL	PG, PC ←Stack	
	RTS	PC ←Stack	
Load & Return	* RTLD n	DPRn ←Stack, PG, PC ←Stack (n = 0 to 3. Multiple	
		operations can be specified.)	
	* RTSD n	DPRn \leftarrow Stack, PC \leftarrow Stack (n = 0 to 3. Multiple	
		operations can be specified.)	
Software interrupt	BRK	Generates a BRK interrupt.	
Special	STP	Stops oscillation.	
	WIT	Stops the CPU clock.	
No operation	NOP	$PC \leftarrow PC + 1$	

4.2 Description of each instruction

4.2 Description of each instruction

This section describes each instruction. Each instruction is described using one page per one instruction as a general rule. The description page is headed by the instruction mnemonic, and the pages are arranged in alphabetical order of the mnemonics. For each instruction, its operation and description (Notes 1, 2), status flags' change, and a list sorted by addressing modes of the assembly language coding format (Note 3), the machine code, the byte number and the minimum cycle number (Note 4) are described.

- Notes 1: In the description of each instruction operation, the operation regarding PC (program counter) is described only for an instruction affecting the processing.
 When an instruction is executed, its instruction bytes are added to the contents of PC and PC contains the address of the memory location of the instruction to be executed next. When a carry occurs at this addition, PG (program bank register) is incremented by 1.
 - 2: [Operation] in the description of each instruction shows the contents of each register and memory after executing the instruction. The detailed operation sequence is omitted.
 - **3:** [**Description example**] in this manual is an example of assembly language description. Especially for addressing mode specification, various methods for mnemonic description in the 7900 Series are available, including the formats shown below. For more information, refer to the user's manual of the assembler to be used.

Addressing mode	Specification	Instruction coding example
Direct	DP0+:Offset6/8	ADD A,DP0+:04H
	DP0:label	ADD A,DP0:WORK
Direct indirect	(DP0+:Offset6/8)	ADD A,(DP0+:04H)
	(DP0:label)	ADD A,(DP0:WORK)
Direct indirect long	L(DP0+:Offset6/8)	ADD A,L(DP0+:04H)
	L(DP0:label)	ADD A,L(DP0:WORK)
Stack pointer relative	Offset,S	ADD A,05H,S
Stack pointer relative indirect indexed Y	(Offset,S),Y	ADD A,(05H,S),Y
Absolute	DT+:Offset16	ADD A,DT +:1000H
	DT:label	ADD A,DT:WORK
Absolute indirect	(Address)	JMP (1000H)
	(label)	JMP (TABLE)
Absolute long	LG:label	ADD A,LG:WORK
Absolute indirect long	L(DT+:Offset16)	ADD A,L(DT +:1000H)
	L(DT:label)	ADD A,L(DT:WORK)

■ Methods for specifying addressing modes in Mitsubishi assembler

• Offset6/8 : 6-bit offset value (when using DPR0 through DPR3) or 8-bit offset value (when using DPR0).

• Offset : 8-bit offset value.

• Offset16 : 16-bit offset value.

• Address : Memory address to be referenced.

• label : Label indicating the memory address to be referenced.

4.2 Description of each instruction

Notes 4: The cycle number shown is the minimum possible number, and this number depends on the following conditions:

•Value of direct page register's low-order byte

The cycle number shown is a number when the direct page register's low-order byte (DPRnL) is "0016." When using an addressing mode that uses the direct page register in the condition of DPRnL \neq "0016," the number which is obtained by adding 1 to the shown number is an actual cycle number.

- •Number of bytes that have been loaded in an instruction queue buffer
- Whether the address of the memory read/write is even or odd
- Accessing of an external memory area in the condition of BYTE = "H" (using 8-bit external bus)
 Bus cycle

4.2 Description of each instruction

The following table shows the symbols that are used in instructions' description and the lists of this section, and each instruction is described bellow.

Symbol	Description	
С	Carry flag	
Z	Zero flag	
I	Interrupt disable flag	
D	Decimal mode flag	
Х	Index register length flag	
m	Data length flag	
V	Overflow flag	
Ν	Negative flag	
IPL	Processor interrupt priority level	
+	Addition	
_	Subtraction	
Х	Multiplication	
*	Multiplication	
÷	Division	
/	Division	
\wedge	Logical AND	
\vee	Logical OR	
\forall	Logical exclusive OR	
	Absolute value	
_	Negation	
\leftarrow	Movement toward the arrow direction	
\rightarrow	Movement toward the arrow direction	
$\stackrel{\leftarrow}{\rightarrow}$	Exchange	
Acc	Accumulator	
Ассн	Accumulator's high-order 8 bits	
Accl	Accumulator's low-order 8 bits	
А	Accumulator A	
Ан	Accumulator A's high-order 8 bits	
AL	Accumulator A's low-order 8 bits	
В	Accumulator B	
Вн	Accumulator B's high-order 8 bits	
BL	Accumulator B's low-order 8 bits	
E	Accumulator E	
Ен	Accumulator E's high-order 16 bits	
EL	Accumulator E's low-order 16 bits	
Х	Index register X	
Хн	Index register X's high-order 8 bits	
XL	Index register X's low-order 8 bits	
Y	Index register Y	
Үн	Index register Y's high-order 8 bits	
YL	Index register Y's low-order 8 bits	
S	Stack pointer	

4.2 Description of each instruction

Symbol	Description
PC	Program counter
РСн	Program counter's high-order 8 bits
PC∟	Program counter's low-order 8 bits
REL	Relative address
PG	Program bank register
DT	Data bank register
DPR0	Direct page register 0
DPR0H	Direct page register 0's high-order 8 bits
DPR0∟	Direct page register 0's low-order 8 bits
DPRn	Direct page register n
DPRnH	Direct page register n's high-order 8 bits
DPRn∟	Direct page register n's low-order 8 bits
PS	Processor status register
PSн	Processor status register's high-order 8 bits
PS∟	Processor status register's low-order 8 bits
PS(bit n)	The n-th bit of processor status register
Μ	Memory contents
Mn, MEMn	n-bit address or contents of memory
M(oprd)	Contents of memory location specified by operand
M(bit n)	The n-th bit of the contents of memory
IMM	Immediate value (8 bits or 16 bits)
IMMn	n-bit immediate data
IMMn _H	High-order data of n-bit immediate data
IMMn∟	Low-order data of n-bit immediate data
EAR	Effective address (16 bits)
EARH	High-order 8 bits of effective address
EAR∟	Low-order 8 bits of effective address
MSB	Most significant bit
LSB	Least significant bit
dd	Displacement for DPR (8 bits or 6 bits)
IMMHHIMMHLIMMLHIMMLL	32-bit immediate value (bytes immhh, immh, immh, and immh are shown from the highest one.
imm⊦imm∟	16-bit immediate value (imm _H represents the high-order 8 bits, and imm _L represents
	the low-order 8 bits.)
imm	8-bit immediate value
imm	n-bit immediate value
hhmmll	24-bit address value (hh represents the high-order 8 bits, mm represents the middle-orde
	8 bit, and II represents the low-order 8 bits.)
mmll	16-bit address value (mm represents the high-order 8 bits, and II represents the low-order 8 bits.
nn	Displacement for S (8 bits)
N 1, N 2	8-bit data (2 types of 8-bit data)
rr	Displacement for PC (signed 8 bits)
rr⊣rr∟	Displacement for PC (signed 16 bits) (rr _H represents the high-order 8 bits, and
	rr⊾ represents the low-order 8 bits.)
hh1, hh2	Bank specification (2 types of 8-bit data)
source	Operand specified as transfer source
dest	Operand specified as transfer destination

ABS

Function :	Absolute value
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c c} Acc \leftarrow Acc \\ \hline \underline{When \ m = "0"} \\ Acc & Acc \\ \hline \hline \\ & \frown & \leftarrow & \boxed{\hline \\ \\ \hline \\ \hline \\ \underline{When \ m = "1"} \\ Acc & Acc \\ \hline \\ & \frown & \leftarrow & \boxed{\hline \\ \\ \hline \\ \hline \\ \hline \\ \end{array} \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ $
Description :	Obtains the absolute value of Acc contents and stores the result in Acc.
Status flags :	IPL N V m x D I Z C - 0 V Z 0
N : V :	Always "0" because MSB of the operation result is "0." Set to "1" if the operation result exceeds +32767 (or +127 when $m = "1"$). Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Always "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ABS A	E1 ₁₆	1	3
А	ABS B	8116, E116	2	4

CLM		
ABS	А	; $A \leftarrow A $
SEM		
ABS	В	; $BL \leftarrow BL $

ABSD

Function	:	Absolute value
Operation data len	gth:	32 bits
Operation	:	$E \leftarrow IEI$ $E \qquad E$ $\Box \Box \Box \Box \Box \Box \Box$
Description	:	Obtains the absolute value of the E contents and stores the result in E.● This instruction is unaffected by flag m.
Status flags	:	IPL N V m x D I Z C
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
١	N : / : Z :	Always "0" because MSB of the operation result is "0." Set to "1" if the operation result exceeds +2147483647. Otherwise, cleared to "0." Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Always "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ABSD E	3116, 9016	2	5

Description example:

ABSD E ; $E \leftarrow |E|$

ADC

Function :	Addition with carry	
Operation data length:	16 bits or 8 bits	
Operation :	$Acc \leftarrow Acc + M + C$ $When m = "0"$ $Acc \qquad Acc \qquad M16 \qquad C$ $\square \qquad \leftarrow \qquad \square \qquad + \qquad \square \qquad + \qquad \square$ $When m = "1"$ $AccL \qquad AccL \qquad M8 \qquad C$ $\square \qquad \leftarrow \qquad \square \qquad + \qquad \square \qquad + \qquad \square$ $* In this case, the contents of Acc+ do not change.$	
Description :	Adds the contents of Acc, memory, and flag C, and stores the result in Acc. ● This instruction operates in decimal when flag D = "1."	
Status flags :	IPL N V m x D I Z C - N V - - - Z C	
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Meaningless when flag $D =$ "1."	
V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag m = "1"). Otherwise, cleared to "0." Meaningless when flag D = "1."	
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0." Meaningless when flag $D = "1."$	
C :	Set to "1" when flag D = "0" and the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag m = "1"). Otherwise, cleared to "0." Set to "1" when flag D = "1" and the result of the operation (regarded as an unsigned operation) exceeds +9999 (+99 when flag m = "1"). Otherwise, cleared to "0."	

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADC A, #imm	3116, 8716, imm (B116, 8716, imm)	3	3 (3)
DIR	ADC A, dd	2116, 8A16, dd (A116, 8A16, dd)	3	5 (7)
DIR, X	ADC A, dd, X	2116, 8B16, dd (A116, 8B16, dd)	3	6 (8)
(DIR)	ADC A, (dd)	2116, 8016, dd (A116, 8016, dd)	3	7 (9)
(DIR, X)	ADC A, (dd, X)	2116, 8116, dd (A116, 8116, dd)	3	8 (10)
(DIR), Y	ADC A, (dd), Y	2116, 8816, dd (A116, 8816, dd)	3	8 (10)
L(DIR)	ADC A, L(dd)	2116, 8216, dd (A116, 8216, dd)	3	9 (11)
L(DIR), Y	ADC A, L(dd), Y	2116, 8916, dd (A116, 8916, dd)	3	10(12)
SR	ADC A, nn, S	2116, 8316, nn (A116, 8316, nn)	3	6 (8)
(SR), Y	ADC A, (nn, S), Y	2116, 8416, nn (A116, 8416, nn)	3	9 (11)
ABS	ADC A, mmll	2116, 8E16, II, mm (A116, 8E16, II, mm)	4	5 (7)
ABS, X	ADC A, mmll, X	2116, 8F16, II, mm (A116, 8F16, II, mm)	4	6 (8)
ABS, Y	ADC A, mmll, Y	2116, 8616, II, mm (A116, 8616, II, mm)	4	6 (8)
ABL	ADC A, hhmmll	2116, 8C16, II, mm, hh (A116, 8C16, II, mm, hh)	5	6 (8)
ABL, X	ADC A, hhmmll, X	2116, 8D16, II, mm, hh (A116, 8D16, II, mm, hh)	5	7 (9)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM ADC.W ADC	A, #IMM16 B, MEM16	; A \leftarrow A + IMM16 + C ; B \leftarrow B + MEM16 + C
SEM ADC.B ADC	A, #IMM8 B, MEM8	; $A_L \leftarrow A_L + IMM8 + C$; $B_L \leftarrow B_L + MEM8 + C$

ADCB

Function		:	Addition with carry		
Operation data length: 8 bits		8 bits			
Operation		:	$Acc \leftarrow Acc + IMM8 + C$ $Acc \leftarrow Acc \leftarrow C$ $\leftarrow + IMM8 + $		
Description		:	 Adds the contents of AccL, the immediate value, and flag C in 8-bit length, and stores the result in AccL. This instruction is unaffected by flag m. The contents of AccH do not change. This instruction operates in decimal when flag D = "1." 		
Status flags	6	:	IPL N V m x D I Z C N V Z C		
	Ν	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Meaningless when flag $D = "1$."		
	V	:	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to $+127$. Otherwise, cleared to "0." Meaningless when flag D = "1."		
	Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0." Meaningless when flag $D = "1$."		
	С	:	Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +255 (+99 when flag $D = "1"$). Otherwise, cleared to "0."		

Addressing mode	Syntax	Machine code		Cycles
IMM	ADCB A, #imm	3116, 1A16, imm	3	3
IMM	ADCB B, #imm	B116, 1A16, imm	3	3

ADCB	A, #IMM8	; $A_L \leftarrow A_L + IMM8 + C$
ADCB	B, #IMM8	; $B_L \leftarrow B_L + IMM8 + C$

ADCD

Function	:	Addition with carry
Operation data lengtl	1:	32 bits
	:	E ← E + M32 + C E E M32 C → → → → → + → → + → → + → → → + → → → →
Status flags	:	IPL N V m x D I Z C - N V Z C
N	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +4294967295. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADCD E, #imm	3116, 1С16, immll, immlн, immнl, immнн	6	4
DIR	ADCD E, dd	2116, 9A16, dd	3	7
DIR, X	ADCD E, dd, X	2116, 9B16, dd	3	8
(DIR)	ADCD E, (dd)	2116, 9016, dd	3	9
(DIR, X)	ADCD E, (dd, X)	2116, 9116, dd	3	10
(DIR), Y	ADCD E, (dd), Y	2116, 9816, dd	3	10
L(DIR)	ADCD E, L(dd)	2116, 9216, dd	3	11
L(DIR), Y	ADCD E, L(dd), Y	2116, 9916, dd	3	12
SR	ADCD E, nn, S	2116, 9316, nn	3	8
(SR), Y	ADCD E, (nn, S), Y	2116, 9416, nn	3	11
ABS	ADCD E, mmll	2116, 9E16, II, mm	4	7
ABS, X	ADCD E, mmll, X	2116, 9F16, II, mm	4	8
ABS, Y	ADCD E, mmll, Y	2116, 9616, II, mm	4	8
ABL	ADCD E, hhmmll	2116, 9C16, II, mm, hh	5	8
ABL, X	ADCD E, hhmmll, X	2116, 9D16, II, mm, hh	5	9

ADCD	E, #IMM32	; $E \leftarrow E + IMM32 + C$
		; (B, A \leftarrow B, A + IMM32 + C)
ADCD	E, MEM32	; $E \leftarrow E + MEM32 + C$
		; (B, A \leftarrow B, A + MEM32 + C)

ADD

Function	:	Addition	
Operation data lengt	th:	16 bits or 8 bits	
Operation	:	$Acc \leftarrow Acc + M$ $\underline{When m = "0"}$ $Acc \qquad Acc \qquad M16$ $\boxed{\qquad} \leftarrow \boxed{\qquad} + \boxed{\qquad}$	
		When $m = "1"$	
		$\begin{array}{ccccc} Accc & M8 \\ \hline & \leftarrow & \hline & + & \hline \\ \hline & & \\ \end{array}$	
		※ In this case, the contents of Acc ^H do not change.	
Description	:	Adds the contents of Acc and memory, and stores the result in Acc. • This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.	
Status flags	:	IPL N V m x D I Z C	
_		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Ν	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."	
V	:	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag m = "1"). Otherwise, cleared to "0."	
Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."	
С	:	Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds $+65535$ ($+255$ when flag m = "1"). Otherwise, cleared to "0."	

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADD A, #imm	2616, imm (8116, 2616, imm)	2 (3)	1 (2)
DIR	ADD A, dd	2A16, dd (8116, 2A16, dd)	2 (3)	3 (4)
DIR, X	ADD A, dd, X	2B16, dd (8116, 2B16, dd)	2 (3)	4 (5)
(DIR)	ADD A, (dd)	1116, 2016, dd (9116, 2016, dd)	3 (3)	6 (6)
(DIR, X)	ADD A, (dd, X)	1116, 2116, dd (9116, 2116, dd)	3 (3)	7 (7)
(DIR), Y	ADD A, (dd), Y	1116, 2816, dd (9116, 2816, dd)	3 (3)	7 (7)
L(DIR)	ADD A, L(dd)	1116, 2216, dd (9116, 2216, dd)	3 (3)	8 (8)
L(DIR), Y	ADD A, L(dd), Y	1116, 2916, dd (9116, 2916, dd)	3 (3)	9 (9)
SR	ADD A, nn, S	1116, 2316, nn (9116, 2316, nn)	3 (3)	5 (5)
(SR), Y	ADD A, (nn, S), Y	1116, 2416, nn (9116, 2416, nn)	3 (3)	8 (8)
ABS	ADD A, mmll	2E16, II, mm (8116, 2E16, II, mm)	3 (4)	3 (4)
ABS, X	ADD A, mmll, X	2F16, II, mm (8116, 2F16, II, mm)	3 (4)	4 (5)
ABS, Y	ADD A, mmll, Y	1116, 2616, II, mm (9116, 2616, II, mm)	4 (4)	5 (5)
ABL	ADD A, hhmmll	1116, 2C16, II, mm, hh (9116, 2C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	ADD A, hhmmll, X	1116, 2D16, II, mm, hh (9116, 2D16, II, mm, hh)	5 (5)	6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM		
ADD.W	A, #IMM16	; $A \leftarrow A + IMM16$
ADD	B, MEM16	; $B \leftarrow B + MEM16$
SEM		
ADD.B	A, #IMM8	; $A_L \leftarrow A_L + IMM8$
ADD	B, MEM8	; $B_L \leftarrow B_L + MEM8$

ADDB

Function:AdditionOperation data length:8 bitsOperation: $AccL \leftarrow AccL + IMM8$
AccL & AccL
 $\leftarrow = + IMM8$

Description : Adds the contents of Acc_L and immediate value in 8-bit length, and stores the result in Acc_L. ● This instruction is unaffected by flag m.

- The contents of Acc_H do not change.
- This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.

 Status flags
 :
 IPL
 N
 V
 m
 x
 D
 I
 Z
 C

 N
 V
 Z
 C

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +255. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADDB A, #imm	2916, imm	2	1
IMM	ADDB B, #imm	8116, 2916, imm	3	2

ADDB	A, #IMM8	; $A_{L} \leftarrow A_{L} + IMM8$
ADDB	B, #IMM8	; $B_L \leftarrow B_L + IMM8$

ADDD

Function :	Addition
Operation data length:	32 bits
Operation :	$E \leftarrow E + M32$ $E \qquad E \qquad M32$ $\Box \qquad \Box \qquad$
Description :	 Adds the contents of E and memory in 32-bit length, and stores the result in the E. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.
Status flags :	IPL N V m x D I Z C - N V Z C
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +4294967295. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADDD E, #imm	2D16, immLL, immLH, immHL, immHH	5	3
DIR	ADDD E, dd	9A16, dd	2	6
DIR, X	ADDD E, dd, X	9B16, dd	2	7
(DIR)	ADDD E, (dd)	1116, 9016, dd	3	9
(DIR, X)	ADDD E, (dd, X)	1116, 9116, dd	3	10
(DIR), Y	ADDD E, (dd), Y	1116, 9816, dd	3	10
L(DIR)	ADDD E, L(dd)	1116, 9216, dd	3	11
L(DIR), Y	ADDD E, L(dd), Y	1116, 9916, dd	3	12
SR	ADDD E, nn, S	1116, 9316, nn	3	8
(SR), Y	ADDD E, (nn, S), Y	1116, 9416, nn	3	11
ABS	ADDD E, mmll	9E16, II, mm	3	6
ABS, X	ADDD E, mmll, X	9F16, II, mm	3	7
ABS, Y	ADDD E, mmll, Y	1116, 9616, II, mm	4	8
ABL	ADDD E, hhmmll	1116, 9C16, II, mm, hh	5	8
ABL, X	ADDD E, hhmmll, X	1116, 9D16, II, mm, hh	5	9

Description example:

ADDD ADDD E, #IMM32 E, MEM32 ; E \leftarrow E + IMM32 (B, A \leftarrow B, A + IMM32) ; E \leftarrow E + MEM32 (B, A \leftarrow B, A + MEM32)

ADDM

Function :	Addition
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow M + IMM$ $\underline{When m = "0"}$ $M16 \qquad M16$ $\boxed{M16} \leftarrow \boxed{M16} + IMM16$ $\underline{When m = "1"}$ $M8 \qquad M8$ $\boxed{M8} \leftarrow \boxed{M8} + IMM8$
Description :	Adds the contents of memory and immediate value, and stores the result in memory. ● This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.
Status flags :	IPL N V m x D I Z C - N V Z C
N : V :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside

- the range of -32768 to +32767 (-128 to +127 when flag m = "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the result of the operation is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag m = "1"). Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ADDM dd, #imm	5116, 0316, dd, imm	4	7
ABS	ADDM mmll, #imm	5116, 0716, II, mm, imm	5	7

Note : When flag m = "0," the byte number increases by 1.

CLM ADDM.W SEM	MEM16, #IMM16	; MEM16 \leftarrow MEM16 + IMM16
ADDM.B	MEM8, #IMM8	; MEM8 \leftarrow MEM8 + IMM8

ADDMB

Function Addition : Operation data length: 8 bits Operation $M8 \leftarrow M8 + IMM8$: M8 M8 + IMM8 Description Adds the contents of memory and immediate value in 8-bit length, and stored the result in • memory. • This instruction is unaffected by flag m. • This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction. Status flags 1 IPL Ν V m Х D I Ζ С

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Ν

V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."

V

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +255. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ADDMB dd, #imm	5116, 0216, dd, imm	4	7
ABS	ADDMB mmll, #imm	5116, 0616, II, mm, imm	5	7

Description example:

ADDMB

MEM8, #IMM8

; $MEM8 \leftarrow MEM8 + IMM8$

Ζ

С

ADDMD

Function	:	Addition
Operation data le	ngth:	32 bits
Operation	:	$\begin{array}{cccc} M32 \leftarrow M32 + IMM32 \\ \hline M32 & M32 \\ \hline & \hline & \leftarrow \end{array} + IMM32 \end{array}$
Description	:	 Adds the contents of memory and immediate value in 32-bit length, and stores the result in memory. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.
Status flags	;	IPL N V m x D I Z C - N V - - - Z C
	N : V :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +4294967295. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ADDMD dd, #imm	5116, 8316, dd, immll, immlh, immhl, immhh	7	10
ABS	ADDMD mmll, #imm	5116, 8716, II, mm, immll, immlh, immhl, immhh	8	10

Description example:

ADDMD

MEM32, #IMM32

; MEM32 \leftarrow MEM32 + IMM32

ADDS

Function Addition ÷ Operation data length: 16 bits $S \leftarrow S + IMM8$ Operation ÷ S S + IMM8 ← Description Adds the contents of S and 8-bit immediate value in 16-bit length, and stores the result in S. 1 Extend zero of the immediate value to the 16-bit immediate value, at the operation.

- This instruction is unaffected by flag m.
- This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.

 Status flags
 :
 IPL
 N
 V
 m
 x
 D
 I
 Z
 C

 N
 V
 Z
 C

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADDS #imm	3116, 0A16, imm	3	2

Description example:

ADDS

#IMM8

; S \leftarrow S + IMM8

ADDX

Function	:	Addition	
Operation data le	ngth:	16 bits or 8 bits	
Operation	:	$X \leftarrow X + IMM \qquad (IMM = 0 \text{ to } 31)$ $\frac{When \ x = "0"}{X} \qquad X$ $\Box \qquad \Box \qquad \leftarrow \Box \qquad + IMM$ $When \ x = "1"$	
		X_{L} X_{L} \longrightarrow + IMM $*$ In this case, the contents of X_{H} do not change.	
Description	:	 Adds the contents of X and immediate value (0 to 31), and stores the result in X. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction. 	
Status flags	; :	IPL N V m x D I Z C - N V Z C	
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."	
	V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag x is "1"). Otherwise, cleared to "0."	
	Z :	Set to "1" when the operation result is "0." Otherwise, cleared to "0."	
1	C :	Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag $x =$ "1"). Otherwise, cleared to "0."	

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADDX #imm	0116, imm	2	2

Note : Any value from 0 to 31 can be set to imm.

CLP	х	
ADDX	#IMM	; $X \leftarrow X + IMM$
SEP	х	
ADDX	#IMM	; $X_L \leftarrow X_L + IMM$

ADDY

Function		:	Addition
Operation data le	ngtl	1:	16 bits or 8 bits
Operation		:	$\begin{array}{ll} Y\leftarrow Y+IMM & (IMM=0 \text{ to } 31)\\ \hline \underline{When \ x="0"} & Y & Y\\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$
Description		:	 Adds the contents of Y and immediate value (0 to 31), and stores the result in Y. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Clear flag D to "0" when using this instruction.
Status flags	5	:	IPL N V m x D I Z C - N V - - - Z C
	N	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
·	V	:	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag x is "1"). Otherwise, cleared to "0."
	Ζ	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."
	С	:	Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag $x =$ "1"). Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ADDY #imm	0116, imm+2016	2	2

Note : Any value from 0 to 31 can be set to imm.

CLP	Х	
ADDX	#IMM	; $Y \leftarrow Y + IMM$
SEP	х	
ADDX	#IMM	; $Y_{L} \leftarrow Y_{L} + IMM$

AND

Function :	Logical AND
Operation data length:	16 bits or 8 bits
Operation :	Acc \leftarrow Acc \wedge M <u>When m = "0"</u> <u>Acc Acc M16</u> <u>When m = "1"</u> <u>AccL AccL M8</u> \longrightarrow \leftarrow \bigcirc \wedge \bigcirc * In this case, the contents of AccH do not change.
Description :	Performs logical AND between the contents of Acc and the contents of a memory, and stores the result in Acc.
Status flags :	IPL N V m x D I Z C - N - - - - Z -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	AND A, #imm	6616, imm (8116, 6616, imm)	2 (3)	1 (2)
DIR	AND A, dd	6A16, dd (8116, 6A16, dd)	2 (3)	3 (4)
DIR, X	AND A, dd, X	6B16, dd (8116, 6B16, dd)	2 (3)	4 (5)
(DIR)	AND A, (dd)	1116, 6016, dd (9116, 6016, dd)	3 (3)	6 (6)
(DIR, X)	AND A, (dd, X)	1116, 6116, dd (9116, 6116, dd)	3 (3)	7 (7)
(DIR), Y	AND A, (dd), Y	1116, 6816, dd (9116, 6816, dd)	3 (3)	7 (7)
L(DIR)	AND A, L(dd)	1116, 6216, dd (9116, 6216, dd)	3 (3)	8 (8)
L(DIR), Y	AND A, L(dd), Y	1116, 6916, dd (9116, 6916, dd)	3 (3)	9 (9)
SR	AND A, nn, S	1116, 6316, nn (9116, 6316, nn)	3 (3)	5 (5)
(SR), Y	AND A, (nn, S), Y	1116, 6416, nn (9116, 6416, nn)	3 (3)	8 (8)
ABS	AND A, mmll	6E16, II, mm (8116, 6E16, II, mm)	3 (4)	3 (4)
ABS, X	AND A, mmll, X	6F16, II, mm (8116, 6F16, II, mm)	3 (4)	4 (5)
ABS, Y	AND A, mmll, Y	1116, 6616, II, mm (9116, 6616, II, mm)	4 (4)	5 (5)
ABL	AND A, hhmmll	1116, 6C16, II, mm, hh (9116, 6C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	AND A, hhmmll, X	1116, 6D16, II, mm, hh (9116, 6D16, II, mm, hh)	5 (5)	6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code,the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM AND.W	A, #IMM16	; $A \leftarrow A \land IMM16$
AND	B, MEM16	; $B \leftarrow B \land MEM16$
SEM		
AND.B	A, #IMM8	; Al \leftarrow Al \land IMM8
AND	B, MEM8	; $B_L \leftarrow B_L \land MEM8$

ANDB

Function 2 Logical AND Operation data length: 8 bits Operation $\mathsf{Acc}_{\mathsf{L}} \leftarrow \mathsf{Acc}_{\mathsf{L}} \land \mathsf{IMM8}$ ÷ Acc∟ Acc \land IMM8 ← Description Performs logical AND between the contents of AccL and the immediate value in 8-bit length, 2 and stores the result in AccL. • This instruction is unaffected by flag m. ● The contents of Acc_H do not change. Status flags 1 Ζ IPL С Ν V D Т m х Ζ Ν

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ANDB A, #imm	2316, imm	2	1
IMM	ANDB B, #imm	8116, 2316, imm	3	2

ANDB	A, #IMM8	; $A_L \leftarrow A_L \wedge IMM8$
ANDB	B, #IMM8	; $B_{L} \leftarrow B_{L} \wedge IMM8$

Function :	Logical AND
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} M \leftarrow M \land IMM \\ \underline{When m = "0"} \\ & M16 \\ \hline & M16 \\ \hline & \leftarrow \\ \hline & \land IMM16 \end{array}$
	$\frac{\text{When } \text{m} = \text{``1''}}{\text{M8}}$ $M8$ $\leftarrow \square \land \text{IMM8}$
Description :	 Performs logical AND between the contents of memory and immediate value, and stores the result in the memory. This instruction includes the function of the CLB instruction in the conventional 7700 Family.

Status flags :

IPL	Ν	V	m	x	D	Ι	Z	С
	Ν		-		—	—	Ζ	—

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles				
DIR	ANDM dd, #imm	5116, 6316, dd, imm	4	7				
ABS	ANDM mmll, #imm	5116, 6716, II, mm, imm	5	7				
Note : When flag m = "0," the byte number increases by 1.								

CLM		
ANDM.W	MEM16, #IMM16	; MEM16 \leftarrow MEM16 \land IMM16
SEM		
ANDM.B	MEM8, #IMM8	; MEM8 \leftarrow MEM8 \land IMM8

ANDMB

Function 2 Logical AND Operation data length: 8 bits Operation $M8 \leftarrow M8 \land IMM8$ ÷ M8 M8 \wedge IMM8 \leftarrow Performs logical AND between the contents of memory and immediate value in 8-bit length, Description ÷ and stores the result in the memory. • This instruction is unaffected by flag m. Status flags : Ζ IPL V С Ν D I m х Ν Ζ _ ____ ____ ____ ____

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ANDMB dd, #imm	5116, 6216, dd, imm	4	7
ABS	ANDMB mmll, #imm	5116, 6616, II, mm, imm	5	7

Description example:

ANDMB

MEM8, #IMM8

; MEM8 \leftarrow MEM8 \land IMM8

ANDMD logical AND between immediate value and Memory (Double word) **ANDMD**

Function		:	Logical AND
Operation data	engtl	1:	32 bits
Operation		:	$\begin{array}{cccc} M32 \leftarrow M32 \land IMM32 \\ \hline M32 & M32 \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Descriptior	h	:	Performs logical AND between the contents of memory and immediate value in 32-bit length, and stores the result in the memory. This instruction is unaffected by flag m.
Status flag	S	:	IPL N V m x D I Z C - N - - - - Z -
	Ν	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ANDMD dd, #imm	5116, E316, dd, immll, immlh, immhl, immhh	7	10
ABS	ANDMD mmll, #imm	5116, E716, II, mm, immll, immlh, immhl, immhh	8	10

Description example:

MEM32, #IMM32

; MEM32 \leftarrow MEM32 \land IMM32

ASL

Function : Arithmetic shift to the left

Operation data length: 16 bits or 8 bits

С

÷

Operation

Acc or M 1-bit shift to left \leftarrow 0

 $\frac{\text{When } \text{m} = \text{``0''}}{\text{C} \text{ b15}} \quad \text{Acc or M16} \quad \text{b0}}$

<u>When m = "1"</u>

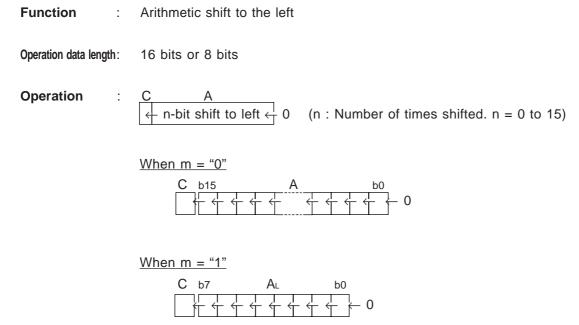
С	b7	A	Acc∟ or M8					b0		
<pre></pre>		\leftarrow	\leftarrow	÷	- ←	-	- 4		0	

 $\ensuremath{\circledast}$ In this case, the contents of Acc_H do not change.

Description : Shifts all bits of Acc or a memory to left by 1 bit. In this time, a "0" is placed in LSB of Acc or the memory. MSB before the shift is placed in flag C.

Status flags

IPL	Ν	V	m	х	D	I	Z	С
—	Ν	—	—	—			Ζ	С


- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when MSB of Acc or the memory before the operation is "1." Otherwise, cleared to "0."

0

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ASL A	0316	1	1
A	ASL B	8116, 0316	2	2
DIR	ASL dd	2116, 0A16, dd	3	7
DIR, X	ASL dd, X	2116, 0B16, dd	3	8
ABS	ASL mmll	2116, 0E16, II, mm	4	7
ABS, X	ASL mmll, X	2116, 0F16, II, mm	4	8

CLM		
ASL	A	; $A \leftarrow A$ is arithmetically shifted left by 1 bit.
ASL	MEM16	; MEM16 \leftarrow MEM16 is arithmetically shifted left by 1 bit.
SEM		
ASL	А	; $A_{L} \leftarrow A_{L}$ is arithmetically shifted left by 1 bit.
ASL	MEM8	; MEM8 \leftarrow MEM8 is arithmetically shifted left by 1 bit.

ASL #n

 \ast In this case, the contents of A_H do not change.

- **Description** : Shifts all bits of A to the left by n bits. In this case, a "0" is placed in bit 0 of A each time its contents are shifted by 1 bit. MSB is placed in flag C each time its contents are shifted by 1 bit.
 - B cannot be used in this instruction.

IPL	Ν	V	m	х	D	Ι	Z	С
—	Ν		_	_	—	_	Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if MSB = "1" when the contents are shifted by (n 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ASL A, #imm	C116, imm+4016	2	imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

Description example:

Status flags

CLM		
ASL	A, #15	; A \leftarrow A is arithmetically shifted to the left by 15 bits.
SEM		
ASL	A, #7	; $A_L \leftarrow A_L$ is arithmetically shifted to the left by 7 bits.

ASLD #n

ASLD #n

Function : Arithmetic shift to the left

Operation data length: 32 bits

Operation : C E \leftarrow n-bit shift to left \leftarrow 0 (n : Number of times shifted. n = 0 to 31)

С	b31		Е		b0
		(÷ ÷ ÷	0 -

Description : Shifts all bits of E in 32-bit length to the left by n bits. In this case, a "0" is placed in bit 0 of E each time its contents are shifted by 1 bit. MSB is placed in flag C each time its contents are shifted by 1 bit.

• This instruction is unaffected by flag m.

Status flags

IPL	Ν	V	m	x	D	I	Ζ	С
—	Ν				—	_	Ζ	С

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Set to "1" if MSB = "1" when the contents are shifted by (n - 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ASLD E, #imm	D116, imm+4016	2	imm+8

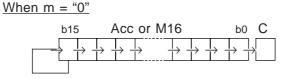
Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

Description example:

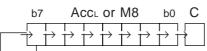
ASLD

E, #16

; E \leftarrow E is arithmetically shifted to the left by 16 bits.


Function : Arithmetic shift to the right

Operation data length: 16 bits or 8 bits


:

Operation

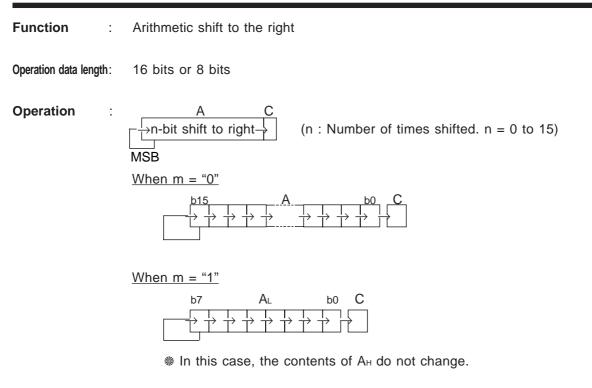
Acc or M C → 1-bit shift to right → MSB

<u>When m = "1"</u>

* In this case, the contents of Acc^H do not change.

Description : Shifts all bits of Acc or a memory to the left by 1 bit. In this time, MSB before the shift is placed in MSB of Acc or the memory. LSB before the shift is placed in LSB.

Status flags


IPL	Ν	V	m	х	D	Ι	Ζ	С
—	Ν	—	—	—	—	—	Z	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when LSB of Acc or the memory before the operation is "1." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ASR A	6416	1	1
A	ASR B	8116, 6416	2	2
DIR	ASR dd	2116, 4A16, dd	3	7
DIR, X	ASR dd, X	2116, 4B16, dd	3	8
ABS	ASR mmll	2116, 4E16, II, mm	4	7
ABS, X	ASR mmll, X	2116, 4F16, II, mm	4	8

CLM		
ASR	A	; $A \leftarrow A$ is arithmetically shifted to the right by 1 bit.
ASR	MEM16	; MEM16 \leftarrow MEM16 is arithmetically shifted to the right by 1 bit.
SEM		
ASR	A	; $A_L \leftarrow A_L$ is arithmetically shifted to the right by 1 bit.
ASR	MEM8	; MEM8 \leftarrow MEM8 is arithmetically shifted to the right by 1 bit.

ASR #n

- Description 2 Shifts all bits of A to the right by n bits. In this time, MSB before the shift is placed in MSB of A. LSB is placed in flag C each time its contents are shifted by 1 bit.
 - B cannot be used in this instruction.

IPL	Ν	V	m	х	D	I	Ζ	С
—	Ν	_		_			Ζ	С

- Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." N :
- Ζ: Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if LSB = "1" when the contents are shifted by (n - 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
Α	ASR A, #imm	C116, imm+8016	2	imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

CLM		
ASR	A, #15	; $A \leftarrow A$ is arithmetically shifted to the right by 15 bits.
SEM		
ASR	A, #7	; $A_{\text{L}} \leftarrow A_{\text{L}}$ is arithmetically shifted to the right by 7 bits.

ASRD #n

ASRD #n

Function : Arithmetic shift to the right

Operation data length: 32 bits

Operation : E C n-bit shift to right (n : Number of times shifted. n = 0 to 31) MSB b31 E b31 E b0 CC

Description : Shifts all bits of E in 32-bit length to the right by n bits. In this time, MSB before the shift is placed in MSB of E. LSB is placed in flag C each time its contents are shifted by 1 bit.
 This instruction is unaffected by flag m.

Status flags

IPL	Ν	V	m	х	D	I	Ζ	С
—	Ν	—	—	_	—	_	Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if LSB = "1" when the contents are shifted by (n 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ASRD E, #imm	D116, imm+8016	2	imm+8

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

Description example:

ASRD

E, #16

; $\mathsf{E} \leftarrow \mathsf{E}$ is arithmetically shifted to the right by 16 bits.

BBC

Function : Conditional branch

Operation data length: 16 bits or 8 bits

- **Operation** : Relative branch to the specified address when M (bit n) = "0" (n specifies a bit position; multiple bits can be specified.)
- **Description** : Branches to the specified address if the contents of all specified bits in memory (multiple bits can be specified) are "0"s. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. The bit positions to be tested are indicated by a bit pattern of the immediate value, in which the bits set to "1" are the subject bits to be tested.
 - When m="0" : This instruction operates in 16-bit length.
 - When m="1": This instruction operates in 8-bit length.
 - Branches when no bit is specified that need to be tested.

Status flags :

IPL	Ν	V	m	x	D	I	Ζ	С
—	—		_				—	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR, b, R	BBC #imm, dd, rr	4116, 5A16, dd, imm, rr	5	9
ABS, b, R	BBC #imm, mmll, rr	4116, 5E16, II, mm, imm, rr	6	9

Note : When flag m = "0," the byte number increases by 1.

CLM		
BBC.W	#IMM16, MEM16, LABEL1	; Branches to LABEL1 if all specified bits in MEM16 are "0"s.
SEM		
BBC.B	#IMM8, MEM8, LABEL2	; Branches to LABEL2 if all specified bits in MEM8 are "0"s.

Function :	Conditional branch
Operation data length:	8 bits
Operation :	Relative branch to the specified address when M8 (bit n) = "0" (n specifies a bit position; multiple bits can be specified.)
Description :	 Branches to the specified address if the contents of all specified bits in memory (multiple bits can be specified) are "0"s. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. The bit positions to be tested are indicated by a bit pattern of the 8-bit immediate value, in which the bits set to "1" are the subject bits to be tested. Branches if no bit is specified that need to be tested. This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	I	Z	С
—	_	—	—	_			_	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR, b, R	BBCB #imm, dd, rr	5216, dd, imm, rr	4	8
ABS, b, R	BBCB #imm, mmll, rr	5716, II, mm, imm, rr	5	8

Description example:

BBCB

#IMM8, MEM8, LABEL

; Branches to LABEL if all specified bits in MEM8 are 0s.

Function : Conditional branch

Operation data length: 16 bits or 8 bits

- **Operation** : Relative branch to the specified address when M (bit n) = "1" (n specifies a bit position; multiple bits can be specified.)
- **Description** : Branches to the specified address if the contents of all specified bits in memory (multiple bits can be specified) are "1"s. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. The bit positions to be tested are indicated by a bit pattern of the immediate value, in which the bits set to "1" are the subject bits to be tested.
 - When m="0" : This instruction operates in 16-bit length.
 - When m="1": This instruction operates in 8-bit length.
 - Branches if no bit is specified that need to be tested.

Status flags :

IPL	Ν	V	m	х	D	Ι	Ζ	С
—	—		_	_	—	—		

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR, b, R	BBS #imm, dd, rr	4116, 4A16, dd, imm, rr	5	9
ABS, b, R	BBS #imm, mmll, rr	4116, 4E16, II, mm, imm, rr	6	9

Note : When flag m = "0," the byte number increases by 1.

CLM		
BBS.W	#IMM16, MEM16, LABEL1	; Branches to LABEL1 if all specified bits in MEM16 are "1"s.
SEM		
BBS.B	#IMM8, MEM8, LABEL2	; Branches to LABEL2 if all specified bits in MEM8 are "1"s.

Function : Conditional branch

Operation data length: 8 bits

Operation : Relative branch to the specified address when M8 (bit n) = "1" (n specifies a bit position; multiple bits can be specified.)

Description : Branches to the specified address if the contents of all specified bits in memory (multiple bits can be specified) are "1"s. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. The bit positions to be tested are indicated by a bit pattern of the 8-bit immediate value, in which the bits set to "1" are the subject bits to be tested.

- Branches if no bit is specified that need to be tested.
- This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	I	Z	С
—	_					_	—	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR, b, R	BBSB #imm, dd, rr	4216, dd, imm, rr	4	8
ABS, b, R	BBSB #imm, mmll, rr	4716, II, mm, imm, rr	5	8

Description example:

BBSB

#IMM8, MEM8, LABEL

; Branches to LABEL if all specified bits in MEM8 are "1"s.

Function :	Conditional	branch
------------	-------------	--------

Operation data length: -

Operation : Relative branch to the specified address when C = "0."

Description : Branches to the specified address if flag C is "0." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.

Status flags

1

IPL	Ν	V	m	х	D	Ι	Ζ	С
_		_			_	_		

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BCC rr	9016, rr	2	6

Description example:

BCC

LABEL

; Branches to LABEL if C = "0."

Function : Conditional branch	
-------------------------------	--

Operation data length: -

Operation : Relative branch to the specified address when C = "1."

Description : Branches to the specified address if flag C is "1." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.

Status flags :

IPL	Ν	V	m	х	D	I	Z	С
_							_	

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BCS rr	B016, rr	2	6

Description example:

BCS

LABEL

; Branches to LABEL if C = "1."

BEQ

		ddressing mode	Syntax					lachi	<u>no co</u>	do			Bytes	Cycles
Status flags	:			PL	N	V	m	x	D	I	Z	С		
Description	:	Branches to the +127) to specify	•		-			Use	an 8-	bit va	alue i	relativ	ve to PC	(–128 to
Operation	:	Relative branch	to the specified	d add	ress	whe	en Z	= "1.'	19					
Operation data length	1:	-												
Function	:	Conditional bran	ch											

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BEQ rr	F016, rr	2	6

Description example:

BEQ

LABEL

; Branches to LABEL if Z = "1."

Function :	Conditional branch						
Operation data length:	_						
Operation :	Relative branch to the specified address when $N\forall V = "0."$						
Description :	Branches to the specified address if the contents of flags N and V are the same. Use an 8- bit value relative to PC (-128 to +127) to specify the branch destination address.						
	● Branches when the result of the compare instruction or the subtract instruction satisfies "Greater or Equal ≥" condition.						
Status flags :							
Status nags	IPL N V m x D I Z C						

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BGE rr	C016, rr	2	6

BGE

LABEL

; Branches to LABEL if $N\forall V = "0."$

Function :	Conditional branch
Operation data length:	_
Operation :	Relative branch to the specified address when Z = "0" and N \forall V = "0."
Description :	Branches to the specified address if flag Z is "0" and the contents of flags N and V are the same. Use an 8-bit value relative to PC (-128 to $+127$) to specify the branch destination address.
	 Branches when the result of the compare instruction or the subtract instruction satisfies signed "Greater than >" condition.
Status flags :	IPL N V m x D I Z C

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BGT rr	8016, rr	2	6

BGT

LABEL

; Branches to LABEL if Z = "0" and N \forall V = "0."

Function	:	Conditional branch
Operation data length:	:	_
Operation	:	Relative branch to specified address if $C = "1"$ and flag $Z = "0."$
Description	:	 Branches to the specified address if flag C is "1" and flag Z is "0." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. Branches when the result of the compare instruction or the subtract instruction satisfies unsigned "Greater than >" condition.
Status flags	:	IPL N V m x D I Z C

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BGTU rr	4016, rr	2	6

BGTU

LABEL

; Branches to LABEL if C = "1" and Z = "0."

Function :	Conditional branch
Operation data length:	_
Operation :	Relative branch to specified address when Z = "1" or N \forall V = "1."
Description :	Branches to the specified address if flag Z is "1" or the contents of flags N and V are different. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.
	 Branches when the result of the compare instruction or the subtract instruction satisfies signed "Less or Equal ≤" condition.
Status flags :	IPL N V m x D I Z C

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BLE rr	A016, rr	2	6

BLE

LABEL

; Branches to LABEL if Z= "1" and N $\forall\,V$ = "1."

Function :	Conditional branch
Operation data length:	_
Operation :	Relative branch to the specified address if $C = "0"$ or $Z = "1."$
Description :	 Branches to the specified address if flag C is "0" or flag Z is "1." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address. Branches when the result of the compare instruction or the subtract instruction satisfies unsigned "Less or Equal ≤" condition.
Status flags :	IPL N V m x D I Z C - - - - - - - - -

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BLEU rr	6016, rr	2	6

BLEU

LABEL

; Branches to LABEL if C = "0" or Z = "1."

Function :	Conditional branch
Operation data length:	_
Operation :	Relative branch to specified address when $N \forall V = "1."$
Description :	Branches to the specified address if the contents of flags N and V are different. Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.
	 Branches when the result of the compare instruction or the subtract instruction satisfies "Less than <" condition.
Status flags :	IPL N V m x D I Z C - - - - - - - - -

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BLT rr	E016, rr	2	6

BLT

LABEL

; Branches to LABEL if $N\forall V = "1."$

PC (-128 to

Function :	Conditional branch
Operation data length:	_
Operation :	Relative branch to specified address if $N = "1."$
Description :	Branches to the specified address if flag N is "1." Use an 8-bit value relative to +127) to specify the branch destination address.
Status flags :	IPL N V m x D I Z C

		 ~		v	IN	
· _	—	 _	_	_		

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BMI rr	3016, rr	2	6

Description example:

BMI

LABEL

; Branches to LABEL if N = "1."

Function	Conditional bran	ch		
Operation data length	: –			
Operation	Relative branch	to the specified a	ddress if Z = "0."	
Description		specified address the branch destin	if flag Z is "0." Use an 8-bit value relativation address.	ve to PC (-128 to
Status flags	:	IPL —	N V m x D I Z C — — — — — — — —	
Γ	Addressing mode	Syntax	Machine code	Bytes Cycles

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BNE rr	D016, rr	2	6

BNE

LABEL

; Branches to LABEL if Z = "0."

Function :	Conditional branch
Operation data length:	-
Operation :	Relative branch to the specified address when $N = "0."$
Description :	Branches to the specified address if flag N is "0." Use an 8-bit value relative to PC (-128 to +127) to specify the branch destination address.
Status flags :	IPL N V m x D I Z C

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BPL rr	1016, rr	2	6

BPL

LABEL

; Branches to LABEL if N = "0."

BRA/BRAL

Function : Unconditional branch

Operation data length: -

Operation : $PC \leftarrow PC + cnt + REL$ (cnt : byte number of the BRA/BRAL instruction)

Description : Branches always to the specified address. Use an 8-bit value relative to PC (BRA : -128 to +127) or a 16-bit value relative to PC (BRAL : -32768 to +32767) after the branch instruction execution to specify the branch destination address.

Status flags :

IPL	Ν	V	m	х	D	Ι	Z	С
—	_	_	_	—	—			

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BRA rr	2016, rr	2	5
	BRAL rr⊦rr∟	A716, rr∟, rrн	3	5

BRA	REL8	; Branches to address (PC + 2 + REL8)
BRAL	REL16	; Branches to address (PC + 3 + REL16)

BRK

BRK

Function	:	Software interrupt
T unction	•	Software interrupt
Operation data lengt	h:	_
Operation	:	Generate a BRK interrupt
Description	:	Saves the address where the instruction next to the BRK instruction is stored and the PS contents in order of PG, PC, and PS to the stack. Then, branches to the address whose low-order address is the contents of address FFFA ₁₆ and high-order address is the contents of address FFFB ₁₆ .
		 This instruction is reserved for use in debug tools and cannot be used when using an emulator.
Status flags	:	IPL N V m x D I Z C 1

I : Set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	BRK	0016, 7416	2	15

;

Description example:

BRK

Function :	Conditional branch
Operation data length:	16 bits or 8 bits
Operation :	Relative branch to the specified address when A (bit n) = 0 or M (bit n) = 0 (n = 0 to 15. Only 1 bit can be specified).
Description :	 Branches to the specified address if the contents of the specified bit of A or a memory is "0." Use an 8-bit value relative to PC (-128 to +127) to specify the branch address. When m = "0" : Any 1 bit between b0 to b15 can be specified. When m = "1" : Any 1 bit between b0 to b7 can be specified. B cannot be used in this instruction.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
	_	_	_	—		—		

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	BSC n, A, rr	0116, n+A016, rr	3	7
DIR	BSC n, dd, rr	7116, n+A016, dd, rr	4	11
ABS	BSC n, mmll, rr	7116, n+E016, II, mm, rr	5	10

Note : Any value from 0 to 15 can be set to n.

CLM		
BSC	8, A, LABEL1	; Branches to LABEL1 if b8 of A is "0."
BSC	15, MEM16, LABEL2	; Branches to LABEL2 if b15 of MEM16 is "0."
SEM		
BSC	7, A, LABEL3	; Branches to LABEL3 if b7 of A is "0."
BSC	7, MEM8, LABEL4	; Branches to LABEL4 if b7 of MEM8 is "0."

BSR

Function : Subroutine call

Operation data length:

_

Description : Branches to the specified address after saving the PC contents to the stack. Use an 11-bit value relative to PC (-1024 to +1023) to specify the branch address.

* This instruction cannot be used in branching across bank boundaries.

* Do not place this instruction at bank boundaries.

Status flags :

IPL	Ν	V	m	х	D	I	Z	С
_		—		I		_	_	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BSR rr	(11111b10 b9 b8)2, (b7 b6 b5 b4 b3 b2 b1 b0)2	2	7

Note : Any value from -1023 to 1024 (11-bit length) can be set to rr.

Description example:

BSR

LABEL

; Branches to LABEL

Operation data length: 16 bits or 8 bits

- **Operation** : Relative branch to the specified address when A (bit n) = "1" or M (bit n) = "1" (n = 0 to 15. Only 1 bit can be specified).
- **Description** : Branches to the specified address if the contents of the specified bit of A or a memory is "1." Use an 8-bit value relative to PC (-128 to +127) to specify the branch address. The bit position to be tested is specified by the bit number.
 - When m = "0": Any 1 bit between b0 to b15 can be specified.
 When m = "1": Any 1 bit between b0 to b7 can be specified.
 - B cannot be used in this instruction.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
—	_	_	_	_		—		

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	BSS n, A, rr	0116, n+8016, rr	3	7
DIR	BSS n, dd, rr	7116, n+8016, dd, rr	4	11
ABS	BSS n, mmll, rr	7116, n+C016, II, mm, rr	5	10

Note : Any value from 0 to 15 can be set to n.

CLM	
BSS	8, A, LABEL1 ; Branches to LABEL1 if b8 of A is "1."
BSS	15, MEM16, LABEL2 ; Branches to LABEL2 if b15 of MEM16 is "1."
SEM	
BSS	7, A, LABEL3 ; Branches to LABEL3 if b7 of A is "1."
BSS	7, MEM8, LABEL4 ; Branches to LABEL4 if b7 of MEM8 is "1."

Operation data length: -

- **Operation** : Relative branch to the specified address when V = "0."
- **Description** : Branches to the specified address if the contents of flag V is "0." Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.

Status flags :

IPL	Ν	V	m	х	D	Ι	Z	С
—	—	—				—	—	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BVC rr	5016, rr	2	6

Description example:

BVC

LABEL

; Branches to LABEL if V = "0."

Function	:	Conditional branch
Operation data length	h:	_
Operation	:	Relative branch to the specified address when $V = "1."$
Description	:	Branches to the specified address if the contents of flag V are "1." Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.
Status flags	:	

IPL	Ν	V	m	х	D	I	Z	С
—	_	—	_	—	—	—	—	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
REL	BVS rr	7016, rr	2	6

Description example:

BVS

LABEL

; Branches to LABEL if V = "1."

Function :	Comparison & Conditional brar	nch										
Operation data length:	16 bits or 8 bits											
Operation :	Relative branch to the specifie	elative branch to the specified address when Acc = IMM or M = IMM.										
Description :	•	Branches to the specified address if the contents of Acc or a memory are equal to the immediate value. Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.										
	 When m = "0": This instruction operates in 16-bit length. When m = "1": This instruction operates in 8-bit length. 											
Status flags :	[IPL	Ν	V	m	x	D	I	Z	С		

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Ν

V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag m is "1"). Otherwise, cleared to "0."

V

Ζ

С

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow is occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CBEQ A, #imm, rr	A616, imm, rr	3	6
A	CBEQ B, #imm, rr	8116, A616, imm, rr	4	7
DIR	CBEQ dd, #imm, rr	4116, 6A16, dd, imm, rr	5	9

Note : When flag m = "0," the byte number increases by 1.

CLM CBEQ.W	A, #IMM16, LABEL1	; Branches to LABEL1 if A = IMM16.
CDEQ.W	A, HIVIVITO, LADELT	, DIATICHES TO LADELT IT A = INNINTO.
CBEQ.W SEM	MEM16, #IMM16, LABEL2	; Branches to LABEL2 if MEM16 = IMM16.
CBEQ.B	B, #IMM8, LABEL3	; Branches to LABEL3 if $B_L = IMM8$.

CBEQB

Function : Comparison & Conditional branch

Operation data length: 8 bits

- **Operation** : Relative branch to the specified address when $Acc_{L} = IMM8$ or M8 = IMM8.
- **Description** : Branches to the specified address if the contents of Acc_⊥ or a memory are equal to the immediate value when they are compared in 8-bit length. Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.
 - This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
	Ν	V		_	_		Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	CBEQB A, #imm, rr	A216, imm, rr	3	6
A	CBEQB B, #imm, rr	8116, A216, imm, rr	4	7
DIR	CBEQB dd, #imm, rr	6216, dd, imm, rr	4	8

CBEQB	A, #IMM8, LABEL1
CBEQB	MEM8, #IMM8, LABEL2

- ; Branches to LABEL1 if $A_{\perp} = IMM8$.
- ; Branches to LABEL2 if MEM8 = IMM8.

Operation data length: 16 bits or 8 bits

- **Operation** : Relative branch to the specified address when $Acc \neq IMM$ or $M \neq IMM$.
- **Description** : Branches to the specified address if the contents of Acc or a memory are not equal to the immediate value. Use an 8-bit value relative to PC (-128 to +127) to specify the branch address.
 - When m = "0" : This instruction operates in 16-bit length.
 - When m = "1": This instruction operates in 8-bit length.
 - * In this case, the contents of Acc_H do not change.

Status flags :

IPL	Ν	V	m	х	D	Ι	Ζ	С
_	Ν	V			_	_	Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag m is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CBNE A, #imm, rr	B616, imm, rr	3	6
A	CBNE B, #imm, rr	8116, B616, imm, rr	4	7
DIR	CBNE dd, #imm, rr	4116, 7A16, dd, imm, rr	5	9

Note : When flag m = "0," the byte number increases by 1.

CLM		
CBNE.W	A, #IMM16, LABEL1	; Branches to LABEL1 if A \neq IMM16.
CBNE.W	MEM16, #IMM16, LABEL2	; Branches to LABEL2 if MEM16 \neq IMM16.

CBNEB

Function Comparison & Conditional branch 2 Operation data length: 8 bits Operation ÷ Relative branch to the specified address when Acc_L \neq IMM8 or M8 \neq IMM8. Description Branches to the specified address if the contents of AccL or a memory are equal to the ÷ immediate value when they are compared in 8-bit length. Use an 8-bit value relative to PC (-128 to +127) to specify the branch address. This instruction is unaffected by flag m. **Status flags** ÷ D Ζ С IPL Ν V m х Ζ С Ν V

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CBNEB A, #imm, rr	B216, imm, rr	3	6
A	CBNEB B, #imm, rr	8116, B216, imm, rr	4	7
DIR	CBNEB dd, #imm, rr	7216, dd, imm, rr	4	8

CBNEB	A, #IMM8, LABEL1	; Branches
CBNEB	MEM8, #IMM8, LABEL2	; Branches

- ; Branches to LABEL1 if $A \perp \neq IMM8$.
- ; Branches to LABEL2 if MEM8 \neq IMM8.

CLC

Function : Flag manipulation

Operation data length: -

:

Description : Clears the contents of flag C to "0."

Status flags

IPL	Ν	V	m	х	D	I	Ζ	С
—	—	—				—		0

C : Cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	CLC	1416	1	1

Description example:

CLC

; $C \leftarrow 0$

Function : Flag manipulation

Operation data length: -

 $\label{eq:operation} \textbf{Operation} \quad : \quad I \leftarrow 0$

:

Description : Clears the contents of flag I to "0."

Status flags

IPL	Ν	V	m	х	D	I	Ζ	С
—	_	_	-	—	—	0		

I : Cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	CLI	1516	1	3

Description example:

CLI

; I \leftarrow 0

CLM

Function : Flag manipulation

Operation data length: -

:

Description : Clears the contents of flag m to "0."

Status flags

IPL	Ν	V	m	х	D	I	Z	С
	—	—	0			—	—	—

m : Cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	CLM	4516	1	3

Description example:

CLM

; $m \leftarrow 0$

Function 2 Flag manipulation Operation data length: _ Operation PS_{L} (bit n) \leftarrow 0 (n = 0 to 7. Multiple bits can be specified.) ÷ Clears the specified flags (multiple flags can be specified) of PS_L to "0." The flag positions (bits' Description ÷ positions in PSL) to be specified are indicated by a bit pattern of an 8-bit immediate value, in which the bits set to "1" are the subject bits to be specified. • This instruction is unaffected by flag m. PS∟ b7 b6 b5 b4 b3 b2 b1 b0 NVmxDIZC

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
	Ν	V	m	х	D	I	Ζ	С

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CLP #imm	9816, imm	2	4

Description example:

CLP

#IMM8

; The specified bits of $\mathsf{PS}_{\scriptscriptstyle L} \gets 0$

CLR

Clear Function 1 Operation data length: 16 bits or 8 bits Operation Acc $\leftarrow 0$ 2 <u>When m = "0"</u> Acc ← 000016 <u>When m = "1"</u> Acc ← 0016 \ast In this case, the contents of Acc ${\scriptscriptstyle H}$ do not change. Clears the contents of Acc to "0." Description :

Status flags

IPL	N	V	m	x	D	Ι	Z	С
_	0		_		—	—	1	—

- N : Always cleared to "0" because MSB of the operation result is "0."
- Z : Always set to "1" because the operation result is "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CLR A	5416	1	1
А	CLR B	8116, 5416	2	2

CLM		
CLR	А	; A ← 000016
CLR	В	; B ← 000016
SEM		
CLR	А	; AL \leftarrow 0016
CLR	В	; BL \leftarrow 0016

CLRB

Function : Clear

Operation data length: 8 bits

Operation : $Acc_{L} \leftarrow 00_{16}$

:

Acc∟ ← 00₁₆

Description

Clears the contents of Acc_L to "00₁₆."

- The contents of Acc_H do not change.
- This instruction is unaffected by flag m.

Status flags

IPL	N	V	m	x	D	I	Z	С
_	0	_	_	_			1	

- N : Always cleared to "0" because MSB of the operation result is "0."
- Z : Always set to "1" because the operation result is "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	CLRB A	4416	1	1
А	CLRB B	8116, 4416	2	2

CLRB	А	; AL ← 0016
CLRB	В	; BL ← 0016

CLRM

Function : Clear

Operation data length: 16 bits or 8 bits

When m = "0"

 $\frac{\text{When } m = "1"}{\text{M8}} \leftarrow 00_{16}$

Description : Clears the contents of a memory to "0."

Status flags

IPL	Ν	V	m	х	D	I	Ζ	С
_						_		

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	CLRM dd	D216, dd	2	5
ABS	CLRM mmll	D716, II, mm	3	5

CLM		
CLRM	MEM16	; MEM16 \leftarrow 000016
SEM		
CLRM	MEM8	; MEM8 \leftarrow 0016

CLRMB

Function : Clear

Operation data length: 8 bits

Operation : M8 \leftarrow 00₁₆

M8 ← 00₁₆

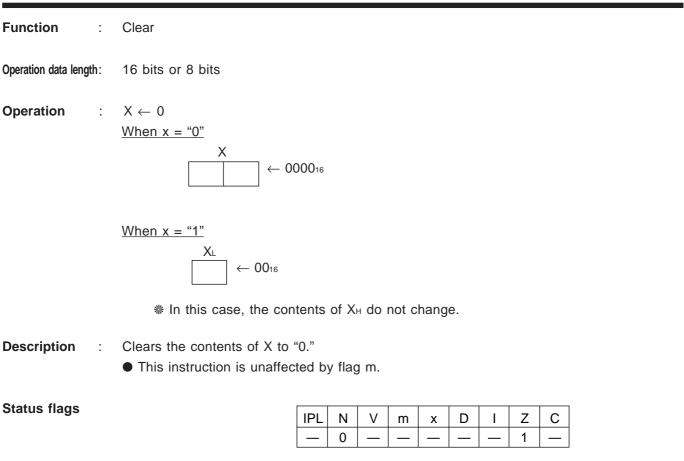
Description : Clears the contents of a memory to "0" in 8-bit length.

• This instruction is unaffected by flag m.

Status flags

IPL	Ν	V	m	x	D	I	Z	С
_	—	—	—	—		-	-	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	CLRMB dd	C216, dd	2	5
ABS	CLRMB mmll	C716, II, mm	3	5

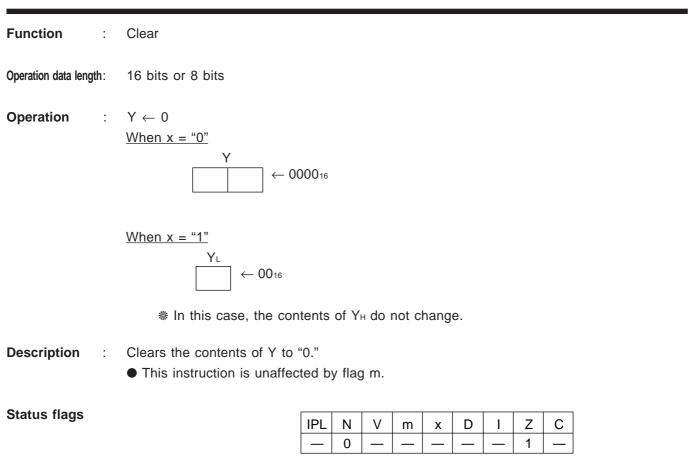

Description example:

CLRMB

MEM8

; MEM8 \leftarrow 0016

CLRX



- N : Always cleared to "0" because MSB of the operation result is "0."
- Z : Always set to "1" because the operation result is "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	CLRX	E416	1	1

CLP	х	
CLRX		; X ← 000016
SEP	Х	
CLRX		; $X_L \leftarrow 00_{16}$

CLRY

- N : Always cleared to "0" because MSB of the operation result is "0."
- Z : Always set to "1" because the operation result is "0."

Addressing mo	de Syntax	Machine code	Bytes	Cycles
IMP	CLRY	F4 ₁₆	1	1

CLP	Х	
CLRY		; Y ← 000016
SEP	Х	
CLRY		; YL \leftarrow 0016

CLV

Function : Flag manipulation

Operation data length: -

 $\label{eq:operation} \textbf{Operation} \quad : \quad V \leftarrow 0$

:

Description : Clears the contents of flag V to "0."

Status flags

IPL	Ν	V	m	х	D	I	Z	С
—	—	0				—	—	—

V : Cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	CLV	6516	1	1

Description example:

CLV

; V \leftarrow 0

CMP

Status flags :

Function :	Comparison
Operation data length:	16 bits or 8 bits
Operation :	Acc – M <u>When m = "0"</u> <u>Acc M16</u> –
	<u>When m = "1"</u> Acc∟ M8
Description :	Subtracts the contents of a me

Description : Subtracts the contents of a memory from the contents of Acc. The result is not stored anywhere.

IPL	Ν	V	m	х	D	Ι	Ζ	С	
—	Ν	V	—	—			Ζ	С	

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag m is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CMP A, #imm	4616, imm (8116, 4616, imm)	2 (3)	1 (2)
DIR	CMP A, dd	4A16, dd (8116, 4A16, dd)	2 (3)	3 (4)
DIR, X	CMP A, dd, X	4B16, dd (8116, 4B16, dd)	2 (3)	4 (5)
(DIR)	CMP A, (dd)	1116, 4016, dd (9116, 4016, dd)	3 (3)	6 (6)
(DIR, X)	CMP A, (dd, X)	1116, 4116, dd (9116, 4116, dd)	3 (3)	7 (7)
(DIR), Y	CMP A, (dd), Y	1116, 4816, dd (9116, 4816, dd)	3 (3)	7 (7)
L(DIR)	CMP A, L(dd)	1116, 4216, dd (9116, 4216, dd)	3 (3)	8 (8)
L(DIR), Y	CMP A, L(dd), Y	1116, 4916, dd (9116, 4916, dd)	3 (3)	9 (9)
SR	CMP A, nn, S	1116, 4316, nn (9116, 4316, nn)	3 (3)	5 (5)
(SR), Y	CMP A, (nn, S), Y	1116, 4416, nn (9116, 4416, nn)	3 (3)	8 (8)
ABS	CMP A, mmll	4E16, II, mm (8116, 4E16, II, mm)	3 (4)	3 (4)
ABS, X	CMP A, mmll, X	4F16, II, mm (8116, 4F16, II, mm)	3 (4)	4 (5)
ABS, Y	CMP A, mmll, Y	1116, 4616, II, mm (9116, 4616, II, mm)	4 (4)	5 (5)
ABL	CMP A, hhmmll	1116, 4C16, II, mm, hh (9116, 4C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	CMP A, hhmmll, X	1116, 4D16, II, mm, hh (9116, 4D16, II, mm, hh)	5 (5)	6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM CMP.W	A, #IMM16	; A – IMM16
CMP	B, MEM16	; B – MEM16
SEM		
CMP.B	A, #IMM8	; A∟ – IMM8
CMP	B, MEM8	; B∟ – MEM8

CMPB

Function : Comparison

Operation data length: 8 bits

Operation : Acc∟ – IMM8

- Acc∟ — IMM8
- **Description** : Subtracts the immediate value from the contents of AccL in 8-bit length. The result is not stored anywhere.
 - This instruction is unaffected by flag m.

Status flags : Ζ С IPL V Ν D m х T Ν V Ζ С _ ____ ____

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CMPB A, #imm	3816, imm	2	1
IMM	CMPB B, #imm	8116, 3816, imm	3	2

CMPB	A, #IMM8	; A∟ – IMM8
CMPB	B, #IMM8	; B∟ – IMM8

CMPD

Function	:	Comparison
Operation data I	ength:	32 bits
Operation	:	E – IMM32 E – IMM32
Descriptior	1 :	Subtracts the immediate value from the contents of E in 32-bit length. The result is not stored anywhere. This instruction is unaffected by flag m.
Status flag	s :	IPL N V m x D I Z C N V Z C
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CMPD E, #imm	3C16, imm∟, imm⊦н, immн∟, immнн	5	3
DIR	CMPD E, dd	BA16, dd	2	6
DIR, X	CMPD E, dd, X	BB ₁₆ , dd	2	7
(DIR)	CMPD E, (dd)	1116, B016, dd	3	9
(DIR, X)	CMPD E, (dd, X)	1116, B116, dd	3	10
(DIR), Y	CMPD E, (dd), Y	1116, B816, dd	3	10
L(DIR)	CMPD E, L(dd)	1116, B216, dd	3	11
L(DIR), Y	CMPD E, L(dd), Y	1116, B916, dd	3	12
SR	CMPD E, nn, S	1116, B316, nn	3	8
(SR), Y	CMPD E, (nn, S), Y	1116, B416, nn	3	11
ABS	CMPD E, mmll	BE16, II, mm	3	6
ABS, X	CMPD E, mmll, X	BF16, II, mm	3	7
ABS, Y	CMPD E, mmll, Y	1116, B616, II, mm	4	8
ABL	CMPD E, hhmmll	1116, BC16, II, mm, hh	5	8
ABL, X	CMPD E, hhmmll, X	1116, BD16, II, mm, hh	5	9

Description example:

CMPD

E, #IMM32

; E – IMM32

CMPM

Function : Comparison

Operation data length: 16 bits or 8 bits

Operation : M – IMM

 $\frac{\text{When } m = "0"}{M16}$

– IMM16

<u>When m = "1"</u> M8 _____ – IMM8

Description : Subtracts the immediate value from the contents of a memory. The result is not stored anywhere.

Status flags :

IPL	Ν	V	m	x	D	I	Ζ	С
—	Ν	V	—	_	—		Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag m is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the result of the operation is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	CMPM dd, #imm	5116, 2316, dd, imm	4	5
ABS	CMPM mmll, #imm	5116, 2716, II, mm, imm	5	5

Note : When flag m = "0." the byte number increases by 1.

CLM CMPM.W SEM	MEM16, #IMM16	; MEM16 – IMM16
CMPM.B	MEM8, #IMM8	; MEM8 – IMM8

СМРМВ

Function Comparison 1 Operation data length: 8 bits Operation M8 – IMM8 : M8 - IMM8 Description Subtracts the immediate value from the contents of a memory in 8-bit length. The result is not ÷ stored anywhere. This instruction is unaffected by flag m. Status flags : Ζ С IPL V Ν D m х L V Ζ С Ν N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0." Ζ: Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	CMPMB dd, #imm	5116, 2216, dd, imm	4	5
ABS	CMPMB mmll, #imm	5116, 2616, II, mm, imm	5	5

Description example:

CMPMB

MEM8, #IMM8

; MEM8 – IMM8

CMPMD

Function		:	Comparison												
Operation data le	engtl	1:	32 bits												
Operation		:	M32 – IMM32 M32 – IMM32												
Description		:	Subtracts the immediate value not stored anywhere. • This instruction is unaffected				ents (of a r	memo	ory in	32-t	oit ler	ngth. T	he res	ult is
Status flags	5	:		IPL	N	V					Z	0	1		
					N	V V	m —	× —	D —	-	Z	C C			
	N V		Set to "1" when MSB of the c Set to "1" when the result of th the range of -2147483648 to	ne ope	eratio	n (reg	garde	d as	a sig	ned c	opera	tion)		lue ou	tside

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	CMPMD dd, #imm	5116, A316, dd, immll, immlн, immнl, immнн	7	7
ABS	CMPMD mmll, #imm	5116, A716, II, mm, immll, immlh, immhl, immhh	8	7

Description example:

CMPMD

MEM32, #IMM32

; MEM32 – IMM32

Function :	Comparison
Operation data length:	16 bits or 8 bits
Operation :	$X - M$ $\underline{When \ x = "0"}$ $X \qquad M16$ $\underline{\qquad}$ $\underline{When \ x = "1"}$ $\underline{XL} \qquad M8$ $\underline{\qquad}$
Description	Subtracts the contents of a memory from th

Description : Subtracts the contents of a memory from the contents of X. The result is not stored anywhere.This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	Ι	Ζ	С
—	Ν	V				_	Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag x is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CPX #imm	E616, imm	2	1
DIR	CPX dd	2216, dd	2	3
ABS	CPX mmll	4116, 2E16, II, mm	4	4

Note : In the immediate addressing mode with flag x = 0, the byte number incleases by 1.

CLP	Х	
CPX.W	#IMM16	; X – IMM16
CPX	MEM16	; X – MEM16
SEP	х	
CPX.B	#IMM8	; X∟ – IMM8
CPX	MEM8	; X∟ – MEM8

CPY

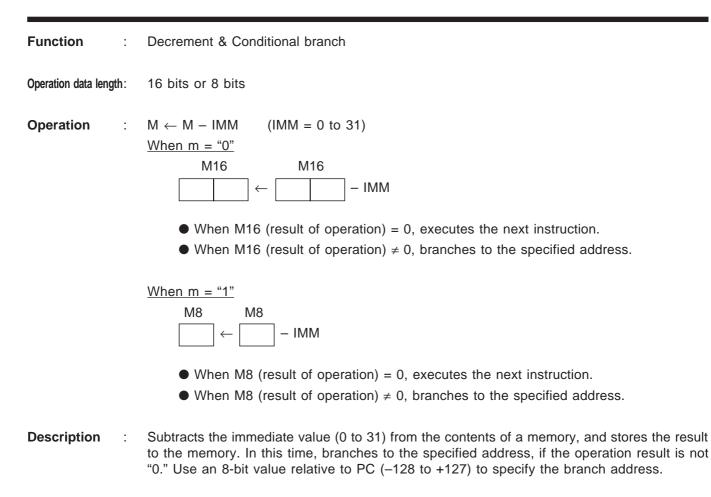
Function :	Comparison
Operation data length:	16 bits or 8 bits
Operation :	$\frac{\text{When } x = "0"}{Y} \qquad M16$
	$\frac{\text{When } x = \text{``1''}}{Y_{L}} M8$
Description :	Subtracts the contents of a memory from the

Description : Subtracts the contents of a memory from the contents of Y. The result is not stored anywhere.This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
_	Ν	V	—	—		_	Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag x is "1"). Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."


Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	CPY #imm	F616, imm	2	1
DIR	CPY dd	3216, dd	2	3
ABS	CPY mmll	4116, 3E16, II, mm	4	4

Note : In the immediate addressing mode with flag x = "0," the byte number incleases by 1.

CLP	Х	
CPY.W	#IMM16	; Y – IMM16
CPY	MEM16	; Y – MEM16
SEP	х	
CPY.B	#IMM8	; Y∟ – IMM8
CPY	MEM8	; Y∟ – MEM8

DEBNE

Status flags :

IPL	N	V	m	х	D	Ι	Z	С
—	—	—			_	-	—	—

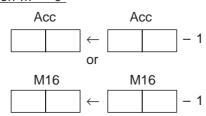
Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	DEBNE dd, #imm, rr	C116, imm+A016, dd, rr	4	12
ABS	DEBNE mmll, #imm, rr	D116, imm+E016, II, mm, rr	5	11

Note : Any value from 0 to 31 can be set to imm.

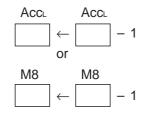
CLM DEBNE SEM	MEM16, #IMM, LABEL1	; Branches to LABEL1, if the result of MEM16 – IMM(0 to 31) is not 0.
	MEM8, #IMM, LABEL2	; Branches to LABEL2, if the result of MEM8 – IMM(0 to 31) is not 0.

DEC

Function : Decrement


Operation data length: 16 bits or 8 bits

1


Operation

Acc \leftarrow Acc – 1 or M \leftarrow M – 1

<u>When m = "1"</u>

 \ast In this case, the contents of Acc ${}_{\!\!H}$ do not change.

Description : Decrements 1 from the contents of Acc or the contents of a memory.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
—	Ν	_	—	—	—		Ζ	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	DEC A	B316	1	1
A	DEC B	8116, B316	2	2
DIR	DEC dd	9216, dd	2	6
DIR, X	DEC dd, X	4116, 9B16, dd	3	8
ABS	DEC mmll	9716, II, mm	3	6
ABS, X	DEC mmll, X	4116, 9F16, II, mm	4	8

CLM DEC	A	; A ← A − 1
SEM		
DEC	Α	; AL \leftarrow AL – 1

DEX

Function :	Decrement
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} X \leftarrow X - 1 \\ \underline{When \ x = "0"} \\ \hline X & X \\ \hline & - 1 \end{array}$ $\begin{array}{c} When \ x = "1" \\ \underline{X_L} & \underline{X_L} \\ \hline & - 1 \end{array}$ $\begin{array}{c} X_L & X_L \\ \hline & - 1 \end{array}$ $\begin{array}{c} \\ \ast \text{ In this case, the contents of } X_H \text{ do not change.} \end{array}$
Description :	Decrements 1 from the contents of X.● This instruction is unaffected by flag m.
Status flags :	IPL N V m x D I Z C - N Z

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

[Addressing mode	Syntax	Machine code	Bytes	Cycles
	IMP	DEX	E316	1	1

CLP	х	
DEX		; X ← X − 1
SEP	х	
DEX		; $X_L \leftarrow X_L - 1$

DEY

Function :	Decrement
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{cccc} Y \leftarrow Y - 1 \\ \hline \underline{When \ x = "0"} \\ & Y & Y \\ \hline \hline \\ & & & & \\ \end{array} \leftarrow \boxed{\begin{array}{c} & & \\ \end{array}} - 1 \\ \hline \underline{When \ x = "1"} \\ & & \\ \hline \\ & & & \\ \end{array} \leftarrow \boxed{\begin{array}{c} & & \\ \end{array}} - 1 \\ \hline \\ & & \\ \end{array} \end{array}$
Description :	Decrements 1 from the contents of Y.This instruction is unaffected by flag m.
Status flags :	IPL N V m x D I Z C - N - - - - Z -

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	DEY	F316	1	1

CLP DEY	х	; Y ← Y − 1
SEP	х	, 1 🗲 1 – 1
DEY		; $Y_L \leftarrow Y_L - 1$

DIV

Function Division (Unsigned) 1 16 bits or 8 bits Operation data length: Operation A (quotient), B (remainder) \leftarrow (B, A) \div M <u>When m = "0"</u> В В M16 А А Quotient Remainder Dividend Divisor ÷ When m = "1"M8 AL B∟ Bι AL Dividend Divisor Quotient Remainder * In this case, the contents of A_H and B_H do not change.

- **Description** : Divides the data whose high-order bits consist of the contents of accumulator B and low-order bits consist of the contents of accumulator A by the memory's contents. Stores the quotient to accumulator A, and stores the remainder to accumulator B.
 - If an overflow occurs as an operation result, flag V is set to "1" and the contents of accumulators A and B become undefined.
 - When the divisor is "0," the zero divide interrupt is generated. In that case, the contents of accumulators A and B are not changed.

IPL	Ν	V	m	х	D	I	Ζ	С
—	Ν	V		—		Ι	Ζ	С

- N : Set to "1" if the quotient (A as the operation result)'s MSB is "1." Unaffected when an overflow occurs or the divisor is "0." Otherwise, cleared to "0."
- V : Set to "1" when an overflow occurs. Unaffected when the divisor is "0." Otherwise, cleared to "0."
- I : Set to "1" when the divisor is "0." Otherwise, unaffected.
- Z : Set to "1" when the quotient (A as the operation result) is "0." Unaffected when an overflow occurs or the divisor is "0." Otherwise, cleared to "0."
- C : Set to "1" when an overflow occurs. Unaffected when the divisor is "0." Otherwise, cleared to "0."

Status flags

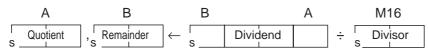
Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	DIV #imm	3116, E716, imm	3	15
DIR	DIV dd	2116, EA16, dd	3	16
DIR, X	DIV dd, X	2116, EB16, dd	3	17
(DIR)	DIV (dd)	2116, E016, dd	3	18
(DIR, X)	DIV (dd, X)	2116, E116, dd	3	19
(DIR), Y	DIV (dd), Y	2116, E816, dd	3	19
L(DIR)	DIV L(dd)	2116, E216, dd	3	20
L(DIR), Y	DIV L(dd), Y	2116, E916, dd	3	21
SR	DIV nn, S	2116, E316, nn	3	17
(SR), Y	DIV (nn, S), Y	2116, E416, nn	3	20
ABS	DIV mmll	2116, EE16, II, mm	4	16
ABS, X	DIV mmll, X	2116, EF16, II, mm	4	17
ABS, Y	DIV mmll, Y	2116, E616, II, mm	4	17
ABL	DIV hhmmll	2116, EC16, II, mm, hh	5	17
ABL, X	DIV hhmmll, X	2116, ED16, II, mm, hh	5	18

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

2: The cycle number in this table applies to the case of 16-bit ÷ 8-bit operation. In the case of 32bit ÷ 16-bit operation, the cycle number increases by 8.

3: The cycle number in this table and Note 2 is the number when the operation is completed normally (in other words, when no interrupt has been generated). If a zero divide interrupt is generated, the cycle number is 16 cycles regardless of the operation's data length.

CLM		
DIV	MEM16	; A, B \leftarrow (B, A) / MEM16
DIV.W	#IMM16	; A, B \leftarrow (B, A) / IMM16
SEM		
DIV	MEM8	; A_L , $B_L \leftarrow (B_L, A_L) / MEM8$
DIV.B	#IMM8	; Al, Bl \leftarrow (Bl, Al) / IMM8


DIVS

Function : Division (Signed)

Operation data length: 16 bits or 8 bits

 $\label{eq:operation} \textbf{Operation} \quad : \quad A \ (quotient), \ B \ (remainder) \leftarrow (B, \ A) \ \div \ M$

<u>When m = "0"</u>

* "s" represents MSB of data.

<u>When m = "1"</u>

 $\begin{array}{c|c} A_{L} & B_{L} & B_{L} & A_{L} & M8 \\ \hline \text{Quotient} & , & \text{Remainder} & \leftarrow & \text{Dividend} & \div & \text{Divisor} \\ \text{S} & \text{S} & \text{S} & \text{S} & \text{S} \\ \hline \end{array}$

* "s" represents MSB of data.

 \ast In this case, the contents of A_H and B_H do not change.

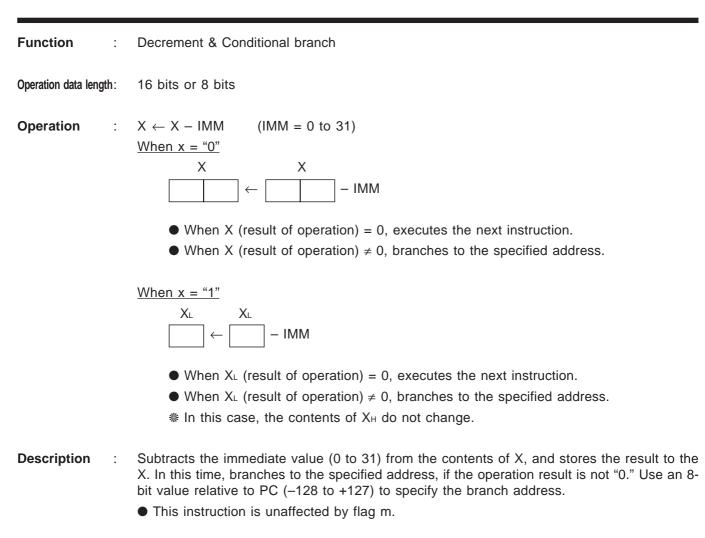
- **Description** : Divides the signed data whose high-order bits consist of the contents of accumulator B and low-order bits consist of the contents of accumulator A by the memory's contents (signed). Stores the signed quotient to accumulator A, and stores the signed remainder to accumulator B.
 - The sign of remainder becomes same as that of dividend.
 - If an overflow occurs as an operation result (the quotient exceeds the range -32767 to +32767 when flag m is "0," or -127 to +127 when flag m is "1"), the operation finishes halfway and flag V is set to "1." In that case, the contents of accumulators A and B become undefined.
 - When the divisor is "0," the zero divide interrupt is generated. In that case, the contents of accumulators A and B are not changed.

Status flags	IPL	Ν	V	m	х	D	Ι	Z	С
	_	Ν	V	_	_	_	I	Ζ	С

- N : Set to "1" if the quotient (A as the operation result)'s MSB is "1." Unaffected when an overflow occurs or the divisor is "0." Otherwise, cleared to "0."
- V : Set to "1" when an overflow occurs. Unaffected when the divisor is "0." Otherwise, cleared to "0."
- I : Set to "1" when the divisor is "0." Otherwise, unaffected.
- Z : Set to "1" when the quotient (A as the operation result) is "0." Unaffected when an overflow occurs or the divisor is "0." Otherwise, cleared to "0."
- C : Set to "1" when an overflow occurs. Unaffected when the divisor is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	DIVS #imm	3116, F716, imm	3	22
DIR	DIVS dd	2116, FA16, dd	3	23
DIR, X	DIVS dd, X	2116, FB16, dd	3	24
(DIR)	DIVS (dd)	2116, F016, dd	3	25
(DIR, X)	DIVS (dd, X)	2116, F116, dd	3	26
(DIR), Y	DIVS (dd), Y	2116, F816, dd	3	26
L(DIR)	DIVS L(dd)	2116, F216, dd	3	27
L(DIR), Y	DIVS L(dd), Y	2116, F916, dd	3	28
SR	DIVS nn, S	2116, F316, nn	3	24
(SR), Y	DIVS (nn, S), Y	2116, F416, nn	3	27
ABS	DIVS mmll	2116, FE16, II, mm	4	23
ABS, X	DIVS mmll, X	2116, FF16, II, mm	4	24
ABS, Y	DIVS mmll, Y	2116, F616, II, mm	4	24
ABL	DIVS hhmmll	2116, FC16, II, mm, hh	5	24
ABL, X	DIVS hhmmll, X	2116, FD16, II, mm, hh	5	25

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."


2: The cycle number in this table applies to the case of 16-bit ÷ 8-bit operation. In the case of 32bit ÷ 16-bit operation, the cycle number increases by 8.

3: The cycle number in this table and Note 2 is the number when the operation is completed normally (in other words, when no interrupt has been generated). If a zero divide interrupt is generated, the cycle number is 16 cycles regardless of the operation's data length.

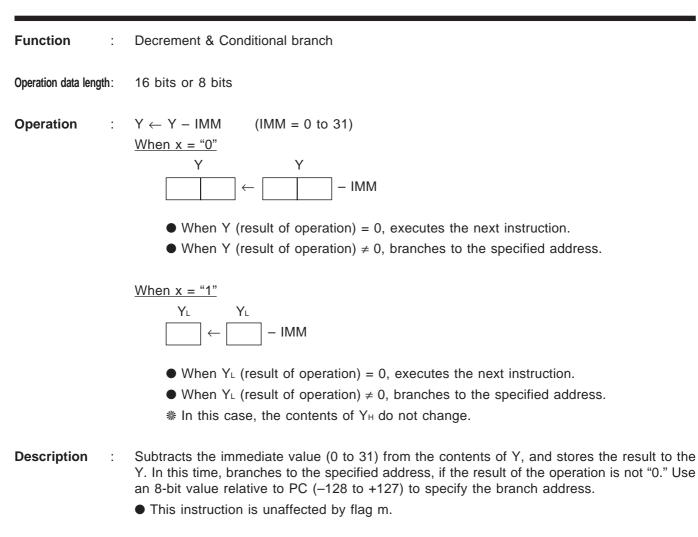
CLM DIVS	MEM16	; A, B ← (B, A) / MEM16
SEM		
DIVS.B	#IMM8	; Al, Bl \leftarrow (Bl, Al) / IMM8

DXBNE

DXBNE

Status	flage	
Status	nays	•

IPL	Ν	V	m	x	D	Ι	Z	С
—	—				_	_	_	—


Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	DXBNE #imm, rr	0116, imm+C016, rr	3	7

Note : Any value from 0 to 31 can be set to imm.

CLP	х	
DXBNE	#IMM, LABEL1	; Branches to LABEL1, if the result of X – IMM(0 to 31) is not 0.
SEP	х	
DXBNE	#IMM, LABEL2	; Branches to LABEL2, if the result of X_{L} – IMM(0 to 31) is not 0.

DYBNE

DYBNE

Status	flags	:	

IPL	N	V	m	х	D	I	Z	С
_				_	_	_	_	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	DYBNE #imm, rr	0116, imm+E016, rr	3	7

Note : Any value from 0 to 31 can be set to imm.

CLP DYBNE	x #IMM, LABEL1	; Branches to LABEL1, if the result of Y – IMM(0 to 31) is not 0.
SEP DYBNE	x #IMM, LABEL2	; Branches to LABEL2, if the result of Y_L – IMM(0 to 31) is not 0.

EOR

Function :	Logical exclusive OR
Operation data length:	16 bits or 8 bits
Operation :	Acc \leftarrow Acc \forall M <u>When m = "0"</u> <u>Acc</u> <u>Acc</u> M16 \bigcirc \leftarrow \bigcirc \forall \bigcirc <u>When m = "1"</u> <u>Accl</u> <u>Accl</u> <u>M8</u> \bigcirc \leftarrow \bigcirc \forall \bigcirc * In this case, the contents of AccH do not change.
Description :	Performs the logical exclusive OR between the contents of Acc and the contents of a memory by each bit, and stores the result in Acc.
Status flags :	IPL N V m x D I Z C - N - - - - Z -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
Addressing mode	Syntax		Dytes	Cycles
IMM	EOR A, #imm	7616, imm (8116, 7616, imm)	2 (3)	1 (2)
DIR	EOR A, dd	7A16, dd (8116, 7A16, dd)	2 (3)	3 (4)
DIR, X	EOR A, dd, X	7B16, dd (8116, 7B16, dd)	2 (3)	4 (5)
(DIR)	EOR A, (dd)	1116, 7016, dd (9116, 7016, dd)	3 (3)	6 (6)
(DIR, X)	EOR A, (dd, X)	1116, 7116, dd (9116, 7116, dd)	3 (3)	7 (7)
(DIR), Y	EOR A, (dd), Y	1116, 7816, dd (9116, 7816, dd)	3 (3)	7 (7)
L(DIR)	EOR A, L(dd)	1116, 7216, dd (9116, 7216, dd)	3 (3)	8 (8)
L(DIR), Y	EOR A, L(dd), Y	1116, 7916, dd (9116, 7916, dd)	3 (3)	9 (9)
SR	EOR A, nn, S	1116, 7316, nn (9116, 7316, nn)	3 (3)	5 (5)
(SR), Y	EOR A, (nn, S), Y	1116, 7416, nn (9116, 7416, nn)	3 (3)	8 (8)
ABS	EOR A, mmll	7E16, II, mm (8116, 7E16, II, mm)	3 (4)	3 (4)
ABS, X	EOR A, mmll, X	7F16, II, mm (8116, 7F16, II, mm)	3 (4)	4 (5)
ABS, Y	EOR A, mmll, Y	1116, 7616, II, mm (9116, 7616, II, mm)	4 (4)	5 (5)
ABL	EOR A, hhmmll	1116, 7C16, II, mm, hh (9116, 7C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	EOR A, hhmmll, X	1116, 7D16, II, mm, hh (9116, 7D16, II, mm, hh)	5 (5)	6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM		
EOR.W	A, #IMM16	; $A \leftarrow A \forall IMM16$
EOR	B, MEM16	; $B \leftarrow B \forall MEM16$
SEM		
EOR.B	A, #IMM8	; $A_L \leftarrow A_L \forall IMM8$
EOR	B, MEM8	; $BL \leftarrow BL \forall MEM8$

EORB

Function : Logical exclusive OR

Operation data length: 8 bits

 $\textbf{Operation} \quad : \quad \mathsf{Acc}_{\mathsf{L}} \leftarrow \mathsf{Acc}_{\mathsf{L}} \ \forall \ \mathsf{IMM8}$

Description : Performs the logical exclusive OR in 8-bit length between the contents of AccL and the contents of a memory by each bit, and stores the result in AccL.

- This instruction is unaffected by flag m.
- The contents of Acc_H do not change.

Status flags :

IPL	Ν	V	m	x	D	Ι	Z	С
Ι	Ν				-	_	Ζ	_

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	EORB A, #imm	3316, imm	2	1
IMM	EORB B, #imm	8116, 3316, imm	3	2

EORB	A, #IMM8	; $A_L \leftarrow A_L \forall IMM8$
EORB	B, #IMM8	; $B_{L} \leftarrow B_{L} \forall IMM8$

EORM

Function : Logical exclusive OR

Operation data length: 16 bits or 8 bits

- Operation : $M \leftarrow M \forall IMM$ <u>When m = "0"</u> <u>M16</u> <u>M16</u> <u>When m = "1"</u> <u>M8</u> <u>M8</u> \leftarrow <u>IMM8</u>
- **Description** : Performs the logical exclusive OR between the contents of a memory and the immediate value, and stores the result in the memory.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
_	Ν		—	—	_		Ζ	

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

4	7
5	7

Note : When flag m = "0," the byte number increases by 1.

CLM		
EORM.W	MEM16, #IMM16	; MEM16 \leftarrow MEM16 \forall IMM16
SEM		
EORM.B	MEM8, #IMM8	; MEM8 \leftarrow MEM8 \forall IMM8

EORMB

 Function
 :
 Logical exclusive OR

 Operation data length:
 8 bits

 Operation
 :
 M8 \leftarrow M8 \lor IMM8

 M8
 M8
 M8

 $\square \leftarrow$ \square VIMM8

Description : Performs the logical exclusive OR in 8-bit length between the contents of a memory and the immediate value, and stores the result in the memory.

• This instruction is unaffected by flag m.

 Status flags
 :

 IPL
 N
 V
 m
 x
 D
 I
 Z
 C

 N
 - - - Z
 -

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	EORMB dd, #imm	5116, 7216, dd, imm	4	7
ABS	EORMB mmll, #imm	5116, 7616, II, mm, imm	5	7

Description example:

EORMB

MEM8, #IMM8

; MEM8 \leftarrow MEM8 \forall IMM8

EORMD

EORMD

Function	:	Logical exclusive OR
Operation data	length:	32 bits
Operation	:	$\begin{array}{c c} M32 \leftarrow M32 & \forall \ IMM32 \\ \hline M32 & M32 \\ \hline \hline \end{array} \leftarrow \boxed & \hline & \forall \ IMM32 \end{array}$
Descriptior	n :	 Performs the logical exclusive OR in 32-bit length between the contents of a memory and the immediate value, and stores the result in the memory. This instruction is unaffected by flag m.
Status flag	S :	IPL N V m x D I Z C - N Z
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	EORMD dd, #imm	5116, F316, dd, immll, immlн, immнl, immнн	7	10
ABS	EORMD mmll, #imm	5116, F716, II, mm, immll, immlh, immhl, immhh	8	10

Description example:

EORMD

MEM32, #IMM32

; MEM32 \leftarrow MEM32 \forall IMM32

EXTS

EXTS

С

Function 2 Extension sign Operation data length: 16 bits Operation Acc \leftarrow Acc_L (Extension sign) 2 When bit 7 of $Acc_{L} = "0"$ ACC_H ← 00₁₆ Ассн Acc Ассн Acc 0016 $0XXXXXXX_2$? 0XXXXXXX \leftarrow When bit 7 of $Acc_{L} = "1"$ $Acc_{H} \leftarrow FF_{16}$ Acc∟ Ассн Acc Ассн **FF**₁₆ 1XXXXXXX₂ ? $1XXXXXXX_2$ \leftarrow * The contents of Acc_H change regardless of flag m. Description This instruction is used to extend Acc_L to Acc with signs. 2 • This instruction is unaffected by flag m. **Status flags** 1 IPL D Т Ζ Ν V m Х Ζ Ν _ ____ _

N : Set to "1" when bit 15 of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	EXTS A	3516	1	1
A	EXTS B	8116, 3516	2	2

Description example:

EXTS	
EXTS	

А

В

; Ah \leftarrow 0016 or FF16 ; Bh \leftarrow 0016 or FF16

EXTSD

Function :	Extension sign
Operation data length:	32 bits
Operation :	$\begin{array}{c} E \gets E_{L} \ (= A) & (Extension sign) \\ \hline \\ \underline{When \ bit \ 15 \ of \ A = "0"} \\ E_{H} \gets 0000_{16} \\ \hline \\ E_{H} \ (= B) E_{L} \ (= A) & E_{H} \ (= B) E_{L} \ (= A) \\ \hline \\ \underline{b15} b0 \ b15 b0 \\ \hline \\ \hline \\ 0000_{16} 0X^{\dots}XX_2 \end{array} \leftarrow \begin{array}{c} \mathbb{E}_{H} \ (= B) & C_{L} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= B) \\ \hline \\ 0000_{16} 0X^{\dots}XX_2 \end{array} \leftarrow \begin{array}{c} \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \hline \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) & E_{H} \ (= A) \\ \mathbb{E}_{H} \ (= A) \ (= A) \\ \mathbb{E}_{H} \ (= A) \ (= A) \\ \mathbb{E}_{H} \ (= A) \ (= $
	$\begin{array}{l} \hline \label{eq:When bit 15 of A = "1"} \\ E_{\text{H}} \leftarrow FFFF_{16} \\ E_{\text{H}} (= B) E_{\text{L}} (= A) \qquad E_{\text{H}} (= B) E_{\text{L}} (= A) \\ \underline{b15} \underline{b0} \ \underline{b15} \underline{b0} \underline{b15} \underline{b0} \underline{b15} \underline{b0} \\ \hline \hline FFFF_{16} 1X \cdots XX_2 \end{array} \leftarrow \begin{array}{c} 2 & 1X \cdots XX_2 \end{array} \\ \hline \end{tabular}$
Description :	This instruction is used to extend E _L (= A) to E with signs. ● This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	I	Z	С
—	Ν	—	—	—	—		Ζ	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	EXTSD E	3116, B016	2	5

Description example:

EXTSD

Е

; E \leftarrow EL ; (B \leftarrow 000016 or FFFF16, A \leftarrow A)

FXT7

Function 2 Extension zero Operation data length: 16 bits Operation Acc \leftarrow AccL (Extension zero) 2 Ассн Acc Ассн Acc ? 0016 * The contents of Acc_H change regardless of flag m.

Description This instruction is used to extend AccL to Acc with 0s. 2

- This instruction is unaffected by flag m.
- The content of Acc_H always set to "00₁₆."

Status flags :	IF	PL	Ν	V	m	х	D	Ι	Ζ	С
	-	_	0	_	_	_	_	—	Ζ	_

Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." N :

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	EXTZ A	3416	1	1
A	EXTZ B	8116, 3416	2	2

Description example:

EXTZ EXTZ В

А

; A \leftarrow Al (Ah \leftarrow 0016 , Al \leftarrow Al) ; $B \leftarrow BL (BH \leftarrow 0016$, $BL \leftarrow BL)$

EXTZD

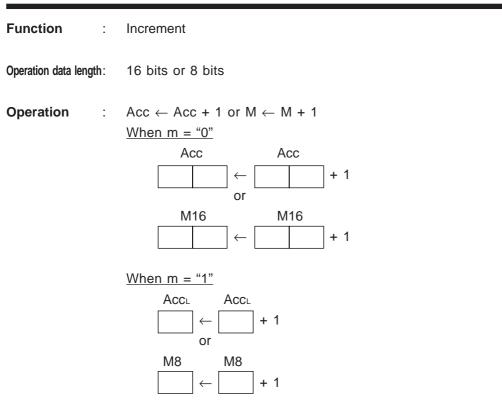
EXTZD

Function 2 Extension zero Operation data length: 32 bits Operation $E \leftarrow E_{L}$ (= A) (Extension zero) 2 Eн (= B) E∟ (= A) Ен (= В) E∟ (= A) b15 b0 b15 b0 b15 b0 b15 b0 000016 ? \leftarrow * The high-order 2 bytes change regardless of flag m. Description This instruction is used to extend E_{L} (= A) to E with 0s. 1 • This instruction is unaffected by flag m. • The high-order word; E_H (= B) becomes "0000₁₆." Status flags : IPL Ν V D Ζ С Т m Х 0 Ζ N : Always "0" because MSB of the operation result is "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	EXTZD E	3116, A016	2	3

Description example:


EXTZD

Е

; E \leftarrow EL (B \leftarrow 000016, A \leftarrow A)

INC

INC

 \ast In this case, the contents of AccH do not change.

Description	:	Adds 1 to the contents of Acc or a memory.	
-------------	---	--	--

Status flags :

IPL	N	V	m	x	D	I	Ζ	С
—	Ν				—	—	Ζ	—

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	INC A	A316	1	1
A	INC B	8116, A316	2	2
DIR	INC dd	8216, dd	2	6
DIR, X	INC dd, X	4116, 8B16, dd	3	8
ABS	INC mmll	8716, II, mm	3	6
ABS, X	INC mmll, X	4116, 8F16, II, mm	4	8

CLM		
INC	A	; A ← A + 1
INC	MEM16	; MEM16 \leftarrow MEM16 + 1
SEM		
INC	В	; B∟ ← B∟ + 1
INC	MEM8	; MEM8 \leftarrow MEM8 + 1

INX

Function :	Increment
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} X \leftarrow X + 1 \\ \underline{When \ x = "0"} \\ \hline X & X \\ \hline \Box & \leftarrow \Box & + 1 \end{array}$ $\begin{array}{c} When \ x = "1" \\ \hline X_{L} & X_{L} \\ \hline \Box & \leftarrow \Box & + 1 \end{array}$ $\begin{array}{c} X_{L} & X_{L} \\ \hline \Box & \leftarrow \Box & + 1 \end{array}$ $\begin{array}{c} * \ In \ this \ case, \ the \ contents \ of \ X_{H} \ do \ not \ change. \end{array}$
Description :	Adds 1 to the contents of X.● This instruction is unaffected by flag m.
Status flags :	IPL N V m x D I Z C - N - - - - Z -
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	INX	C316	1	1

CLP	х	
INX		; X ← X + 1
SEP	х	
INX		; $X_L \leftarrow X_L + 1$

INY

Function :	Increment
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} Y \leftarrow Y + 1 \\ \hline \underline{When \ x = "0"} \\ Y & Y \\ \hline \underline{ \ } \\ & \end{array} \leftarrow \boxed{ \ } \\ + 1 \\ \hline \underline{When \ x = "1"} \\ Y_{L} & Y_{L} \\ \hline \underline{ \ } \\ & \end{array} \leftarrow \boxed{ \ } \\ + 1 \\ \hline \ * \ In \ this \ case, \ the \ contents \ of \ Y_{H} \ do \ not \ change. \end{array}$
Description :	Adds 1 to the contents of Y.● This instruction is unaffected by flag m.
Status flags :	IPL N V m x D I Z C — N — — — — Z —
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	INY	D316	1	1

CLP INY	x	; Y ← Y + 1
SEP	Х	
INY		; $Y_L \leftarrow Y_L + 1$

JMP/JMPL

JuMP

Function :	Jump always
Operation data length:	_
Operation :	 JMP instruction PC ← Specified address PC ← mmll JMPL instruction PG, PC ← Specified address PC ← mmll PG ← hh
Description :	Jumps to the specified address. Use a 16-bit (JMP) or 24-bit (JMPL) address to specify the destination jump address.
	 If the last byte of the JMP instruction is placed at the highest address (XXFFFF₁₆) or the instruction is located across bank boundaries, the contents of PG are incremented by 1,

causing control to jump to the specified address in the next bank.
When using indirect addressing, the memory to be referenced is in the same program bank (the bank indicated by PG).

Status flags :

IPL	Ν	V	m	х	D	I	Z	С
—	_	_		—				

Addressing mode	Addressing mode Syntax Machine		Bytes	Cycles
ABS	JMP mmll	9C16, II, mm	3	4
ABL	JMPL hhmmll	AC16, II, mm, hh	4	5
(ABS)	JMP (mmll)	3116, 5C16, II, mm	4	7
L(ABS)	JMPL L(mmll)	3116, 5D16, II, mm	4	9
(ABS, X)	JMP (mmll, X)	BC16, II, mm	3	7

Description example:

JMP JMPL ADDR16 ADDR24 ; Jump to the address ADDR16 ; Jump to the address ADDR24

JSR/JSRL

Jump to SubRoutine

Function Subroutine call t Operation data length: Operation JSR instruction Stack \leftarrow PC Stack PC ← Specified address (S) just after instruction execution PCL $PC \leftarrow PC + 3$ (S) just before instruction execution РСн $M(S, S - 1) \leftarrow PC$ $S \leftarrow S - 2$ PC ← mmll JSRL instruction Stack Stack \leftarrow PG, PC (S) just after instruction execution PG, PC ← Specified address PCL РСн $PC \leftarrow PC + 4$ (S) just before instruction execution PG M(S to S - 2) \leftarrow PG, PC $\mathsf{S} \leftarrow \mathsf{S} - \mathsf{3}$ $\mathsf{PC} \gets \mathsf{mmll}$ $PG \leftarrow hh$

Description : This instruction stores the contents of PG and PC to stack, and jumps to the specified address. Use a 16-bit (JSR) or 24-bit (JSRL) address to specify the destination jump address.

- If the last byte of the JSR instruction is placed at the highest address (XXFFFF₁₆) or the instruction is located across bank boundaries, the contents of PG are incremented by 1, causing control to jump to the specified address in the next bank.
- When using indirect addressing, the memory to be referenced is in the same program bank (the bank indicated by PG).

Status flags	IPL	Ν	V	m	х	D	Ι	Ζ	С
Status flags :	—	—					-	Ι	—

Addressing mode	Addressing mode Syntax		Bytes	Cycles
ABS	JSR mmll	9D16, II, mm	3	6
ABL	JSRL hhmmll	AD16, II, mm, hh	4	7
(ABS, X)	JSR (mmll, X)	BD16, II, mm	3	8

Description example:

JSR JSRL ADDR16

ADDR24

; Jump to the address ADDR16 ; Jump to the address ADDR24

LDA

Function :	Load
Operation data length:	16 bits or 8 bits
Operation :	Acc \leftarrow M <u>When m = "0"</u> <u>Acc M16</u> <u>When m = "1"</u> <u>Acc M8</u> \leftarrow <u>M8</u> \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow
Description :	Loads the contents of a memory into Acc.
Status flags :	IPL N V m x D I Z C - N - - - - Z -

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDA A, #imm	1616, imm (8116, 1616, imm)	2 (3)	1 (2)
DIR	LDA A, dd	1A16, dd (8116, 1A16, dd)	2 (3)	3 (4)
DIR, X	LDA A, dd, X	1B16, dd (8116, 1B16, dd)	2 (3)	4 (5)
(DIR)	LDA A, (dd)	1116, 1016, dd (9116, 1016, dd)	3 (3)	6 (6)
(DIR, X)	LDA A, (dd, X)	1116, 1116, dd (9116, 1116, dd)	3 (3)	7 (7)
(DIR), Y	LDA A, (dd), Y	1816, dd (8116, 1816, dd)	2 (3)	6 (7)
L(DIR)	LDA A, L(dd)	1116, 1216, dd (9116, 1216, dd)	3 (3)	8 (8)
L(DIR), Y	LDA A, L(dd), Y	1916, dd (8116, 1916, dd)	2 (3)	8 (9)
SR	LDA A, nn, S	1116, 1316, nn (9116, 1316, nn)	3 (3)	5 (5)
(SR), Y	LDA A, (nn, S), Y	1116, 1416, nn (9116, 1416, nn)	3 (3)	8 (8)
ABS	LDA A, mmll	1E16, II, mm (8116, 1E16, II, mm)	3 (4)	3 (4)
ABS, X	LDA A, mmll, X	1F16, II, mm (8116, 1F16, II, mm)	3 (4)	4 (5)
ABS, Y	LDA A, mmll, Y	1116, 1616, II, mm (9116, 1616, II, mm)	4 (4)	5 (5)
ABL	LDA A, hhmmll	1C16, II, mm, hh (8116, 1C16, II, mm, hh)	4 (5)	4 (5)
ABL, X	LDA A, hhmmll, X	1D16, II, mm, hh (8116, 1D16, II, mm, hh)	4 (5)	5 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM LDA.W LDA	A, #IMM16 B, MEM16	; A ← IMM16 ; B ← MEM16
SEM		
LDA.B	A, #IMM8	; AL \leftarrow IMM8
LDA	B, MEM8	; $B_L \leftarrow MEM8$

LDAB

16 bits.

С

Function :	Load
Operation data length:	16 bits
Operation :	$Acc \leftarrow M8 \text{ (Extension zero)}$ $Acc \qquad M8$ $00_{16} \qquad \leftarrow \qquad \square$
Description :	 Transfers 8-bit data from memory to Acc after zero-extending it to 1 This instruction is unaffected by flag m. The contents of Acc_H are always set to "00₁₆."
Status flags :	IPL N V m x D I Z — 0 — — — — Z

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDAB A, #imm	2816, imm (8116, 2816, imm)	2 (3)	1 (2)
DIR	LDAB A, dd	0A16, dd (8116, 0A16, dd)	2 (3)	3 (4)
DIR, X	LDAB A, dd, X	0B16, dd (8116, 0B16, dd)	2 (3)	4 (5)
(DIR)	LDAB A, (dd)	1116, 0016, dd (9116, 0016, dd)	3 (3)	6 (6)
(DIR, X)	LDAB A, (dd, X)	1116, 0116, dd (9116, 0116, dd)	3 (3)	7 (7)
(DIR), Y	LDAB A, (dd), Y	0816, dd (8116, 0816, dd)	2 (3)	6 (7)
L(DIR)	LDAB A, L(dd)	1116, 0216, dd (9116, 0216, dd)	3 (3)	8 (8)
L(DIR), Y	LDAB A, L(dd), Y	0916, dd (8116, 0916, dd)	2 (3)	8 (9)
SR	LDAB A, nn, S	1116, 0316, nn (9116, 0316, nn)	3 (3)	5 (5)
(SR), Y	LDAB A, (nn, S), Y	1116, 0416, nn (9116, 0416, nn)	3 (3)	8 (8)
ABS	LDAB A, mmll	0E16, II, mm (8116, 0E16, II, mm)	3 (4)	3 (4)
ABS, X	LDAB A, mmll, X	0F16, II, mm (8116, 0F16, II, mm)	3 (4)	4 (5)
ABS, Y	LDAB A, mmll, Y	1116, 0616, II, mm (9116, 0616, II, mm)	4 (4)	5 (5)
ABL	LDAB A, hhmmll	0C16, II, mm, hh (8116, 0C16, II, mm, hh)	4 (5)	4 (5)
ABL, X	LDAB A, hhmmll, X	0D16, II, mm, hh (8116, 0D16, II, mm, hh)	4 (5)	5 (6)

Note : This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

LDAB	A, #IMM8	; A \leftarrow IMM8 (Ah \leftarrow 0016, AL \leftarrow IMM8)
LDAB	B, MEM8	; $B \leftarrow MEM8$ (BH \leftarrow 0016, BL \leftarrow MEM8)

LDAD

Ζ

Ζ

Т

С

Function :	Load
Operation data length:	32 bits
Operation :	$E \leftarrow M32$ $E \qquad M32$ $\Box \qquad \Box \qquad \leftarrow \Box \qquad \Box$
Description :	Loads the 32-bit data of a memory to E. ● This instruction is unaffected by flag m.
Status flags :	IPL N V m x D
	- N $ - - - $
N :	Set to "1" when MSB of the operation result is "1." Otherw

vise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDAD E, #imm	2C16, immll, immlh, immhl, immhh	5	3
DIR	LDAD E, dd	8A16, dd	2	6
DIR, X	LDAD E, dd, X	8B16, dd	2	7
(DIR)	LDAD E, (dd)	1116, 8016, dd	3	9
(DIR, X)	LDAD E, (dd, X)	1116, 8116, dd	3	10
(DIR), Y	LDAD E, (dd), Y	8816, dd	2	9
L(DIR)	LDAD E, L(dd)	1116, 8216, dd	3	11
L(DIR), Y	LDAD E, L(dd), Y	8916, dd	2	11
SR	LDAD E, nn, S	1116, 8316, nn	3	8
(SR), Y	LDAD E, (nn, S), Y	1116, 8416, nn	3	11
ABS	LDAD E, mmll	8E16, II, mm	3	6
ABS, X	LDAD E, mmll, X	8F16, II, mm	3	7
ABS, Y	LDAD E, mmll, Y	1116, 8616, II, mm	4	8
ABL	LDAD E, hhmmll	8C16, II, mm, hh	4	7
ABL, X	LDAD E, hhmmll, X	8D16, II, mm, hh	4	8

LDAD	E, #IMM32	; E ← IMM32
		; (B \leftarrow IMM32H, A \leftarrow IMM32L)
LDAD	E, MEM32	; E ← MEM32
		; (B \leftarrow IMM32H, A \leftarrow IMM32L)

LDD n

Function Load 1 Operation data length: 16 bits $DPR0 \leftarrow IMM16a$ (can be specified to multiple DPRs) Operation ÷ $DPR1 \leftarrow IMM16b$ $DPR2 \leftarrow IMM16c$ DPR3 ← IMM16d DPR0 ← IMM16a DPR1 \leftarrow IMM16b DPR2 ← IMM16c DPR3 \leftarrow IMM16d Description

- Transfers a 16-bit immediate value to DPR0 through DPR3. 1
 - This instruction is unaffected by flag m.
 - A value can be set to multiple DPRs by 1 instruction. If multiple DPRs are specified, transfers are performed in order of DPR0, DPR1, DPR2, and DPR3.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
—	_	_		—	—			

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDD n, #imm LDD (n1,, ni), #imm1,, #immi	B816, ?016, immL, immн B816, ?016, immL1, immн1 ,, immLi, immнi	4 2 × i + 2	13 2 x i+11

Notes 1: Any value from 0 to 3 can be set to n.

2: The second line of the syntax format sets values to multiple DPRs by 1 instruction.

3: The inside of parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).

4: i: Indicates DPRn specified (1 to 4).

5: ?: The bit corresponding to a specified DPRn is set to "1." The diagram below shows the relationship between bits and DPRn.

b7							b0
DPR3	DPR2	DPR1	DPR0	0	0	0	0

LDD	0, #IMM16	; DPR0 \leftarrow IMM16
LDD	(0, 3), #IMM16a, #IMM16b	; DPR0 \leftarrow IMM16a
		; DPR3 \leftarrow IMM16b

LDT

Function :	Load					
Operation data length:	8 bits					
Operation :	$DT \leftarrow IMM8$					
	DT — IMM8					
Description :	Loads the immediate value to DT. ● This instruction is unaffected by flag m.					
Status flags :	IPL N V m x D I Z C					

Addressing mode Syntax		Machine code	Bytes	Cycles
IMM	LDT #imm	3116, 4A16, imm	3	4

Description example:

LDT

#IMM8

; DT \leftarrow IMM8

LDX

												_
Function	:	Load										
Operation data leng	th:	16 bits or 8 bits										
Operation	:	$X \leftarrow M$ $\underline{When \ x = "0"}$ $X \qquad M16$ $\underline{\qquad}$ $\underline{When \ x = "1"}$ $\underline{X_{L}} \qquad M8$ $\underline{\qquad}$ $\underline{When \ x = m8}$		f Xн	do no	ot cha	ange					
Description	:	Loads the contents of a memo	ory to	» Х.								
Status flags	:		IPL —	N N	V —	m —	x —	D —	 	Z Z	C —	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDX #imm	C616, imm	2	1
DIR	LDX dd	0216, dd	2	3
DIR, Y	LDX dd, Y	4116, 0516, dd	3	5
ABS	LDX mmll	0716, II, mm	3	3
ABS, Y	LDX mmll, Y	4116, 0616, II, mm	4	5

Note : In the immediate addressing mode, the byte number inclease by 1 when flag x = "0."

CLM		
LDX.W	#IMM16	; $X \leftarrow IMM16$
LDX	MEM16	; $X \leftarrow MEM16$
SEM		
LDX.B	#IMM8	; $X \leftarrow IMM8$
LDX	MEM8	; $X_L \leftarrow MEM8$

LDXB

Function :	Load
Operation data length:	16 bits
Operation :	$X \leftarrow IMM8$ (Extension zero)
Description :	X 00 ₁₆ ← IMM8 Extends the 8-bit immediate value to the 16-bit immediate value with 0s, and loads the data to X. • This instruction is unaffected by flag x. • The contents of X _H are always set to "00 ₁₆ ."
Status flags :	IPL N V m x D I Z C 0 Z
N :	Always "0" because MSB of the operation result is "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDXB #imm	2716, imm	2	1

Description example:

LDXB

#IMM8

; X \leftarrow IMM8 (XH \leftarrow 0016, XL \leftarrow IMM8)

LDY

Function	:	Load
Operation data leng	ith:	16 bits or 8 bits
Operation	:	$\begin{array}{c} Y \leftarrow M \\ \hline \underline{When \ x = "0"} \\ Y & M16 \\ \hline \underline{\ \ } \\ \hline \underline{\ \ } \\ \underline{\ \ } \ \underline{\ } \\ \underline{\ \ } \\ \underline{\ \ } \\ \underline{\ \ } \ \underline{\ \ } \ \underline{\ \ } \ \underline{\ } \ \underline{\ } \ \underline{\ \ } \ \underline$
Description	:	Loads the contents of a memory to Y.
Status flags	:	IPL N V m x D I Z C - N Z

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDY #imm	D616, imm	2	1
DIR	LDY dd	1216, dd	2	3
DIR, X	LDY dd, X	4116, 1B16, dd	3	5
ABS	LDY mmll	1716, II, mm	3	3
ABS, X	LDY mmll, X	4116, 1F16, II, mm	4	5

Note : In the immediate addressing mode, the byte number inclease by 1 when flag x = "0."

CLM LDY.W	#IMM16	; $Y \leftarrow IMM16$
LDY SEM	MEM16	; $Y \leftarrow MEM16$
LDY.B LDY	#IMM8 MEM8	; $Y_L \leftarrow IMM8$; $Y_L \leftarrow MEM8$

LDYB

Function		:	Load
Operation data le	ength	:	16 bits
Operation		:	$Y \leftarrow IMM8$ (Extension zero)
Description			Y DO16 ← IMM8 Extends the 8-bit immediate value to the 16-bit immediate value with 0s, and loads the data to Y. This instruction is unaffected by flag x. The contents of Y _H are always set to "00 ₁₆ ."
Status flags	5	:	IPL N V m x D I Z C - 0 - - - - Z -
	N	:	Always "0" because MSB of the operation result is "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

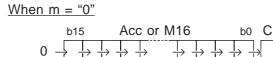
Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	LDYB #imm	3716, imm	2	1

Description example:

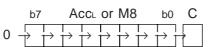
LDYB

#IMM8

; Y \leftarrow IMM8 (YH \leftarrow 0016, YL \leftarrow IMM8)


LSR

Function : Logical shift to the right


Operation data length: 16 bits or 8 bits

Operation : A $0 \rightarrow 1$ -bit

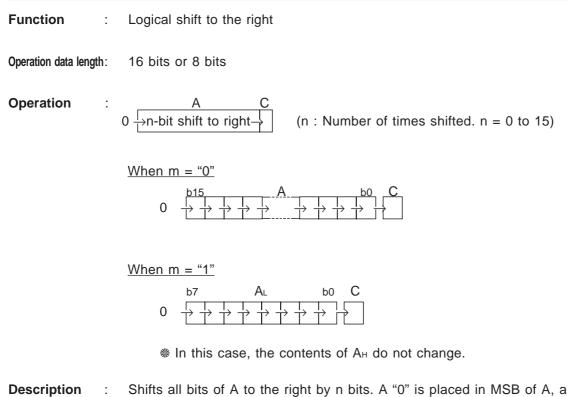
 $\begin{array}{c|c} & Acc \text{ or } M & C \\ 0 \xrightarrow{} 1 \text{-bit shift to right} \xrightarrow{I} \end{array}$

 $\ensuremath{\#}$ In this case, the contents of Acc_H do not change.

Description : Shifts all bits of Acc or a memory to the right by 1 bit. In this time, "0" is placed in MSB of Acc or a memory. Flag C is loaded from LSB of the data before the shift.

Status flags

IPL	Ν	V	m	х	D	I	Ζ	С
_	0	—	—	—		—	Ζ	С


- N : Cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when LSB before the operation is "1." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	LSR A	4316	1	1
A	LSR B	8116, 4316	2	2
DIR	LSR dd	2116, 2A16, dd	3	7
DIR, X	LSR dd, X	2116, 2B16, dd	3	8
ABS	LSR mmll	2116, 2E16, II, mm	4	7
ABS, X	LSR mmll, X	2116, 2F16, II, mm	4	8

CLM		
LSR	А	; $A \leftarrow A$ is logically shifted to the right by 1 bit.
LSR	MEM16	; MEM16 \leftarrow MEM16 is logically shifted to the right by 1 bit.
SEM		
LSR	A	; $A_{L} \leftarrow A_{L}$ is logically shifted to the right by 1 bit.
LSR	MEM8	; MEM8 \leftarrow MEM8 is logically shifted to the right by 1 bit.

LSR #n

LSR #n

- **Description** : Shifts all bits of A to the right by n bits. A "0" is placed in MSB of A, and LSB is placed in flag C each time its contents shifted by 1 bit.
 - B cannot be used in this instruction.

IPL	Ν	V	m	х	D	I	Ζ	С
—	0		—	—	_	_	Ζ	С

- N : Always "0" because MSB of the operation result is "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if LSB = "1" when the contents of A are shifted by (n 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	LSR A, #imm	C116, imm	2	imm+6

Note : Any value (number of times shifted) from 0 to 15 can be set to imm.

Description example:

CLM		
LSR	A, #15	; $A \leftarrow A$ is logically shifted to the right by 15 bits.
SEM		
LSR	A, #7	; $A_L \leftarrow A_L$ is logically shifted to the right by 7 bits.

Status flags

LSRD #n

LSRD #n

 Function
 :
 Logical shift to the right

 Operation data length:
 32 bits

 Operation
 :
 E
 C

 0 - 1 -1 -1 -1 -1

 0 -1 -1 -1 -1 -1

 0 -1 -1 -1 -1 -1 -1

 0 -1 -1 -1 -1 -1 -1 -1

 0 -1 -

Description : Shifts all bits of E in 32-bit length to the right by n bits. A "0" is placed in MSB of E, and LSB is placed in flag C each time its contents are shifted by 1 bit.

• This instruction is unaffected by flag m.

Status flags

IPL	Ν	V	m	x	D	Ι	Z	С
—	0				—	—	Z	С

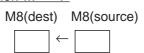
- N : Always "0" because MSB of the operation result is "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if LSB = "1" when the contents of E are shifted by (n 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	LSRD E, #imm	D116, imm	2	imm+8

Note : Any value (number of times shifted) from 0 to 31 can be set to imm.

Description example:

LSRD


E, #16

; $E \leftarrow E$ is logically shifted to the right by 16 bits.

MOVM

Function :	Move memory to memory
Operation data length:	16 bits or 8 bits
Operation :	M ← M <u>When m = "0"</u>

M16	M16(dest)		И16(sc	ource)
		\leftarrow		
When m :	= "1"			

Description : Transfers the contents of the source memory to the destination memory.

• This instruction includes the function of the LDM instruction in the conventional 7700 Family.

Status flags :

IPL	Ν	V	m	х	D	Ι	Z	С
_			_	_	_		_	

Address	sing mode	Syntax	Machine code	Bytes	Cycles
dest	source	Syntax	Machine code	Dytes	Cycles
DIR	IMM	MOVM dd, #imm	8616, imm, dd	3	5
DIR	ABS	MOVM dd, mmll	5C16, II, mm, dd	4	6
DIR	ABS, X	MOVM dd, mmll, X	5D16, II, mm, dd	4	7
ABS	IMM	MOVM mmll, #imm	9616, imm, II, mm	4	4
ABS	DIR	MOVM mmll, dd	7816, dd, ll, mm	4	5
ABS	DIR, X	MOVM mmll, dd, X	7916, dd, ll, mm	4	6
ABS, X	IMM	MOVM mmll, X, #imm	3116, 5716, imm, II, mm	5	6
ABS	ABS	MOVM mmll ₁ , mmll ₂	7C16, II2, mm2, II1, mm1	5	5
DIR, X	IMM	MOVM dd, X, #imm	3116, 4716, imm, dd	4	7
DIR	DIR	MOVM dd1, dd2	5816, dd2, dd1	3	6

Note : In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM MOVM.W MOVM SEM	MEM16, #IMM16 MEM16(dest), MEM16(source)	; MEM16 ← IMM16 ; MEM16(dest) ← MEM16(source)
MOVM.B	MEM8, #IMM8	; MEM8 ← IMM8
MOVM	MEM8(dest), MEM8(source)	; MEM8(dest) ← MEM8(source)

MOVMB

 Function
 :
 Move memory to memory

 Operation data length:
 8 bits

Operation : $M8 \leftarrow M8$ M8(dest) M8(source) $\frown \leftarrow \Box$

Description

: Transfers the contents of the source memory to the destination memory in 8-bit length.

- The contents of the source memory do not change.
- This instruction is unaffected by flag m.

Status flags :

IPL	N	V	m	х	D	Ι	Ζ	С
—	_	_	—	—	_	_	_	

Addres	sing mode	Syntax	Machine code	Bytes	Cycles
dest	source	Syntax	Machine code	Dytes	Cycles
DIR	IMM	MOVMB dd, #imm	A916, imm, dd	3	5
DIR	ABS	MOVMB dd, mmll	4C16, II, mm, dd	4	6
DIR	ABS, X	MOVMB dd, mmll, X	4D16, II, mm, dd	4	7
ABS	IMM	MOVMB mmll, #imm	B916, imm, II, mm	4	4
ABS	DIR	MOVMB mmll, dd	6816, dd, ll, mm	4	5
ABS	DIR, X	MOVMB mmll, dd, X	6916, dd, II, mm	4	6
ABS, X	IMM	MOVMB mmll, X, #imm	3116, 3B16, imm, II, mm	5	6
ABS	ABS	MOVMB mmll ₁ , mmll ₂	6C16, II2, mm2, II1, mm1	5	5
DIR, X	IMM	MOVMB dd, X, #imm	3116, 3A16, imm, dd	4	7
DIR	DIR	MOVMB dd1, dd2	4816, dd2, dd1	3	6

MOVMB	MEM8, #IMM8	; MEM8 ← IMM8
MOVMB	MEM8(dest), MEM8(source)	; MEM8(dest) \leftarrow MEM8(source)

MOVR

Function :	Move memory to memory
Operation data length:	16 bits or 8 bits
Operation :	$ \begin{array}{l} M(dest\ 1) \leftarrow M(source\ 1) \ (n:Number of times repeated transferring.\ n = 0 \ to\ 15) \\ M(dest\ 2) \leftarrow M(source\ 2) \\ \vdots & \vdots \\ M(dest\ n) \leftarrow M(source\ n) \\ \hline \\ \underline{M(dest\ n)} \leftarrow M(source\ n) \\ \hline \\ \underline{M(dest\ 1)} \ M16(source\ 1) \\ \hline \\ \vdots & \vdots \\ M16(dest\ n) \ M16(source\ n) \\ \hline \\ \hline \\ \underline{M}16(dest\ n) \ M16(source\ n) \\ \hline \\ \hline \\ \end{array} $
Description :	When m = "1" M8(dest 1) M8(source 1) i i i i i i M8(dest n) M8(source n) M8(source n) M8(sour

Status flags	IPL	Ν	V	m	х	D	Ι	Ζ	С	
	—	_	_	_		_	_		_	

Address	sing mode	Suntay	Machine code	Putos	Cycles
dest	source	Syntax	Machine code	Bytes	Cycles
DIR	IMM	MOVR #n, dd1, #imm1 ,, ddn, #immn	6116, n+1016, imm1, dd1,, immn, ddn	2Xn+2 (Notes 2)	5 X n+3
DIR	DIR	MOVR #n, ddd1, dds1 ,, dddn, ddsn	6116, n+5016, dds1, ddd1,, ddsn, dddn	2Xn+2	6Xn+3
DIR	ABS	MOVR #n, dd1, mmll1 ,, ddn, mmlln	6116, n+9016, ll1, mm1, dd1 ,, lln, mmn, ddn	3Xn+2	6Xn+3
DIR	ABS, X	MOVR #n, dd1, mmll1, X ,, ddn, mmlln, X	7116, n+1016, ll1, mm1, dd1 ,, lln, mmn, ddn	3Xn+2	6Xn+3
ABS	IMM	MOVR #n, mmll1, #imm1 ,, mmlln, #immn	6116, n+3016, imm1, ll1, mm1 ,, immn, lln, mmn	3Xn+2 (Notes 2)	4Xn+3
ABS	DIR	MOVR #n, mmll1, dd1 ,, mmlln, ddn	6116, n+7016, dd1, ll1, mm1 ,, ddn, lln, mmn	3Xn+2	5Xn+3
ABS	DIR, X	MOVR #n, mmll1, dd1, X ,, mmlln, ddn, X	7116, n+7016, dd1, ll1, mm1 ,, ddn, lln, mmn	3Xn+2	6Xn+3
ABS	ABS	MOVR #n, mmlld1, mmlls1 ,, mmlldn, mmllsn	6116, n+B016, lls1, mms1, lld1, mmd1 ,, llsn, mmsn, lldn, mmdn	4Xn+2	5Xn+3

Notes 1 : Any value from 0 to 15 can be set to n.

2 : Incremented by n bytes when flag m = "0."

; MEM16(dest1) \leftarrow IMM16a
; MEM16(dest2) ← IMM16b MOVR 2. MEM16(dest1), MEM16(source1), MEM16(dest2), MEM16(source2)
MOVR 2, MEM16(dest1), MEM16(source1), MEM16(dest2), MEM16(source2) ; MEM16(dest1) ← MEM16(source1)
; MEM16(dest2) ← MEM16(source2
SEM
MOVR.B 2, MEM8(dest1), #IMM8a, MEM8(dest2), #IMM8b ; MEM8(dest1) ← IMM8a
; MEM8(dest2) ← IMM8b
MOVR 2, MEM8(dest1), MEM8(source1), MEM8(dest2), MEM8(source2)
; MEM8(dest1) ← MEM8(source1)
; $MEM8(dest2) \leftarrow MEM8(source2)$

MOVRB

С

Ζ

Function :	Move memory to memory
Operation data length:	8 bits
Operation :	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	M8(dest n) \leftarrow M8(source n)
	M8(dest 1) M8(source 1)
	$\begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
	$M8(\text{dest n}) M8(\text{source n}) \\ \frown \\ \leftarrow $
Description :	Performs multiple memory-to-memory transfers by 1 instruction. Transfers are performed according to the addresses specified in the 3rd and following bytes of the instruction, in byte length. Up to 15 transfers can be performed.
	 Memory contents on the source side do not change.
	• No transfer is performed if a "0" is specified for the transfer count.

• This instruction can specify the different addressing modes for the source and destination, respectively; these addressing modes, however, cannot be changed until the multiple transfer specified by 1 instruction is completed.

m

Х

D

Ι

• This instruction is unaffected by flag m.

IPL

Ν

V

Address	ing mode	Syntax	Machine code	Putos	Cycles
dest	source	Syntax		Bytes	Cycles
DIR	IMM	MOVRB #n, dd1, #imm1 ,, ddn, #immn	6116, n+0016, imm1, dd1,, immn, ddn	2 X n+2	5Xn+3
DIR	DIR	MOVRB #n, ddd1, dds1 ,, dddn, ddsn	6116, n+4016, dds1, ddd1,, ddsn, dddn	2 X n+2	6Xn+3
DIR	ABS	MOVRB #n, dd1, mmll1 ,, ddn, mmlln	6116, n+8016, ll1, mm1, dd1 ,, lln, mmn, ddn	3Xn+2	6Xn+3
DIR	ABS, X	MOVRB #n, dd1, mmll1, X ,, ddn, mmlln, X	7116, n+0016, ll1, mm1, dd13Xn+2 ,, lln, mmn, ddn	6Xn+3	
ABS	IMM	MOVRB #n, mmll1, #imm1 ,, mmlln, #immn	6116, n+2016, imm1, II1, mm13Xn+2 ,, immn, IIn, mmn	4 X n+3	
ABS	DIR	MOVRB #n, mmll1, dd1 ,, mmlln, ddn	6116, n+6016, dd1, ll1, mm1 ,, ddn, lln, mmn	3 X n+2	5Xn+3
ABS	DIR, X	MOVRB #n, mmll1, dd1, X ,, mmlln, ddn, X	7116, n+6016, dd1, ll1, mm13Xn+2 ,, ddn, lln, mmn	6Xn+3	
ABS	ABS	MOVRB #n, mmlld1, mmlls1 ,, mmlldn, mmllsn	6116, n+A016, lls1, mms1, lld1, mmd1 ,, llsn, mmsn, lldn, mmdn	4 X n+2	5Xn+3

Status flags

Note : Any value from 0 to 15 can be set to n.

MOVRB	2, MEM8(dest1), #IMM8a, MEM8(dest2), #IMM8b ; MEM8(dest1) ← IMM8a
	; MEM8(dest2) ← IMM8b
MOVRB	2, MEM8(dest1), MEM8(source1), MEM8(dest2), MEM8(source2)
	; $MEM8(dest1) \leftarrow MEM8(source1)$
	; MEM8(dest2) \leftarrow MEM8(source2)

MultiPIY

Function ÷ Multiplication (Unsigned)

Operation data length: 16 bits or 8 bits

Operation $(B, A) \leftarrow A$ (Multiplicand) X M (Multiplier) ÷ <u>When m = "0"</u>

> В M16 А А Multiplicand Multiplier Product Х

When m = "1"

B∟	AL	AL	M8
Pro	duct	\leftarrow Multiplicand X	Multiplier

* In this case, the contents of A_{H} and B_{H} do not change.

Description The contents of A are multiplied by the contents of a memory. The higher of result is stored 2 in B and lower is stored in A.

Status flags

IPL	Ν	V	m	x	D	I	Ζ	С
_	Ν		_		_	—	Ζ	0

N : Set to "1" when MSB (MSB of B) of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	MPY #imm	3116, C716, imm	3	8
DIR	MPY dd	2116, CA16, dd	3	9
DIR, X	MPY dd, X	2116, CB16, dd	3	10
(DIR)	MPY (dd)	2116, C016, dd	3	11
(DIR, X)	MPY (dd, X)	2116, C116, dd	3	12
(DIR), Y	MPY (dd), Y	2116, C816, dd	3	12
L(DIR)	MPY L(dd)	2116, C216, dd	3	13
L(DIR), Y	MPY L(dd), Y	2116, C916, dd	3	14
SR	MPY nn, S	2116, C316, nn	3	10
(SR), Y	MPY (nn, S), Y	2116, C416, nn	3	13
ABS	MPY mmll	2116, CE16, II, mm	4	9
ABS, X	MPY mmll, X	2116, CF16, II, mm	4	10
ABS, Y	MPY mmll, Y	2116, C616, II, mm	4	10
ABL	MPY hhmmll	2116, CC16, II, mm, hh	5	10
ABL, X	MPY hhmmll, X	2116, CD16, II, mm, hh	5	11

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

2: The cycle number in this table applies to the case of 8-bit X 8-bit operation. In the case of 16-bit X 16-bit operation, the cycle number increases by 4.

CLM		
MPY.W	#IMM16	; B, A \leftarrow A X IMM16
MPY SEM	MEM16	; B, A \leftarrow A X MEM16
MPY.B	#IMM8	; Bl, Al \leftarrow Al X IMM8
MPY	MEM8	; Bl, Al \leftarrow Al X MEM8

MPYS

Function : Multiplication (Signed)

Operation data length: 16 bits or 8 bits

:

Operation

 $(B, A) \leftarrow A$ (Multiplicand) X M (Multiplier)

When m = "0"

* S represents MSB of the data.

When m = "1"

 $\begin{array}{c|c} B_L & A_L \\ \hline S & Product \\ \hline S & \\ \end{array} \leftarrow \begin{array}{c} A_L \\ \hline Multiplicand \\ \end{array} \times \begin{array}{c} M8 \\ \hline Multiplier \\ \end{array}$

* S represents MSB of the data.

In this case, the contents of $A_{\rm H}$ and $B_{\rm H}$ do not change.

Description : The contents of A are multiplied by the contents of a memory. The high order of result is stored in B and low order is stored in A. MSB of B becomes the sign bit.

Status flags

IPL	. N	V	m	х	D	I	Z	С
_	Ν	—	—	—			Ζ	0

N : Set to "1" when MSB (MSB of B) of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	MPYS #imm	3116, D716, imm	3	8
DIR	MPYS dd	2116, DA16, dd	3	9
DIR, X	MPYS dd, X	2116, DB16, dd	3	10
(DIR)	MPYS (dd)	2116, D016, dd	3	11
(DIR, X)	MPYS (dd, X)	2116, D116, dd	3	12
(DIR), Ý	MPYS (dd), Y	2116, D816, dd	3	12
L(DIR)	MPYS L(dd)	2116, D216, dd	3	13
L(DIR), Y	MPYS L(dd), Y	2116, D916, dd	3	14
SR	MPYS nn, S	2116, D316, nn	3	10
(SR), Y	MPYS (nn, S), Y	2116, D416, nn	3	13
ABS	MPYS mmll	2116, DE16, II, mm	4	9
ABS, X	MPYS mmll, X	2116, DF16, II, mm	4	10
ABS, Y	MPYS mmll, Y	2116, D616, II, mm	4	10
ABL	MPYS hhmmll	2116, DC16, II, mm, hh	5	10
ABL, X	MPYS hhmmll, X	2116, DD16, II, mm, hh	5	11

Notes 1: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

2: The cycle number in this table applies to the case of 8-bit X 8-bit operation. In the case of 16-bit X 16-bit operation, the cycle number increases by 4.

CLM MPYS.W MPYS SFM	#IMM16 MEM16	; B, A \leftarrow A X IMM16 ; B, A \leftarrow A X MEM16
MPYS.B	#IMM8	; Bl, Al \leftarrow Al X IMM8
MPYS	MEM8	; Bl, Al \leftarrow Al X MEM8

MVN

Function :	Move				
Operation data length:	16 bits or 8 bits				
Operation :	M (n to n + i - 1) \leftarrow M (m to m + i - 1) (i : transfer byte number)				
Description :	Normally, a block of data is transferred from higher addresses to lower addresses. The transfer is performed in the ascending address order of the block being transferred.				
	n n + i - 1 n + i - 1 n + i - 1 n + i - 1 n + i - 1 Transfer direction m + i - 1 Transfer direction Transfer source area				
	 The 3rd byte of the instruction The 4th byte of the instruction X : Transfer source bank, X : Transfer destination address, Y : Transfer source address, A : Byte number of the transfed data block are specified. (Specify X, Y, and A before this instruction is executed.) When m = "0" : 0- to 65535-byte data can be transferred. When m = "1" : 0- to 255-byte data can be transferred. When x = "0" : Transfer source area and transfer destination area can be set to the addresses from 0 to 65535 (FFFF₁₆). When x = "1" : Transfer source area and transfer destination area can be set to the addresses from 0 to 255 (FF₁₆). Contents of registers after transfer X : Transfer source area end (highest) address + 1 Y : Transfer destination area end (highest) address + 1 A : FFFF₁₆ DT : Bank number of transfer destination 				
Status flags :	IPL N V m x D I Z C - - - - - - - - -				

Addressing mode	Syntax	Machine code	Bytes	Cycles
BLK	MVN hh1, hh2	3116, 2B16, hh1, hh2	4	5 X i + 5

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even number. When i is an odd number, the cycle number is obtained as follows:
5 X i + 10.

CLM		•		I	1
LDA.W	#IMM16	;	LABEL1	↓	IMM16 bytes (BANK1)
LDX	LABEL2	;	\rightarrow	•	
LDY	LABEL1	•	LABEL2		
MVN	BANK1, BANK2	;		↓	IMM16 bytes (BANK2)

MVP

Function :	Move
Operation data length:	16 bits or 8 bits
Operation :	$M (n - i + 1 \text{ to } n) \leftarrow M (m - i + 1 \text{ to } m)$ (i : transfer byte number)
Description :	Normally, a block of data is transferred from lower addresses to higher addresses. The transfer is performed in the descending address order of the block being transferred.
	m − i + 1 Transfer direction source m
	n - i + 1 \uparrow Transfer direction destination n
	 The 3rd byte of the instruction The 4th byte of the instruction X Transfer destination bank, Transfer source bank, Transfer destination address, Transfer source address, Transfer source address, Byte number of the transfed data block are specified. (Specify X, Y, and A before this instruction is executed.) When m = "0": 0- to 65535-byte data can be transferred. When m = "1": 0- to 255-byte data can be transfer destination area can be set to the addresses from 0 to 65535 (FFFF₁₆). When x = "1": Transfer source area and transfer destination area can be set to the addresses from 0 to 255 (FF₁₆). Contents of registers after transfer

- Contents of registers after transfer
 - X : Transfer source area end (lowest) address 1
 - Y : Transfer destination area end (lowest) address 1
 - A : FFFF₁₆
 - DT : Bank number of transfer destination

Status flags :

IPL	N	V	m	x	D	I	Ζ	С
—	—	_			_	_	_	—

Addressing mode	Syntax	Machine code	Bytes	Cycles
BLK	MVP hh1, hh2	3116, 2A16, hh1, hh2	4	5 X i + 9

Note: The cycle number in this table applies when the number of bytes transferred, i, is an even number. When i is an odd number, the cycle number is obtained as follows:

 $5 \times i + 14$ (note that the cycle number becomes 10 when 1 byte is transferred).

CLM		•		1	I
LDA.W	#IMM16	•	LABEL1	\downarrow	IMM16 bytes (BANK1)
LDX	LABEL1	;	\rightarrow	•	
LDY	LABEL2	•	LABEL2		1
MVP	BANK2, BANK1	;		\checkmark	IMM16 bytes (BANK2)

NEG

Function	:	Negation
Operation data lengt	h:	16 bits or 8 bits
Operation	:	Acc \leftarrow -Acc <u>When m = "0"</u> <u>Acc</u> -Acc <u>When m = "1"</u> <u>Acc</u> -AccL <u>Men m = "1"</u> <u>Acc</u> L -AccL <u>* In this case, the contents of AccH do not change.</u>
Description	:	Negates the sign of Acc contents, and stores the result in Acc.
Status flags	:	IPL N V m x D I Z C - N V - - - Z C
N V		Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag m is "1"). Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +65535 (+255 when flag m is "1"). Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	NEG A	2416	1	1
А	NEG B	8116, 2416	2	2

CLM NEG	A	; A ← <i>−</i> A
SEM		
NEG	В	; $BL \leftarrow -BL$

NEGD

Function	:	Negation		
Operation data leng	gth:	32 bits		
Operation	:	$E \leftarrow -E$ $E \qquad -E$ $\Box \qquad \Box \qquad \Box \qquad \Box \qquad \Box \qquad \Box$		
Description	:	Negates the sign of E contents, and stores the result in E.		
Status flags	:	IPL N V m x D I Z C - N V - - - Z C		
-	l : ' :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of –2147483648 to +2147483647. Otherwise, cleared to "0."		
Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as an unsigned operation) exceeds +4294967295. Otherwise, cleared to "0."		

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	NEGD E	31 16, 80 16	2	4

Description example:

NEGD E

; E \leftarrow –E

NOP

NOP

Function	:	No operation	
Operation data lengt	h:	_	
Operation	:	$PC \leftarrow PC + 1$ (If a carry occurs in PC, $PG \leftarrow PG + 1$)	
Description	:	Only increments the program counter by 1 and nothing else.	
Status flags	:	IPL N V m x D I Z C <th>_</th>	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	NOP	74 16	1	1

;

Description example:

NOP

ORA

Function :	Logical OR
Operation data length:	16 bits or 8 bits
Operation :	Acc \leftarrow Acc \vee M When m = "0" Acc \land Acc $M16$ \square \leftarrow \square \vee \square When m = "1" \land Acc \land M8 \square \leftarrow \square \vee \square * In this case, the contents of AccH do not change.
Description :	Performs the logical OR between the contents of Acc and the contents of a memory, and stores the result in Acc.
Status flags :	IPL N V m x D I Z C N Z

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ORA A, #imm	5616, imm (8116, 5616, imm)	2 (3)	1 (2)
DIR	ORA A, dd	5A16, dd (8116, 5A16, dd)	2 (3)	3 (4)
DIR, X	ORA A, dd, X	5B16, dd (8116, 5B16, dd)	2 (3)	4 (5)
(DIR)	ORA A, (dd)	1116, 5016, dd (9116, 5016, dd)	3 (3)	6 (6)
(DIR, X)	ORA A, (dd, X)	1116, 5116, dd (9116, 5116, dd)	3 (3)	7 (7)
(DIR), Y	ORA A, (dd), Y	1116, 5816, dd (9116, 5816, dd)	3 (3)	7 (7)
L(DIR)	ORA A, L(dd)	1116, 5216, dd (9116, 5216, dd)	3 (3)	8 (8)
L(DIR), Y	ORA A, L(dd), Y	1116, 5916, dd (9116, 5916, dd)	3 (3)	9 (9)
SR	ORA A, nn, S	1116, 5316, nn (9116, 5316, nn)	3 (3)	5 (5)
(SR), Y	ORA A, (nn, S), Y	1116, 5416, nn (9116, 5416, nn)	3 (3)	8 (8)
ABS	ORA A, mmll	5E16, II, mm (8116, 5E16, II, mm)	3 (4)	3 (4)
ABS, X	ORA A, mmll, X	5F16, II, mm (8116, 5F16, II, mm)	3 (4)	4 (5)
ABS, Y	ORA A, mmll, Y	1116, 5616, II, mm (9116, 5616, II, mm)	4 (4)	5 (5)
ABL	ORA A, hhmmll	1116, 5C16, II, mm, hh (9116, 5C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	ORA A, hhmmll, X	1116, 5D16, II, mm, hh (9116, 5D16, II, mm, hh)	5 (5)	6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM ORA.W	A. #IMM16	$: A \leftarrow A \lor IMM16$
ORA	B. MEM16	$; B \leftarrow B \lor MEM16$
SEM	D, MENTO	$, \mathbf{B} \leftarrow \mathbf{B} \lor \mathbf{WEW10}$
ORA.B	A, #IMM8	; $AL \leftarrow AL \lor IMM8$
ORA	B, MEM8	; $B_L \leftarrow B_L \lor MEM8$

ORAB

 Function
 :
 Logical OR

 Operation data length:
 8 bits

 Operation
 :
 AccL ← AccL ∨ IMM8

 AccL ← AccL ∧ IMM8
 AccL ← AccL ∧ IMM8

 Description
 :
 Performs logical OR between the contents of Ac

Description : Performs logical OR between the contents of Acc_L and immediate value in length of 8 bits, and stores the result in Acc.

- This instruction is unaffected by flag m.
- The contents of Acc^H do not change.

 Status flags
 :

 IPL
 N
 V
 m
 x
 D
 I
 Z
 C

 N
 Z

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ORAB A, #imm	6316, imm	2	1
IMM	ORAB B, #imm	8116, 6316, imm	3	2

ORAB	A, #IMM8	; $A_L \leftarrow A_L \lor IMM8$
ORAB	B, #IMM8	; $B_L \leftarrow B_L \vee IMM8$

ORAM

Function :	Logical OR
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow M \lor IMM$ $\underline{When \ m = "0"}$ $M16 \qquad M16$ $\Box \qquad \leftarrow \Box \qquad \lor IMM16$
	$\frac{\text{When } \text{m} = \text{``1''}}{\text{M8}} \qquad \text{M8}$ $ \qquad \qquad$
Description :	Performs the logical OR between the contents of a me stores the result in the memory

- scription : Performs the logical OR between the contents of a memory and the immediate value, and stores the result in the memory.
 - This instruction includes the function of the SEB instruction in the conventional 7700 Family.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
—	Ν	—	—	—	—		Ζ	—

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ORAM dd, #imm	5116, 3316, dd, imm	4	7
ABS	ORAM mmll, #imm	5116, 3716, II, mm, imm	5	7
Note : When flag m -	"0" the byte number	r increases by 1		

Note : When flag m = "0." the byte number increases by 1.

CLM		
ORAM.W SEM	MEM16, #IMM16	; MEM16 \leftarrow MEM16 \vee IMM16
ORAM.B	MEM8, #IMM8	; MEM8 \leftarrow MEM8 \vee IMM8

ORAMB

 Function
 :
 Logical OR

 Operation data length:
 8 bits

 Operation
 :
 M8 ← M8 ∨ IMM8 M8

- **Description** : Performs the logical OR between the contents of a memory and the immediate value in 8 bits length, and stores the result in the memory.
 - This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	Ι	Z	С
—	Ν	_				_	Ζ	_

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ORAMB dd, #imm	5116, 3216, dd, imm	4	7
ABS	ORAMB mmll, #imm	5116, 3616, II, mm, imm	5	7

Description example:

ORAMB

MEM8, #IMM8

; MEM8 \leftarrow MEM8 \vee IMM8

ORAMD

Function	:	Logical OR
Operation data le	ength:	32 bits
Operation	:	$\begin{array}{c c} M32 \leftarrow M32 \lor IMM32 \\ \hline M32 & M32 \\ \hline \\ $
Description	. :	Performs the logical OR between the contents of a memory and immediate value in 32 bits length, and stores the result in the memory.This instruction is unaffected by flag m.
Status flags	s :	IPL N V m x D I Z C - N - - - - Z -
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	ORAMD dd, #imm	5116, B316, dd, immll, immlh, immhl, immhh	7	10
ABS	ORAMD mmll, #imm	5116, B716, II, mm, immll, immlh, immhl, immhh	8	10

Description example:

ORAMD

MEM32, #IMM32

; MEM32 \leftarrow MEM32 \lor IMM32

P	ΞΑ
---	----

Function :	Stack manipulation (Push)	
Operation data length:	16 bits	
Operation :	Stack \leftarrow IMM16 (S) just after instruction execution (S) just before instruction execution	Stack IMM∟ IMM⊦
Description :	Pushes the 16-bit immediate value onto the stack. ● This instruction is unaffected by flag m.	

Status flags :

IPL	Ν	V	m	х	D	I	Z	С
—	_				_	—	—	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PEA #imm⊦imm∟	3116, 4C16, imm∟, immн	4	5

Description example:

PEA

#IMM16

; (S) \leftarrow IMM16_H ; (S - 1) \leftarrow IMM16_L

Function :	Stack manipulation (Push)
Operation data length:	16 bits
Operation :	$\begin{array}{l} Stack \leftarrow M16(DPRn + dd) (n = 0 \text{ to } 3) \\ (S) \text{ just after instruction execution} & \\ \hline M(DPRn + dd) \\ \hline M(DPRn + dd + 1) \\ \hline \end{array}$
Description :	Pushes the contents of the address specified by the sum of the contents of the DPRn and the offset value onto the stack in 16-bit length.This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
—	—	—	—	—	—	—	_	—

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PEI dd	3116, 4B16, dd	3	7

Description example:

PEI

DP0+: offset

; (S) \leftarrow (DPR0 + dd + 1) ; (S - 1) \leftarrow (DPR0 + dd)

Function :	Stack manipulation (Push)
Operation data length:	16 bits
Operation :	$\begin{array}{c c} Stack \leftarrow PC + IMM16 & Stack \\ (S) just after instruction execution \\ (S) just before instruction execution \\ \hline EAR_{H} \\ \hline \\ $
Description :	Pushes the sum of the PC contents and 16-bit immediate value onto the stack in length of 16 bits.● This instruction is unaffected by flag m.
Status flags :	IPL N V m x D I Z C - - - - - - - - -

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PER #imm⊦imm∟	3116, 4D16, imm∟, immн	4	6

Description example:

PER

#IMM16

; (S) \leftarrow (PC + IMM16)_H ; (S - 1) \leftarrow (PC + IMM16)_L

PHA

Function : Stack manipulation (Push)

Operation data length: 16 bits or 8 bits

Operation:Stack \leftarrow AWhen m = "0"

	Stack
(S) just after instruction execution	
	AL
(S) just before instruction execution	Ан

<u>When m = "1"</u>

	Stack
(S) just after instruction execution	
(S) just before instruction execution	AL

Description : Pushes the contents of A onto the stack.

Status flags :

IPL	N	V	m	х	D	I	Z	С
_			—	—		—		_

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHA	8516	1	4

CLM	
PHA	; (S) \leftarrow AH, (S – 1) \leftarrow AL
SEM	
PHA	; (S) ← AL

PHB

Function : Stack manipulation (Push)

Operation data length: 16 bits or 8 bits

 Operation
 :
 Stack ← B

 When m = "0"

	Stack
(S) just after instruction execution	
	B∟
(S) just before instruction execution	Вн

<u>When m = "1"</u>

	Stack
(S) just after instruction execution	
(S) just before instruction execution	B∟

Description : Pushes the contents of B onto the stack.

Status flags :

IPL	N	V	m	х	D	Ι	Z	С
		_				_	_	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHB	81 16, 85 16	2	5

CLM	
PHB	; (S) \leftarrow BH, (S – 1) \leftarrow BL
SEM	
PHB	; (S) ← B∟

Function	:	Stack manipulation (Push)										
Operation data length	h:	16 bits										
Operation	:	Stack \leftarrow DPR0			-				n exe n exe		n [Stack DPR0∟ DPR0⊦
Description	:	Pushes the contents of DPR0 This instruction is unaffected			-	h ont	to the	e stad	ck.			
Status flags	:	[IPL	N	V	m	x	D	I	Z	С]

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHD	8316	1	4

_

_

_

Description example:

PHD

; (S, S – 1) \leftarrow DPR0

Function : Stack manipulation

Operation data length: 16 bits

Operation : Stack \leftarrow DPRn (n = 0 to 3. Multiple DPRs can be pushed onto the stack.) When DPR0 to DPR3 are specified

	Stack
(S) just after instruction execution	
	DPR3∟
	DPR3H
	DPR2L
	DPR2H
	DPR1∟
	DPR1H
	DPR0∟
(S) just before instruction execution	DPR0H

- Description : Pushes the contents of the specified DPRn (DPR0 to DPR3) in 16-bit length onto the stack.
 Multiple DPRs can be pushed onto the stack by 1 instruction. If multiple DPRs are specified, they are pushed onto the stack in order of DPR0, DPR1, DPR2, and DPR3.
 - they are pushed onto the stack in order of DPR0, DPR1, DPR2
 - This instruction is unaffected by flag m.

÷

IPL	Ν	V	m	х	D	I	Z	С
_			-		_	—	—	—

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHD n	B816, 0?16	2	12
	PHD (n1,, ni)	B816, 0?16	2	i + 11

Notes 1: Any value from 0 to 3 can be set to n.

 $\ensuremath{\textbf{2}}$: The second line of the syntax format pushes multiple DPRs by 1 instruction.

3: The inside of parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).

4: i : indicates DPRn specified (1 to 4).

5: ? : the bit corresponding to the specified DPRn becomes "1."

The diagram below shows the relationship between bits and DPRn.

	b7							b0
	0	0	0	0	DPR3	DPR2	DPR1	DPR0
Description example:								
PHD	1			;	(S, S ·	– 1) ←	DPR1	
PHD	(0, 3)			;	(S, S ·	– 1) ←	DPR0	
				;	(S – 2	, S – 3	$B) \leftarrow D$	PR3

Function :	Stack manipulation (Push)
Operation data length:	8 bits
Operation :	Stack ← PG Stack (S) just after instruction execution
Description :	Pushes the contents of PG in 8-bit length onto the stack.● This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
	_	—	_	—	_	_		_

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHG	31 16, 60 16	2	4

Description example:

PHG

; (S) \leftarrow PG

PHLD n

PHLD n

Function	:	Stack manipulation and Load							
Operation data lengtl	n:	16 bits							
Operation	:	Stack \leftarrow DPRn (n = 0 to 3. Multiple DPRn \leftarrow IMM16 <u>When DPR0 to DPR3 are specified</u>	DPRs can	be spe	cified	d.)			
		(S) just after instruction execution	Stack DPR3L DPR3H DPR2L DPR2H DPR1L DPR1H DPR0L DPR0H	\rightarrow		DPR0 DPR1 DPR2 DPR3	_] ←	IMM16a IMM16b IMM16c IMM16d	
					L				
Description	:	Loads the 16-bit immediate value to DI specified DPRn in 16-bit length onto t	•) to DPF	R3),	after pushi	ng the	e contents o	of the
		 Multiple DPRs can be specified. If i 	multiple DP	Rs are	spe	cified, they	are p	oushed onto	o the

- Multiple DPRs can be specified. If multiple DPRs are specified, they are pushed onto the stack in order of DPR0, DPR1, DPR2, and DPR3, and loads the immediate value in the same order.
- This instruction is unaffected by flag m.

IPL	N	V	m	x	D	Ι	Z	С
—		_				_	_	

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHLD n, #imm	B816, ??16, imm∟, immн	4	14
	PHLD (n1,, ni) , #imm1,, #immi	B816, ??16, imm∟1, immн1 ,, imm⊔i, immнi	2 X i + 2	3 X i + 11

Notes 1: Any value from 0 to 3 can be set to n.

2: The second line of the syntax format pushes multiple DPRs by 1 instruction.

3: The inside of parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).

4: i : indicates DPRn specified (1 to 4).

5: ? : the bit corresponding to the specified DPRn becomes "1."

The diagram below shows the relationship between bits and DPRn.

	b7							b0
	DPR3	DPR2	DPR1	DPR0	DPR3	DPR2	DPR1	DPR0
:	* $b(n)$ and $b(n + 4)$ become the same contents (n = 0 to 3).							

Description example:

Status flags :

PHLD	0, #IMM16	; (S, S – 1) \leftarrow DPR0
		; DPR0 \leftarrow IMM16
PHLD	(0, 3), #IMM16a, #IMM16b	
		; $(S - 2, S - 3) \leftarrow DPR3$
		; DPR0 ← IMM16a
		; DPR3 \leftarrow IMM16b

PHP

PHP

Function :	: Stack manipulation (Push)	
Operation data length:	: 16 bits	
Operation :	: Stack \leftarrow PS (S) just after instruction (S) just before instruction	PS∟
Description :	 Pushes the contents of PS in 16-bit length onto the stack. This instruction is unaffected by flag m. 	
Status flags :	IPL N V m x D	I Z C

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHP	A516	1	4

_

_

Description example:

PHP

; (S, S – 1) \leftarrow PS

_

Function :	Stack manipulation (Push)		
Operation data length:	8 bits		
Operation :	(S	6) just after instruction execution just before instruction execution	Stack DT
Description :	Pushes the contents of DT in 8-bit lenger This instruction is unaffected by flag	-	

Status flags :

IPL	Ν	V	m	x	D	I	Ζ	С
—	—	_	_	_	_	—	—	—

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHT	3116, 4016	2	4

Description example:

PHT

; (S) \leftarrow DT

PHX

Function : Stack manipulation (Push)

Operation data length: 16 bits or 8 bits

	Stack	
(S) just after instruction execution		
	XL	
(S) just before instruction execution	Хн	
		I
	01.5.5	

	Stack
(S) just after instruction execution	
(S) just before instruction execution	XL

Description : Pushes the contents of X onto the stack.

When x = "1"

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
		-		—		_		

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHX	C516	1	4

CLP	х	
PHX		; (S, S − 1) ← X
SEP	х	
PHX		; (S) ← X∟

PHY

ΥL

Function : Stack manipulation (Push)

Operation data length: 16 bits or 8 bits

(S) just after instruction execution	Stack
(S) just before instruction execution	YL YH
(S) just ofter instruction execution	Stack

(S) just after instruction execution(S) just before instruction execution

Description : Pushes the contents of Y onto the stack.

When x = "1"

Status flags :

IPL	Ν	V	m	х	D	I	Z	С
_	—	_				_	_	—

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PHY	E516	1	4

CLP	Х	
PHY		; (S, S – 1) \leftarrow Y
SEP	х	
PHY		; (S) ← Y∟

PLA

Function 2 Stack manipulation Operation data length: 16 bits or 8 bits Operation A ← Stack ÷ <u>When m = "0"</u> А Stack A Aн (S) just before instruction execution (S) just after instruction execution <u>When m = "1"</u> ΑL Stack (S) just before instruction execution (S) just after instruction execution * In this case, the contents of A_H do not change. Description Restores the contents of the stack to A. ÷ **Status flags** 1 IPL Ζ Ν V D I С m Х Ν Ζ ____

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLA	95 16	1	4

CLB	
PLA	; AL \leftarrow (S + 1) , AH \leftarrow (S + 2)
SEB	
PLA	; A∟ ← (S + 1)

PLB

Function : Stack manipulation

Operation data length: 16 bits or 8 bits

Operation : $B \leftarrow Stack$ When m = "0"

(S) just before instruction execution (S) just after instruction execution	Stack	В Вн Е Л 7	3L
(S) just before instruction execution (S) just after instruction execution	Stack	E	SL

In this case, the contents of B_H do not change.

Description : Restores the contents of the stack to B.

<u>When m = "1"</u>

Status flags :

IPL	Ν	V	m	х	D	Ι	Ζ	С
—	Ν						Ζ	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

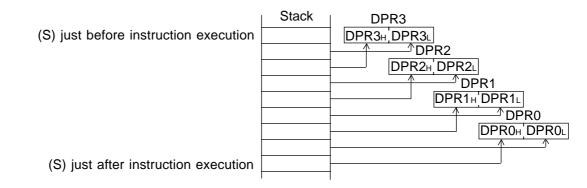
Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLB	8116, 9516	2	5

CLB		
PLB	; $B_{L} \leftarrow (S + 1)$, $B_{H} \leftarrow (S + I)$	2)
SEB		
PLB	; B∟ ← (S + 1)	

Function	:	Stack manipulation											
Operation data length	1:	16 bits											
Operation	:		just be) just a						tack		DPI	DPI R0H	-
Description	:	Restores the contents of the stack in 16-bit length to DPR0.● This instruction is unaffected by flag m.											
Status flags	:		IPL —	N —	V 	m —	x 	D —	 	Z —	C —		

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLD	9316	1	5

Description example:


PLD

; DPR0L \leftarrow (S + 1) ; DPR0H \leftarrow (S + 2)

Function : Stack manipulation

Operation data length: 16 bits

Operation : DPRn \leftarrow Stack (n = 0 to 3. The contents of the stack can be restored to multiple DPRs.) When DPR0 to DPR3 are specified

- Description : Restores the contents of the stack to the specified DPRn (DPR0 to DPR3) in 16-bit length.
 - Only 1 instruction can restore the contents of the stack to multiple DPRs. If multiple DPRs are specified, the contents of the stack are restored to DPRs in order of DPR3, DPR2, DPR1, and DPR0.
 - This instruction is unaffected by flag m.

ċ

IPL	Ν	V	m	х	D	I	Z	С
_		—				—	—	_

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLD n	7716, ?016	2	11
	PLD (n1,, ni)	7716, ?016	2	3 X i + 8

Notes 1: Any value from 0 to 3 can be set to n.

2: The second line of the syntax format restores the contents of the stack to multiple DPRs by 1 instruction.

3: Inside of the parentheses (n1, ..., ni) specifies 0 to 3 (numbers representing DPRn).

- 4: i : indicates the number of the DPRn specified (1 to 4)
- $\ensuremath{\textbf{5:}}\xspace$? : the bit corresponding to the specified DPRn becomes "1."
 - The diagram below shows the relationship between bits and DPRn.

Description	example.
Description	champic.

PLD PLD

b7							b0
DPR3	DPR2	DPR1	DPR0	0	0	0	0
1 (0, 3)			;	DPR3	← (S - ← (S - ← (S -	+ 1, S	+ 2)

Function :	Stack manipulation			
Operation data length:	16 bits			
Operation :	$PS \leftarrow Stack \qquad PS \\ (S) \text{ just before instruction execution} \\ (S) \text{ just after instruction execution} \\ \hline \\ $			
Description :	Restores the contents of the stack in 16-bit length to PS.This instruction is unaffected by flag m.			
Status flags :	IPLNVmxDIZCIPLNVmxDIZC			

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLP	B516	1	5

Description example:

PLP

; PS∟	← (S + 1)
; PSн	← (S + 2)

- **Function** : Stack manipulation
- Operation data length: 8 bits
- **Operation** : $DT \leftarrow Stack$

	DT
(S) just before instruction execution(S) just after instruction execution	

Description : Restores the contents of the stack in 8-bit length to DT.

Status flags :

IPL	Ν	V	m	х	D	Ι	Ζ	С
—	Ν	—	_	_	—	—	Ζ	—

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLT	31 16, 50 16	2	6

Description example:

PLT

; DT \leftarrow (S + 1)

PLX

Function 2 Stack manipulation Operation data length: 16 bits or 8 bits Operation $X \leftarrow Stack$ ÷ When x = "0"Х Stack Хн Xι (S) just before instruction execution (S) just after instruction execution When x = "1"XL Stack (S) just before instruction execution (S) just after instruction execution * In this case, the contents of X_H do not change. Description Restores the contents of the stack to X. ÷

Status flags

÷

IPL	Ν	V	m	х	D	I	Ζ	С
_	Ν	—	—	_	—	—	Z	_

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLX	D516	1	4

CLP	х	
PLX		; XL \leftarrow (S + 1) , XH \leftarrow (S + 2)
SEP	х	
PLX		; X∟ ← (S + 1)

PLY

Function : Stack manipulation

Operation data length: 16 bits or 8 bits

Operation : $Y \leftarrow Stack$ When x = "0"

	Ň	ſ
(S) just before instruction execution (S) just after instruction execution	Y _H	YL 1
(S) just before instruction execution(S) just after instruction execution		YL

 $\ensuremath{\circledast}$ In this case, the contents of Y_{H} do not change.

Description : Restores the contents of the stack to Y.

When x = "1"

Status flags

1

IPL	Ν	V	m	х	D	Ι	Ζ	С
_	Ν						Ζ	_

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PLY	F516	1	4

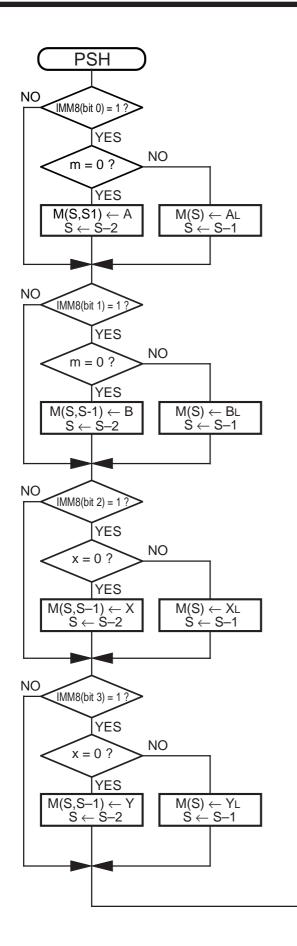
CLP	х	
PLY		; $Y_{L} \leftarrow (S + 1)$, $Y_{H} \leftarrow (S + 2)$
SEP	х	
PLY		; Y∟ ← (S + 1)

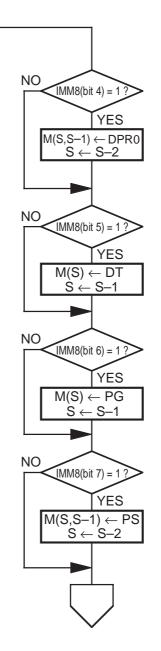
PSH

Function :	Stack manipulation
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{l} \text{Stack} \leftarrow \text{Specified registers among A, B, X, Y, DPR0, DT, PG, PS (Multiple registers can be specified.)} \\ \text{M}(\text{S to S}-\text{i}+1) \leftarrow \text{A, B, X, Y, DPR0, DT, PG, PS} \\ \text{S} \leftarrow \text{S}-\text{i} \\ \text{i} : \text{Number of bytes corresponding to the registers pushed onto the stack.} \end{array}$
Description :	Pushes the contents of the specified registers onto the stack. Specified registers to be pushed are indicated with the bit pattarn of the 8-bit immediate value. The contents of the registers corresponding to the bits set to "1" are pushed onto the stack. b7 b0 PS PG DT DPR0 Y X B A C Direction to push onto the stack
	 When m = "0" : A and (or) B are (is) pushed in 16-bit length. When m = "1" : A_L and (or) B_L are (is) pushed in 8-bit length. When x = "0" : X and (or) Y are (is) pushed in 16-bit length. When x = "1" : X_L and (or) Y_L are (is) pushed in 8-bit length. This instruction is unaffected by the flags m and x when the contents of PS, PG, DT, and DPR0 are pushed onto the stack.
Status flags :	IPL N V m x D I Z C - - - - - - - - -

Addressing mode	Syntax	Machine code	Bytes	Cycles		
STK	PSH #imm	A816, imm	2	2 X i1+i2+11		
Notes i 1 : Number of registers to be pushed is indicated among A B X Y DPR0 and PS						

Notes i1 : Number of registers to be pushed is indicated among A, B, X, Y, DPR0 and PS.
 i2 : Number of registers to be pushed DT and PG.


Description example:


PSH

#IMM8

; (S) \leftarrow Contents of specified register

PSH

* IMM8 is a 1-byte immediate value, and the inside of () indicates the bit position.

PUL

PuLI

Function : Stack manipulation

Operation data length: 16 bits or 8 bits

i : Number of bytes corresponding to the registers restored from the stack.

Description : Restores the stack contents to the specified registers. Specified registers to be restored are indicated with the bit pattarn of the 8-bit immediate value. The stack contents are restored to the registers corresponding to the bits that are set to "1."

	b7						b0
	PS	DT	DPR0	Y	Х	В	А
the stack							

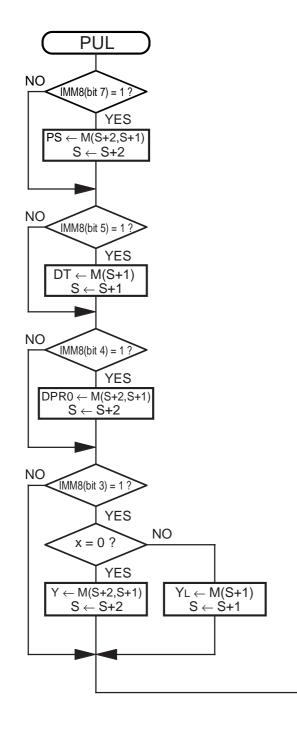
Direction to restore from the stack -

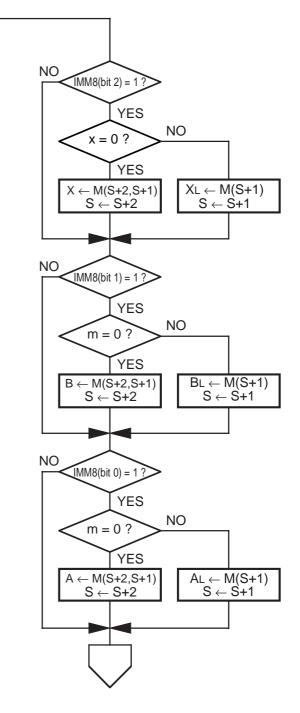
- When m of restored PS = "0" : Restored to A and (or) B in 16-bit length.
 When m of restored PS = "1" : Restored to A_L and (or) B_L in 8-bit length.
 In this case, the contents of A_H and B_H do not change.
- When x of restored PS = "0" : Restored to X and (or) Y in 16-bit length. When x of restored PS = "1" : Restored to X_L and (or) Y_L in 8-bit length. In this case, the contents of X_H and Y_H do not change.

Status flags :

IPL					_	I	Ζ	С
IPL	Ν	V	m	х	D	Ι	Ζ	С

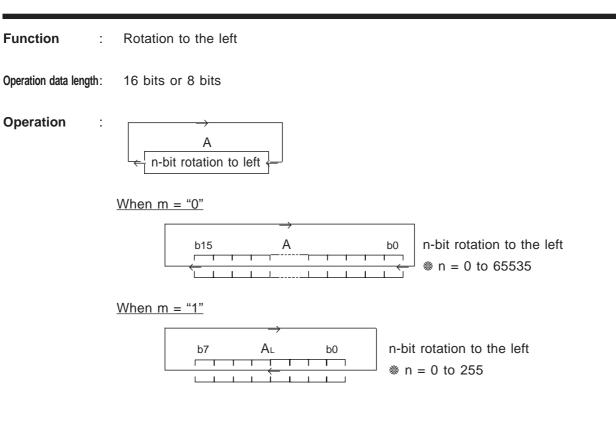
Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	PUL #imm	6716, imm	2	3Xi+13


Note i: Number of registers to be restored.


Description example:

PUL

#IMM8


; Contents of specified register \leftarrow (S + 1)

* IMM8 is a 1-byte immediate value, and the inside of () indicates the bit position.

RLA

 \ast In this case, the contents of A_{H} do not change.

Description : Rotates the contents of A to the left by n bits.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
—	—		_	_	_			

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	RLA #imm	3116, 0716, imm	3	n + 5

Notes 1: n : Indicates the number of rotation specified by imm.

2: When flag m = "0," the byte number increases by 1.

CLM	
RLA #IMM16 ; $A \leftarrow A$ is rotated to the left accordin	ng to the times specified by IMM16.
SEM	
$RLA \qquad \qquad \texttt{\#IMM8} \qquad \qquad ; A_{L} \leftarrow A_{L} \text{ is rotated to the left accord}$	ding to the times specified by IMM8.

RMPA

Function : Multiplied accumulation repeated

Operation data length: 16 bits or 8 bits

Operation : $(B, A) \leftarrow (B, A) + M (DT:X) \times M (DT:Y)$ (repeated 0 to 255 times.)

Description : Performs signed multiplication between the contents of addresses specified by the contents of X and Y in the bank indicated by DT. Then, the multiplication result is added to the contents of B and A respectively, and these addition results are stored in B and A; and the contents of X and Y each are incremented. This operation is repeated as many times (0 to 255 times) as specified by the 8-bit immediate value in the third byte of this instruction.

• When m = "0" : Operates in 16-bit length, and the result becomes the 32-bit value. $E \leftarrow E + M16 (DT:X) \times M16 (DT:Y)$ After the addition, the contents of X and Y each are incremented by 2.

- When m = "1": Operates in 8-bit length, and the result becomes the 16-bit value. (B_L, A_L) ← (B_L, A_L) + M8 (DT:X) X M8 (DT:Y) In this case, the contents of A_H and B_H do not change. After the addition, the contents of X and Y each are incremented by 1.
- Contents of X and Y after operation: The addresses next to those of the multiplicand and multiplier which were read out last, respectively.
- If an overflow occurs as an addition result, the flag V is set to "1" and the operation finishes halfway. In this time, the contents of A and B become undefined. The contents of X and Y become the addresses next to those of the multiplicand and multiplier which were read out last, respectively.
- The instruction is terminated without performing any operation if a "0" is specified for the repeat count. In this case, the contents of A, B, X, and Y do not change.

Status flags	IPL	N	V	m	х	D	I	Z	С	
	—	Ν	V				-	Ζ	С	I

- N : This flag is checked for each addition performed. If MSB (MSB of B) of the addition result becomes "1," this flag becomes "1." Otherwise, cleared to "0."
- V : This flag is checked for each addition performed. If the addition result is a value outside the range of -2147483648 to +2147483647 (or -32768 to +32767 when flag m = "1"), this flag is set to "1." Otherwise, cleared to "0." If flag V = "0" when the instruction is terminated, it means that the operation has terminated normally; if flag V = "1," it means that an overflow occured.
- Z : This flag is checked for each addition performed. Set to "1," when the addition result becomes "0." Otherwise, cleared to "0."
- C : This flag is checked for each addition performed. Set to "1" when the addition result (regarded as an unsigned data) exceeds +4294967295 (or +65536 when flag m = "1"). Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
Multiplied accumulation	RMPA #imm	3116, 5A16, imm	3	14Ximm+5

Notes 1: imm ; indicates the number of repeated operation.

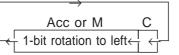
Description example:

RMPA

#IMM8

; repeates the operation IMM8 times.

^{2:} The cycle number in this table applies when flag m = "1." When flag m = "0," the cycle number becomes 18 X imm + 5.


ROL

Function : Rotation to the left

Operation data length: 16 bits or 8 bits

÷

Operation

When m = "0"

	\rightarrow		
b15	Acc or M16	b0	С
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\leftarrow \leftarrow \leftarrow \leftarrow$	${\leftarrow}$

<u>When m = "1"</u>

\neg	
b7 Acc∟ or M8 b0	С
- + + + + + + + + + + + + + + + + + + +	$\overbrace{}$

 $\ensuremath{\circledast}$ In this case, the contents of Acc_H do not change.

Description : Flag C is linked to Acc or a memory, and the combined contents are rotated to the left by 1 bit.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
_	Ν		—	—	—		Ζ	С

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

C : Set to "1" when MSB of the data before rotation is "1." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
А	ROL A	1316	1	1
A	ROL B	8116, 1316	2	2
DIR	ROL A, dd	2116, 1A16, dd	3	7
DIR, X	ROL A, dd, X	2116, 1B16, dd	3	8
ABS	ROL A, mmll	2116, 1E16, II, mm	4	7
ABS, X	ROL A, mmll, X	2116, 1F16, II, mm	4	8

CLM ROL ROL	A MEM16	; A is rotated to the left by 1 bit. ; MEM16 is rotated to the left by 1 bit.
SEM	MENTO	, WEINTO IS TOTALED TO THE FOR BY T DR.
ROL ROL	B MEM16	; B∟ is rotated to the left by 1 bit. ; MEM8 is rotated to the left by 1 bit.
		,

ROL #n

Function Rotation to the left 1 Operation data length: 16 bits or 8 bits Operation 1 A n-bit rotation to left-(n : times of rotation. n = 0 to 15) When m = "0"b15 <u>When m = "1"</u> b7 * In this case, the contents of A_H do not change. Description Flag C is linked to A, and the combined contents are rotated to the left by n bits. : B cannot be used in this instruction. Status flags : IPL Ζ С Ν V D m Х Т Ζ С Ν Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." N :

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if MSB = "1" when the contents are rotated by (n 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ROL A, #imm	C116, imm+6016	2	imm + 6

Note: Any value from 0 to 15 (times of rotation) can be set to imm.

CLM		
ROL	A, #15	; $A \leftarrow A$ combined with C is rotated to the left by 15 bits.
SEM		
ROL	A, #7	; $A_{L} \leftarrow A_{L}$ combined with C is rotated to the left by 7 bits.

ROLD #n

Function		:	Rotation to the left												
Operation data	engtl	1:	32 bits												
Operation		:	→ b31 E b0 C ← n-bit rotation to left← ←	(n : ti	imes	of rc	otatio	n. n =	= 0 to	o 31)					
Description	1	:	Flag C is linked to E, and the length.This instruction is unaffected				ntents	s are	rota	ted to	the	left t	oy n t	oits in	32-bit
Status flag	s	:		IPL	N N	V	m	x	D	I 	Z Z	C C			
	N Z		Set to "1" when MSB of the o Set to "1" when the operation	-	ion r							_	'0."		

C : Set to "1" if MSB = "1" when the contents are rotated by (n-1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ROLD E, #imm	D116, imm+6016	2	imm + 8

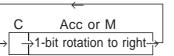
Note: Any value from 0 to 31 (times of rotation) can be set to imm.

Description example:

ROLD

E, #16

; $E \leftarrow E$ combined with C is rotated to the left by 16 bits.


ROR

Function : Rotation to the right

Operation data length: 16 bits or 8 bits

1

Operation

When m = "0"

		\leftarrow		
С	b15	Acc or	M16	b0
	\rightarrow	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$$ $$ -	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $

<u>When m = "1"</u>

		\leftarrow	
С	b7	Acc∟or M8 b0	
		$\begin{array}{c} 1 \\ \rightarrow \end{array} \rightarrow \rightarrow$	
Ĺ	ĹĹ		

- In this case, the contents of Acc_H do not change.
- **Description** : Flag C is linked to Acc or a memory, and the combined contents are rotated to the right by 1 bit.

Status flags :

IPL	Ν	V	m	x	D	I	Ζ	С
_	Ν	_	_		—	_	Ζ	С

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" when LSB of the data before rotation is "1." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ROR A	5316	1	1
A	ROR B	8116, 5316	2	2
DIR	ROR A, dd	2116, 3A16, dd	3	7
DIR, X	ROR A, dd, X	2116, 3B16, dd	3	8
ABS	ROR A, mmll	2116, 3E16, II, mm	4	7
ABS, X	ROR A, mmll, X	2116, 3F16, II, mm	4	8

CLM		
ROR	A	; A is rotated to the right by 1 bit.
ROR	MEM16	; MEM16 is rotated to the right by 1 bit.
SEM		
ROR	В	; B∟ is rotated to the right by 1 bit.
ROR	MEM8	; MEM8 is rotated to the right by 1 bit.

ROR #n

Function : Rotation to the right

Operation data length: 16 bits or 8 bits

÷

Operation

<u>When m = "0"</u>

С	b15	A	b0
	$\rightarrow \rightarrow -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

<u>When m = "1"</u>

	4		
C	b7	AL	b0
	$\rightarrow \rightarrow -$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	

In this case, the contents of A_H do not change.

Description : Flag C is linked to A, and the combined contents are rotated to the right by n bits.B cannot be used in this instruction.

Status flags	:			IPL	N	V	m	x	D	I	Z	С]
				—	Ν		—	—		—	Ζ	С	
		• • • • • •	 	 									-

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Set to "1" if LSB = "1" when the contents are rotated by (n 1) bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	ROR A, #imm	C116, imm+2016	2	imm + 6

Note: Any value from 0 to 15 (times of rotation) can be set to imm.

CLM		
ROR	A, #15	; A \leftarrow A combined with C is rotated to the right by 15 bits.
SEM		
ROR	A, #7	; $A_L \leftarrow A_L$ combined with C is rotated to the right by 7 bits.

RORD #n

Function	:	Rotation to the right
Operation data le	ngth:	32 bits
Operation	:	$ \xrightarrow{C \text{ b31 } E \text{ b0} } (n : \text{ times of rotation. } n = 0 \text{ to 31}) $
Description	:	Flag C is linked to E, and the combined contents are rotated to the right by n bits in 32-bits length.This instruction is unaffected by flag m.
Status flags	:	
etatae nage	•	IPL N V m x D I Z C
		<u> </u>
I	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
	Z :	Set to "1" when the operation result is "0." Otherwise, cleared to "0."
(C :	Set to "1" if LSB = "1" when the contents are rotated by $(n-1)$ bits. Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
A	RORD E, #imm	D116, imm+2016	2	imm + 8

Note: Any value from 0 to 31 (times of rotation) can be set to imm.

Description example:

RORD

E, #16

; E \leftarrow E combined with C is rotated to the right by 16 bits.

RTI

Function	:	Return													
Operation data leng	th:	_													
Operation	:	$PG,PC,PS\leftarrowStack$				Sta	ack			г		Р			
		(S) just before instruc	tion e	execu	ition						P	Sh	ŀ	PS∟	
		(S) just after instruct	tion e	execu	tion						P	↓ Сн		} °C∟	
Description	:	Restores the stack contents to • Use this instruction when re-		-							PG.	P	С		
Status flags	:		IPL	N	V	m	х	D	I	Z	С				

IPL

Ν

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	RTI	F1 ₁₆	1	12

V

m

х

D

Ι

Description example:

RTI

; PS \leftarrow (S + 2, S + 1) ; PC \leftarrow (S + 4, S + 3) ; PG \leftarrow (S + 5) Ζ

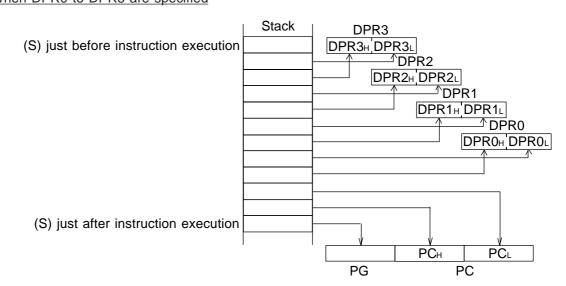
С

RTL

Function	:	Return												
Operation data lengt	h:	-												
Operation	:	$PG,PC \leftarrow Stack$				St	ack	1						
		(S) just before instruction	on ex	kecut	ion									
		(S) just after instructio	on ex	ecuti	on				PG	6	РСн	PC	PC∟	
Description	:	Restores the stack contents to • Use this instruction when re		-							ISRL.			
Status flags	:		IPL —	N —	V 	m —	x —	D —		Z —	C —			

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	RTL	9416	1	10

Description example:


RTL

; PC \leftarrow (S + 2, S + 1) ; $PG \leftarrow (S + 3)$

RTLD n ReTurn from subroutine Long and pull Direct page register n RTLD n

Function : Load & Return

Operation data length: 16 bits

- **Description** : After restoring the contents of the specified DPRn (DPR0 to DPR3) from the stack in length of 16 bits, this instruction executes the RTL instruction (to restore the stack contents in order of PC and PG).
 - Multiple DPRs can be specified for restoration from the stack. When multiple DPRs are specified, the stack contents are restored to DPRs in order of DPR3, DPR2, DPR1, and DPR0.

Status	flage		
Jialus	nays	•	

IPL	N	V	m	х	D	I	Z	С
—			_	—	—	—		_

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	RTLD n	7716, ?C16	2	15
	RTLD (n1,, ni)	7716, ?C16	2	3 X i + 12

Notes 1: Any value from 0 can be set to 3 to n.

2: The second line of the syntax format specifies multiple DPRs by 1 instruction.

3: Inside of the parentheses (n1, ..., ni) specifies any of 0 to 3 (numbers representing DPRn).

4: i : indicates the number of DPRn (1 to 4)

5: ? : the bit corresponding to the specified DPRn becomes "1."

The diagram below shows the relationship between bits and DPRn.

	b7					b0
	DPR3 DPR2	DPR1 DPR0	1	1	0	0
Description example:						
RTLD	1		DPR1 RTL	← (S ·	+ 1)	
RTLD	(0, 3)	- - -	DPR3	← (S · ← (S ·		

RTS

Function	:	Return
Operation data leng	th:	_
Operation	:	PC ← Stack Stack
		(S) just before instruction execution
_		PCH PCL PC
Description	:	Restores the stack contents to PC.
		 Use this instruction when returning from the subroutine called by JSR or BSR. If this instruction is located at a bank's highest address (XXFFFF₁₆), the contents of PG are incremented by 1.
Status flags	:	

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	RTS	8416	1	7

Description example:

RTS

; PC \leftarrow (S + 2, S + 1)

RTSD n ReTurn from Subroutine and pull Direct page register n RTSD

Function Load & Return t Operation data length: 16 bits Operation ÷ DPRn \leftarrow Stack (n = 0 to 3. Multiple registers can be specified.) PC ← Stack When DPR0 to DPR3 are specified Stack DPR3 (S) just before instruction execution DPR3H DPR3L ^小DPR2 DPR2H DPR2L [≜]DPR1 DPR1⊢ DPR1∟ ^ADPR0 DPR0H DPR0L

(S) just after instruction execution

- **Description** : After restoring the contents of the specified DPRn (DPR0 to DPR3) from the stack in length of 16 bits, this instruction executes the RTS instruction (to restore the stack contents to PC).
 - Multiple DPRs can be specified for return from the stack. When multiple DPRs are specified, the stack contents are restored to DPRs respectively, in order of DPR3, DPR2, DPR1, and DPR0.

```
Status flags :
```

IPL	Ν	V	m	х	D	I	Z	С
			_	—		_		

Addressing mode	Syntax	Machine code	Bytes	Cycles
STK	RTSD n	7716, ?816	2	14
	RTSD (n1,, ni)	7716, ?816	2	3 X i +11

Notes 1: Any value from 0 to 3 can be set to n.

2: The second line of the syntax format specifies multiple DPRs by 1 instruction.

3: Inside of the parentheses (n1, ..., ni) specifies any of 0 to 3 (numbers representing DPRn).

4: i : indicates the number of DPRn (1 to 4)

5: ? : the bit corresponding to the specified DPRn becomes "1."

The diagram below shows the relationship between bits and DPRn.

	b7							b0
	DPR3	DPR2	DPR1	DPR0	1	0	0	0
Description example:								
RTSD	1				DPR1 RTS	\leftarrow (S \cdot	+ 1)	
RTSD	(0, 3)				DPR3	← (S · ← (S ·		

SBC

Function :	Subtract with carry
Operation data length:	16 bits or 8 bits
Operation :	$Acc \leftarrow Acc - M - \overline{C}$ $\underline{When m = "0"}$ $Acc \qquad Acc \qquad M16 \qquad \overline{C}$ $\underline{\Box} \qquad \leftarrow \boxed{\Box} \qquad - \boxed{\Box}$ $M16 \qquad = 0$
	When m = "1" AccL AccL M8 C $ \leftarrow \square - \square - \square$ $ = \square$ % In this case, the contents of AccH do not change.
Description :	 Subtracts the contents of a memory and the complement of flag C from the contents of Acc, and stores the result in Acc. ● The decimal operation is performed when flag D = "1."
Status flags :	IPL N V m x D I Z C - N V - Z C
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag m is "1"). Otherwise, cleared to "0." Meaningless when flag D = "1."
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0." Meaningless when flag $D = "1."$
C :	Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SBC A, #imm	3116, A716, imm (B116, A716, imm)	3	3 (3)
DIR	SBC A, dd	2116, AA16, dd (A116, AA16, dd)	3	5 (7)
DIR, X	SBC A, dd, X	2116, AB16, dd (A116, AB16, dd)	3	6 (8)
(DIR)	SBC A, (dd)	2116, A016, dd (A116, A016, dd)	3	7 (9)
(DIR, X)	SBC A, (dd, X)	2116, A116, dd (A116, A116, dd)	3	8 (10)
(DIR), Y	SBC A, (dd), Y	2116, A816, dd (A116, A816, dd)	3	8 (10)
L(DIR)	SBC A, L(dd)	2116, A216, dd (A116, A216, dd)	3	9 (11)
L(DIR), Y	SBC A, L(dd), Y	2116, A916, dd (A116, A916, dd)	3	10(12)
SR	SBC A, nn, S	2116, A316, nn (A116, A316, nn)	3	6 (8)
(SR), Y	SBC A, (nn, S), Y	2116, A416, nn (A116, A416, nn)	3	9 (11)
ABS	SBC A, mmll	2116, AE16, II, mm (A116, AE16, II, mm)	4	5 (7)
ABS, X	SBC A, mmll, X	2116, AF16, II, mm (A116, AF16, II, mm)	4	6 (8)
ABS, Y	SBC A, mmll, Y	2116, A616, II, mm (A116, A616, II, mm)	4	6 (8)
ABL	SBC A, hhmmll	2116, AC16, II, mm, hh (A116, AC16, II, mm, hh)	5	6 (8)
ABL, X	SBC A, hhmmll, X	2116, AD16, II, mm, hh (A116, AD16, II, mm, hh)	5	7 (9)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM SBC.W SBC	A, #IMM16 B, MEM16	; A \leftarrow A – IMM16 – \overline{C} ; B \leftarrow B – MEM16 – \overline{C}
SEB SBC.B SBC	A, #IMM8 B. MEM8	; $A_L \leftarrow A_L - IMM8 - \overline{C}$: $B_L \leftarrow B_L - MEM8 - \overline{C}$

SBCB

Function	:	Subtract with carry
Operation data le	ngth:	8 bits
Operation	:	$Accl \leftarrow Accl - IMM8 - \overline{C}$ $Accl Accl \overline{C}$ $\Box \leftarrow \Box - IMM8 - \Box$
Description	:	 Subtracts the immediate value and the complement of flag C from the contents of AccL in 8-bit length, and stores the result in AccL. This instruction is unaffected by flag m. The contents of AccH do not change. The decimal operation is performed when flag D = "1."
Status flags	:	IPL N V m x D I Z C - N V - - - Z C
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Meaningless when flag $D = "1$."
	V :	Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to $+127$. Otherwise, cleared to "0." Meaningless when flag D = "1."
	Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0." Meaningless when flag $D = "1$."
	C :	Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	ABCB A, #imm	3116, 1B16, imm	3	3
IMM	ABCB B, #imm	B116, 1B16, imm	3	3

SBCD

Function	:	Subtract with carry
Operation data lengt	h:	32 bits
Operation	:	$E \leftarrow E - M32 - \overline{C}$ $E \qquad E \qquad M32 \qquad \overline{C}$ $\Box \qquad \Box \qquad \Box$
Description	:	 Subtracts the contents of a memory and the complement of flag C from the contents of E in 32-bit length, and stores the result in E. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.
Status flags	:	IPL N V m x D I Z C - N V Z C
Ν	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SBCD E, #imm	3116, 1D16, immll, immlн, immнl, immнн	6	4
DIR	SBCD E, dd	2116, BA16, dd	3	7
DIR, X	SBCD E, dd, X	2116, BB16, dd	3	8
(DIR)	SBCD E, (dd)	2116, B016, dd	3	9
(DIR, X)	SBCD E, (dd, X)	2116, B116, dd	3	10
(DIR), Y	SBCD E, (dd), Y	2116, B816, dd	3	10
L(DIR)	SBCD E, L(dd)	2116, B216, dd	3	11
L(DIR), Y	SBCD E, L(dd), Y	2116, B916, dd	3	12
SR	SBCD E, nn, S	2116, B316, nn	3	8
(SR), Y	SBCD E, (nn, S), Y	2116, B416, nn	3	11
ABS	SBCD E, mmll	2116, BE16, II, mm	4	7
ABS, X	SBCD E, mmll, X	2116, BF16, II, mm	4	8
ABS, Y	SBCD E, mmll, Y	2116, B616, II, mm	4	8
ABL	SBCD E, hhmmll	2116, BC16, II, mm, hh	5	8
ABL, X	SBCD E, hhmmll, X	2116, BD16, II, mm, hh	5	9

Description example:

SBCD	E, #IMM32	; E
SBCD	E, MEM32	; E

 $\begin{array}{l} E \leftarrow E - \mathsf{IMM32} - \overline{\mathsf{C}} \; (\mathsf{B}, \, \mathsf{A} \leftarrow \mathsf{B}, \, \mathsf{A} - \mathsf{IMM32} - \overline{\mathsf{C}}) \\ E \leftarrow E - \mathsf{MEM32} - \overline{\mathsf{C}} \; (\mathsf{B}, \, \mathsf{A} \leftarrow \mathsf{B}, \, \mathsf{A} - \mathsf{MEM32} - \overline{\mathsf{C}}) \end{array}$

SEC

Function : Flag manipulation

Operation data length: -

Operation : $C \leftarrow 1$

Description : Sets flag C to "1."

Status flags :

IPL	Ν	V	m	х	D		Z	С
—	_	_	—	_	_	_	_	1

C : Set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	SEC	0416	1	1

Description example:

SEC

; C \leftarrow 1

SEI

Function : Flag manipulation

Operation data length: -

Operation : $I \leftarrow 1$

Description : Sets flag I to "1."

Status flags :

IPL	Ν	V	m	х	D	Ι	Ζ	С
—			—	—	—	1	—	

I : Set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	SEI	0516	1	4

Description example:

SEI

; I ← 1

SEM

Function : Flag manipulation

Operation data length: -

Operation : $m \leftarrow 1$

Description : Sets flag m to "1."

Status flags :

IF	۲	N	V	m	x	D	I	Z	С
-	_	—	—	1	_	_	_	—	_

m : Set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	SEM	2516	1	3

Description example:

SEM

; m \leftarrow 1

SEP)
-----	---

SEP

Function :	Flag manipulation										
Operation data length:	_										
Operation :	PS_{L} (bit n) \leftarrow 1 (n = 0 to 7. N	Jultip	le bit	s car	n be :	speci	fied.)				
Description :	specified are indicated by a bit the subject bits to be specified	 Sets the specified flags (multiple flags can be specified) of PSL to "1." The flag positions to be specified are indicated by a bit pattern of the immediate value, in which the bits set to "1" are the subject bits to be specified. This instruction is unaffected by flag m. 									
	PSL b7 b6 b5 b4 b3 b2 b1 b0 N V m x D I Z C										
Status flags :		IPL	Ν	V	m	x	D	I	Z	С	
		—	Ν	V	m	х	D	Ι	Z	С	

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SEP #imm	9916, imm	2	3

Description example:

SEP

#IMM8

; The specified bits of $\mathsf{PSL} \leftarrow 1$

STA

Function :	Store
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow Acc$ $\underline{When \ m = "0"}$ $M16 \qquad Acc$ $\Box \qquad \qquad \leftarrow \qquad \Box$
	$\frac{\text{When } m = "1"}{\text{M8}} \text{Acc}_{\text{L}}$

Description : Stores the contents of Acc into a memory. The contents of Acc do not change.

Status flags :

IPL	N	V	m	х	D	Ι	Ζ	С
—					_	—		_

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	STA A, dd	DA16, dd (8116, DA16, dd)	2 (3)	4 (5)
DIR, X	STA A, dd, X	DB16, dd (8116, DB16, dd)	2 (3)	5 (6)
(DIR)	STA A, (dd)	1116, D016, dd (9116, D016, dd)	3 (3)	7 (7)
(DIR, X)	STA A, (dd, X)	1116, D116, dd (9116, D116, dd)	3 (3)	8 (8)
(DIR), Y	STA A, (dd), Y	D816, dd (8116, D816, dd)	2 (3)	7 (8)
L(DIR)	STA A, L(dd)	1116, D216, dd (9116, D216, dd)	3 (3)	9 (9)
L(DIR), Y	STA A, L(dd), Y	D916, dd (8116, D916, dd)	2 (3)	9 (10)
SR	STA A, nn, S	1116, D316, nn (9116, D316, nn)	3 (3)	6 (6)
(SR), Y	STA A, (nn, S), Y	1116, D416, nn (9116, D416, nn)	3 (3)	9 (9)
ABS	STA A, mmll	DE16, II, mm (8116, DE16, II, mm)	3 (4)	4 (5)
ABS, X	STA A, mmll, X	DF16, II, mm (8116, DF16, II, mm)	3 (4)	5 (6)
ABS, Y	STA A, mmll, Y	1116, D616, II, mm (9116, D616, II, mm)	4 (4)	6 (6)
ABL	STA A, hhmmll	DC16, II, mm, hh (8116, DC16, II, mm, hh)	4 (5)	5 (6)
ABL, X	STA A, hhmmll, X	DD16, II, mm, hh (8116, DD16, II, mm, hh)	4 (5)	6 (7)

Note : This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

CLM		
STA	A, MEM16	; MEM16 \leftarrow A
SEM		
STA	B, MEM8	; MEM8 \leftarrow BL

STAB

Function	:	Store
Operation data length	:	8 bits
Operation	:	$M8 \leftarrow AccL$ $M8 AccL$ $\Box \leftarrow \Box$
Description		 Stores the contents of Acc∟into a memory in 8-bit length. The contents of Acc (Acc_H and Acc∟) do not change. This instruction is unaffected by flag m.
Status flags	:	IPL N V m x D I Z C - - - - - - - - - -

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	STAB A, dd	CA16, dd (8116, CA16, dd)	2 (3)	4 (5)
DIR, X	STAB A, dd, X	CB16, dd (8116, CB16, dd)	2 (3)	5 (6)
(DIR)	STAB A, (dd)	1116, C016, dd (9116, C016, dd)	3 (3)	7 (7)
(DIR, X)	STAB A, (dd, X)	1116, C116, dd (9116, C116, dd)	3 (3)	8 (8)
(DIR), Y	STAB A, (dd), Y	C816, dd (8116, C816, dd)	2 (3)	7 (8)
L(DIR)	STAB A, L(dd)	1116, C216, dd (9116, C216, dd)	3 (3)	9 (9)
L(DIR), Y	STAB A, L(dd), Y	C916, dd (8116, C916, dd)	2 (3)	9 (10)
SR	STAB A, nn, S	1116, C316, nn (9116, C316, nn)	3 (3)	6 (6)
(SR), Y	STAB A, (nn, S), Y	1116, C416, nn (9116, C416, nn)	3 (3)	9 (9)
ABS	STAB A, mmll	CE16, II, mm (8116, CE16, II, mm)	3 (4)	4 (5)
ABS, X	STAB A, mmll, X	CF16, II, mm (8116, CF16, II, mm)	3 (4)	5 (6)
ABS, Y	STAB A, mmll, Y	1116, C616, II, mm (9116, C616, II, mm)	4 (4)	6 (6)
ABL	STAB A, hhmmll	CC16, II, mm, hh (8116, CC16, II, mm, hh)	4 (5)	5 (6)
ABL, X	STAB A, hhmmll, X	CD16, II, mm, hh (8116, CD16, II, mm, hh)	4 (5)	6 (7)

Note : This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

Description example:

STAB

A, MEM8

; MEM8 \leftarrow AL

STAD

Function :	Store
Operation data length:	32 bits
Operation :	$\begin{array}{ccc} M32 \leftarrow E \\ \hline M32 & E \\ \hline \hline \\ \hline$
Description :	Stores the contents of E into a memory in 32-bit length.The contents of E do not change.This instruction is unaffected by flag m.
Status flags :	IPL N V m x D I Z C

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	STAD E, dd	EA16, dd	2	6
DIR, X	STAD E, dd, X	EB16, dd	2	7
(DIR)	STAD E, (dd)	1116, E016, dd	3	9
(DIR, X)	STAD E, (dd, X)	1116, E116, dd	3	10
(DIR), Y	STAD E, (dd), Y	E816, dd	2	9
L(DIR)	STAD E, L(dd)	1116, E216, dd	3	11
L(DIR), Y	STAD E, L(dd), Y	E916, dd	2	11
SR	STAD E, nn, S	1116, E316, nn	3	8
(SR), Y	STAD E, (nn, S), Y	1116, E416, nn	3	11
ABS	STAD E, mmll	EE16, II, mm	3	6
ABS, X	STAD E, mmll, X	EF16, II, mm	3	7
ABS, Y	STAD E, mmll, Y	1116, E616, II, mm	4	8
ABL	STAD E, hhmmll	EC16, II, mm, hh	4	7
ABL, X	STAD E, hhmmll, X	ED16, II, mm, hh	4	8

Description example:

STAD

E, MEM32

; MEM32 \leftarrow E (MEM32H \leftarrow B, MEM32L \leftarrow A)

STP

Function :	Special							
Operation data length:	_							
Operation :	Stop the oscillation							
Description :	Resets the flip-flop for oscillator control and stops the oscillation of the oscillation circuit. To restart, generate an interrupt request or perform the hardware reset. The microcomputer will thereby be released from the STP state.							
Status flags :	IPL N V m x D I Z C - - - - - - - - -							

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	STP	3116, 3016	2	—

;

Description example:

STP

STX

Function :	Store
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow X$ $\underline{When \ x = "0"}$ $M16 \qquad X$ $\Box \qquad \qquad \leftarrow \qquad \Box$
	$\frac{\text{When } x = "1"}{\text{M8}} X_{\text{L}}$

Description : Stores the contents of X into a memory. The contents of X do not change.● This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	Ι	Ζ	С
—					_	—	—	—

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	STX dd	E216, dd	2	4
DIR, Y	STX dd, Y	4116, E516, dd	3	6
ABS	STX mmll	E716, II, mm	3	4

CLP	х	
STX	MEM16	; MEM16 \leftarrow X
SEP	х	
STX	MEM8	; MEM8 \leftarrow XL

STY

Function :	Store
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow Y$ $\underline{When \ x = "0"}$ $M16 \qquad Y$ $\Box \qquad \qquad \leftarrow \Box$
	$\frac{\text{When } x = "1"}{\text{M8}} Y_{\text{L}}$

Description : Stores the contents of Y into a memory. The contents of Y do not change.● This instruction is unaffected by flag m.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
_	-		—	—				

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	STY dd	F216, dd	2	4
DIR, X	STY dd, X	4116, FB16, dd	3	6
ABS	STY mmll	F716, II, mm	3	4

CLP	х	
STY	MEM16	; MEM16 \leftarrow Y
SEP	х	
STY	MEM8	; MEM8 \leftarrow YL

SUB

Function :	Subtract
Operation data length:	16 bits or 8 bits
Operation :	Acc \leftarrow Acc $-$ M <u>When m = "0"</u> <u>Acc Acc M16</u> \longrightarrow \leftarrow \square $ \square$ <u>When m = "1"</u> <u>AccL AccL M8</u> \square \leftarrow \square $ \square$ * In this case, the contents of AccH do not change.
Description :	 Subtracts the contents of a memory from the contents of Acc, and stores the result in Acc. ● This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.
Status flags :	IPL N V m x D I Z C - N V - - - Z C
N : V :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag m is "1"). Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUB A, #imm	3616, imm (8116, 3616, imm)	2 (3)	1 (2)
DIR	SUB A, dd	3A16, dd (8116, 3A16, dd)	2 (3)	3 (4)
DIR, X	SUB A, dd, X	3B16, dd (8116, 3B16, dd)	2 (3)	4 (5)
(DIR)	SUB A, (dd)	1116, 3016, dd (9116, 3016, dd)	3 (3)	6 (6)
(DIR, X)	SUB A, (dd, X)	1116, 3116, dd (9116, 3116, dd)	3 (3)	7 (7)
(DIR), Y	SUB A, (dd), Y	1116, 3816, dd (9116, 3816, dd)	3 (3)	7 (7)
L(DIR)	SUB A, L(dd)	1116, 3216, dd (9116, 3216, dd)	3 (3)	8 (8)
L(DIR), Y	SUB A, L(dd), Y	1116, 3916, dd (9116, 3916, dd)	3 (3)	9 (9)
SR	SUB A, nn, S	1116, 3316, nn (9116, 3316, nn)	3 (3)	5 (5)
(SR), Y	SUB A, (nn, S), Y	1116, 3416, nn (9116, 3416, nn)	3 (3)	8 (8)
ABS	SUB A, mmll	3E16, II, mm (8116, 3E16, II, mm)	3 (4)	3 (4)
ABS, X	SUB A, mmll, X	3F16, II, mm (8116, 3F16, II, mm)	3 (4)	4 (5)
ABS, Y	SUB A, mmll, Y	1116, 3616, II, mm (9116, 3616, II, mm)	4 (4)	5 (5)
ABL	SUB A, hhmmll	1116, 3C16, II, mm, hh (9116, 3C16, II, mm, hh)	5 (5)	5 (5)
ABL, X	SUB A, hhmmll, X	1116, 3D16, II, mm, hh (9116, 3D16, II, mm, hh)	5 (5)	6 (6)

Notes 1: This table applies when using accumulator A. When using accumulator B, replace "A" with "B" in the syntax. In this case, the machine code, the number of bytes, and the number of cycles enclosed in parentheses are applied.

2: In the immediate addressing mode, the byte number increases by 1 when flag m = "0."

CLM SUB.W	A, #IMM16	; $A \leftarrow A - IMM16$
SUB SEM	B, MEM16	; B ← B – MEM16
SUB.B	A, #IMM8	; $AL \leftarrow AL - IMM8$
SUB	B, MEM8	; $B_L \leftarrow B_L - MEM8$

SUBB

Function Subtract 1 Operation data length: 8 bits Operation $Acc_{L} \leftarrow Acc_{L} - IMM8$ ÷ Acc Acc - IMM8 Description Subtracts the immediate value from the contents of AccL in 8-bit length, and stores the result ÷ in AccL. • This instruction is unaffected by flag m. ● The contents of Acc_H do not change. • This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.

 Status flags
 :
 IPL
 N
 V
 m
 x
 D
 I
 Z
 C

 N
 V
 Z
 C

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUBB A, #imm	3916, imm	2	1
IMM	SUBB B, #imm	8116, 3916, imm	3	2

SUBB	A, #IMM8	; $AL \leftarrow AL - IMM8$
SUBB	B, #IMM8	; $BL \leftarrow BL - IMM8$

SUBD

Function	:	Subtract
Operation data I	ength:	32 bits
Operation	:	$E \leftarrow E - M32$ $E \qquad E \qquad M32$ $\Box \qquad \Box \qquad$
Descriptior	n :	 Subtracts the contents of a memory from the contents of E in 32-bit length, and stores the result in E. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.
Status flag	s :	IPL N V m x D I Z C - N V - - - Z C
	N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUBD E, #imm	3D16, immll, immlн, immнl, immнн	5	3
DIR	SUBD E, dd	AA16, dd	2	6
DIR, X	SUBD E, dd, X	AB16, dd	2	7
(DIR)	SUBD E, (dd)	1116, A016, dd	3	9
(DIR, X)	SUBD E, (dd, X)	1116, A116, dd	3	10
(DIR), Y	SUBD E, (dd), Y	1116, A816, dd	3	10
L(DIR)	SUBD E, L(dd)	1116, A216, dd	3	11
L(DIR), Y	SUBD E, L(dd), Y	1116, A916, dd	3	12
SR	SUBD E, nn, S	1116, A316, nn	3	8
(SR), Y	SUBD E, (nn, S), Y	1116, A416, nn	3	11
ABS	SUBD E, mmll	AE16, II, mm	3	6
ABS, X	SUBD E, mmll, X	AF16, II, mm	3	7
ABS, Y	SUBD E, mmll, Y	1116, A616, II, mm	4	8
ABL	SUBD E, hhmmll	1116, AC16, II, mm, hh	5	8
ABL, X	SUBD E, hhmmll, X	1116, AD16, II, mm, hh	5	9

SUBD	E, #IMM32	; $E \leftarrow E - IMM32$ (B, $A \leftarrow B$, $A - IMM32$)
SUBD	E, MEM32	; $E \leftarrow E - MEM32$ (B, $A \leftarrow B$, $A - MEM32$)

SUBM

Function :	Subtract
Operation data length:	16 bits or 8 bits
Operation :	$M \leftarrow M - IMM$ $When m = "0"$ $M16 \qquad M16$ $\Box \qquad \leftarrow \qquad \Box \qquad - IMM16$ $When m = "1"$ $M8 \qquad M8$ $\Box \qquad \leftarrow \qquad \Box \qquad - IMM8$
Description :	 Subtracts the immediate value from the contents of a memory, and stores the result in the memory. This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.
Status flags :	IPL N V m x D I Z C - N V - - - Z C
N : V :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag m is "1"). Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
DIR	SUBM dd, #imm	5116, 1316, dd, imm	4	7
ABS	SUBM mmll, #imm	5116, 1716, II, mm, imm	5	7

Note : When flag m = "0," the byte number increases by 1.

CLM SUBM.W	MEM16, #IMM16	; MEM16 \leftarrow MEM16 – IMM16
SEM SUBM.B	MEM8, #IMM8	; MEM8 \leftarrow MEM8 – IMM8

SUBMB

 Function
 :
 Subtract

 Operation data length:
 8 bits

 Operation
 :
 M8 ← M8 - IMM8

Description : Subtracts the immediate value from the contents of a memory in 8-bit length, and stores the result in the memory.

- This instruction is unaffected by flag m.
- This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.

 Status flags
 :
 IPL
 N
 V
 m
 x
 D
 I
 Z
 C

 N
 V
 Z
 C

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -128 to +127. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax Machine code		Bytes	Cycles
DIR	SUBMB dd, #imm	5116, 1216, dd, imm	4	7
ABS	SUBMB mmll, #imm	5116, 1616, II, mm, imm	5	7

Description example:

SUBMB

MEM8, #IMM8

; MEM8 \leftarrow MEM8 – IMM8

SUBMD

SUBMD

Function	:	Subtract
Operation data le	ngth:	32 bits
Operation	:	$\begin{array}{c c} M32 \leftarrow M32 - IMM32 \\ \hline M32 & M32 \\ \hline \end{array} \leftarrow \boxed{} - IMM32 \end{array}$
Description	:	 Subtracts the immediate value from the contents of a memory in 32-bit length, and stores the result in the memory. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.
Status flags	:	IPL N V m x D I Z C - N V - Z C
	N : V :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -2147483648 to +2147483647. Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax Machine code E		Bytes	Cycles
DIR	SUBMD dd, #imm	5116, 9316, dd, immll, immlh, immhl, immhh	7	10
ABS	SUBMD mmll, #imm	5116, 9716, II, mm, immll, immlh, immhl, immhh	8	10

Description example:

SUBMB

MEM32, #IMM32

; MEM32 \leftarrow MEM32 – IMM32

SUBS

Function Subtract 2 Operation data length: 16 bits Operation $S \leftarrow S - IMM8$ ÷ S S – IMM8 \leftarrow Description Subtract the 8-bit immediate value from the contents of S in 16-bit length, and stores the result ÷ in S. The immediate value is extended to 16-bit length with 0s in operation. • This instruction is unaffected by flag m. • This instruction cannot operate in decimal. Set flag D = "0" when using this instruction. Status flags 1 IPL Ν V m х D I Ζ С Ζ С Ν V

- N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
- V : Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767. Otherwise, cleared to "0."
- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUBS #imm	3116, 0B16, imm	3	2

Description example:

SUBS

#IMM8

; S \leftarrow S – IMM8

SUBX

Function	:	Subtract
Operation data ler	igth:	16 bits or 8 bits
Operation	:	$X \leftarrow X - IMM \qquad (IMM = 0 \text{ to } 31)$ $\underline{When \ x = "0"} \\ X \qquad X \\ \hline \qquad \qquad$
		$\begin{array}{ccc} \underline{When \ x = ``1''} & & \\ & X_{L} & X_{L} & \\ & & & & \\ \hline & \leftarrow & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$
Description	:	 Subtracts the immediate value (0 to 31) from the contents of X, and stores the result in X. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Set flag D = "0" when using this instruction.
Status flags	:	IPL N V m x D I Z C - N V - - - Z C
	N : / :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to +32767 (-128 to +127 when flag x is "1"). Otherwise, cleared to "0."

- Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."
- C : Cleared to "0" when the borrow occurs. Otherwise, set to "1."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUBX #imm	0116, imm+4016	2	2
Note : Any volue from 0 to 21 can be get to imm				

Note : Any value from 0 to 31 can be set to imm.

CLP SUBX	x #IMM	; $X \leftarrow X - IMM(0 \text{ to } 31)$
SEP	X	$, X \leftarrow X = \text{ININI(0.10.31)}$
SUBX	#IMM	; $X_{L} \leftarrow X_{L} - IMM(0 \text{ to } 31)$

SUBY

Function :	Subtract		
Operation data length:	16 bits or 8 bits		
Operation :	$Y \leftarrow Y - IMM \qquad (IMM = 0 \text{ to } 31)$ $\underline{When \ x = "0"} \qquad Y \qquad Y \qquad Y \qquad Y \qquad \qquad Y \qquad Y \qquad Y \qquad Y \qquad \qquad Y \qquad Y \qquad Y \qquad \qquad Y \qquad \qquad Y \qquad Y \qquad Y \qquad$		
	$\begin{array}{ccc} \underline{When \ x = ``1''} & & \\ & Y_L & Y_L & \\ & & & \frown & \frown & - IMM \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$		
Description :	 Subtracts the immediate value (0 to 31) from the contents of Y, and stores the result in Y. This instruction is unaffected by flag m. This instruction cannot operate in decimal. Set flag D = "0" when using this instruction. 		
Status flags	IPL N V m x D I Z C N V Z C		
N : V :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0." Set to "1" when the result of the operation (regarded as a signed operation) is a value outside the range of -32768 to $+32767$ (-128 to $+127$ when flag x is "1"). Otherwise, cleared to "0."		
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."		

C : Cleared to "0" when the borrow occurs. Otherwise, set to "1	."
---	----

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMM	SUBY #imm	0116, imm+6016	2	2
Note + Any value from 0 to 21 can be act to imm				

Note : Any value from 0 to 31 can be set to imm.

CLP SUBY	x #IMM	; $Y \leftarrow Y - IMM(0 \text{ to } 31)$
SEP SUBY	x #IMM	; $Y_{L} \leftarrow Y_{L} - IMM(0 \text{ to } 31)$
3001	#111111	, $IL \leftarrow IL = IWIVI(0 \ 10 \ 51)$

TAD n

Function :	Transfer between registers		
Operation data length:	16 bits		
Operation :	$ \begin{array}{cccc} DPRn \leftarrow A & (n = 0 \text{ to } 3) \\ & & & & \\ & & & & \\ & & & & \\ & & & & $		
Description :	 Transfers the contents of A to the specified DPRn (DPR0 to DPR3) in 16-bit length. Specify one of DPR0 to DPR3 for the destination of transfer. The contents of A do not change. This instruction is unaffected by flag m. This instruction includes the function of the TAD instruction in the conventional 7700 Family. 		
Status flags :	IPL N V m x D I Z C - - - - - - - - -		

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TAD n	3116, n216	2	3

Note : Any value from 0 to 3 can be set to n.

TAD	0	; $DPR0 \leftarrow A$
TAD	1	; DPR1 \leftarrow A

TAS

Function :	Transfer between registers
Operation data length:	16 bits
Operation :	$S \leftarrow A$ $S \leftarrow A$ $\Box \qquad \qquad$
Description :	Transfers the contents of A to S in 16-bit length. The contents of A do not change.● This instruction is unaffected by flag m.
Status flags :	IPL N V m x D I Z C

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TAS	3116, 8216	2	2

Description example:

TAS

; S \leftarrow A

TAX

С

Ζ

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} X \leftarrow A \\ \underline{When \ x = "0"} \\ \hline X & A \\ \hline \end{array} \leftarrow \end{array}$
	$\begin{array}{ccc} \underline{When \ x = ``1''} & & \\ & X_{L} & & A_{L} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & &$
Description :	Transfers the contents of A to X. The contents of A do not change.
Status flags :	IPL N V m x D I Z

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Ν

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТАХ	C416	1	1

Х	
	; X ← A
Х	
	; $XL \leftarrow AL$

TAY

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} Y \leftarrow A \\ \underline{When \ x = "0"} \\ & Y \\ & A \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} Y \\ \leftarrow \end{array} \\ \hline \end{array} \\ \underline{When \ x = "1"} \\ Y_L \\ & A_L \\ \hline \end{array} \\ \hline \begin{array}{c} Y_L \\ \leftarrow \end{array} \\ \hline \end{array} \\ \ast \ \text{In this case, the contents of } Y_H \ \text{do not change.} \end{array}$
Description :	Transfers the contents of A to Y. The contents of A do not change.
Status flags :	IPL N V m x D I Z C

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Ν

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TAY	D416	1	1

Ζ

CLP	x	
TAY		; $Y \leftarrow A$
SEP	х	
TAY		; $Y_L \gets A_L$

TBD n

TBD n

Function :	Transfer between registers
Operation data length:	16 bits
Operation :	$DPRn \leftarrow B \qquad (n = 0 \text{ to } 3)$ $DPRn \qquad B$ $\Box \qquad \leftarrow \Box$
Description :	 Transfers the contents of B to the specified DPRn (DPR0 to DPR3) in 16-bit length. Specify one of DPR0 to DPR3 for the destination of transfer. The contents of B do not change. This instruction is unaffected by flag m. This instruction includes the function of the TBD instruction in the conventional 7700 Family
Status flags :	IPL N V m x D I Z C

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TBD n	B116, n216	2	3

Note : Any value from 0 to 3 can be set to n.

TBD	0	; DPR0 \leftarrow B
TBD	1	; DPR1 \leftarrow B

TBS

Function :	Transfer between registers
Operation data length:	16 bits
Operation :	$S \leftarrow B$ $S \qquad B$ $\Box \qquad \Box \qquad \leftarrow \Box$
Description :	Transfers the contents of B to S in 16-bit length. The contents of B do not change.● This instruction is unaffected by flag m.
Status flags	IPL N V m x D I Z C

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TBS	B116, 8216	2	2

Description example:

TBS

; S \leftarrow B

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} X \leftarrow B \\ \underline{When \ x = "0"} \\ \hline \\ X & B \\ \hline \\$
	$\frac{\text{When } x = \text{``1''}}{X_{L}} \qquad B_{L}$
	$\#$ In this case, the contents of X_H do not change.
Description :	Transfers the contents of B to X. The contents of B do not change.

Status flags :

IP	L	Ν	V	m	х	D	I	Ζ	С
	•	Ν	—	_			—	Ζ	—

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles	
IMP	ТВХ	8116, C416	2	2	

CLP	х	
TBX		; X ← B
SEP	х	
TBX		; $X_L \leftarrow B_L$

TBY

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} Y \leftarrow B \\ \underline{When \ x = "0"} \\ Y & B \\ \hline \end{array} \\ \leftarrow \boxed{} \end{array}$
	$\frac{\text{When } x = \text{``1''}}{Y_{L}} B_{L}$
	\ast In this case, the contents of $Y_{\textrm{H}}$ do not change.
Description :	Transfers Y with the contents of B. The contents of B do not change.
Status flags :	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Ν

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles	
IMP	ТВҮ	8116, D416	2	2	

Ζ

CLP	Х	
TBY		; $Y \leftarrow B$
SEP	х	
TBY		; $Y_L \leftarrow B_L$

TDA n

Function	:	Transfer between registers										
Operation data leng	th:	16 bits or 8 bits										
Operation	:	$A \leftarrow DPRn \qquad (n = 0 \text{ to } 3$ $\underline{When \ m = "0"}$ $A \qquad DPRn$ $\Box \qquad \leftarrow \Box$ $\underline{When \ m = "1"}$ $A \qquad DPRn \ \Box$ $\Box \qquad \leftarrow \Box$ $When \ m = "1"$ $A \qquad DPRn \ \Box$ $When \ m = "1"$		оf Ан	do no	ot ch	ange					
Description	:	 Transfers the contents of the Specify one of DPR0 to DF The contents of DPRn do r This instruction includes the 	PR3 f	or the	e des e.	tinati	on of	f tran	sfer.		iventi	onal 7700 Family
Status flags	:		IPL —	N N	V 	m —	x 	D 		Z Z	C 	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles	
IMP	TDA n	3116, n216+4016		2	

; $A \leftarrow DPR0$

; A \leftarrow DPR1

Note : Any value from 0 to 3 can be set to n.

0

1

•	
TDA	
TDA	

TDB n

Function	:	Transfer between registers										
Operation data lenge	th:	16 bits or 8 bits										
Operation	:	$B \leftarrow DPRn \qquad (n = 0 \text{ to } 7)$ $\underline{When m = "0"}$ $\underline{B} \qquad DPRn$ $\underline{\Box} \qquad \leftarrow \Box$ $\underline{When m = "1"}$ $B_{L} \qquad DPRnL$ $\underline{\Box} \qquad \leftarrow \Box$ $ \ \ \ \ \ \ \ \ \ \ \ \ \ $		of B⊦	do no	ot cha	ange.					
Description	:	 Transfers the contents of spe Specify one of DPR0 to DF The contents of DPRn do not on the contents of DPRn do not on the content of the content	PR3 f not cl	or the	e des e.	tinati	on of	f tran	sfer.		venti	onal 7700 Family
Status flags	:		IPL	N N	V 	m —	x —	D —		Z Z	C —	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TDB n	B116, n216+4016	2	2

Note : Any value from 0 to 3 can be set to n.

0

1

TDB	
TDB	

;	В	\leftarrow	DPR0
;	В	\leftarrow	DPR1

С —

Ζ

Function :	Transfer between registers							
Operation data length:	16 bits							
Operation :	$S \leftarrow DPR0$ $S \qquad DPR0$ $\Box \qquad \leftarrow \Box$							
·	Transfers the contents of DPR0 to S in 16-bit length.● The contents of DPR0 do not change.							
Status flags :		IPL	Ν	V	m	х	D	I
		—	_	—	_		—	—

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TDS	3116, 7316	2	2

Description example:

TDS

; S \leftarrow DPR0

Transfer between registers Function 2 16 bits or 8 bits Operation data length: Operation 1 $\mathsf{A} \leftarrow \mathsf{S}$ <u>When m = "0"</u> А S 4 <u>When m = "1"</u> AL S∟ \leftarrow The contents of A_H do not change.
 Description Transfers the contents of S to A. The contents of S do not change. ÷

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
	Ν		—	_			Ζ	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TSA	3116, 9216	2	2

CLM	
TSA	; A \leftarrow S
SEM	
TSA	; AL \leftarrow SL

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$B \leftarrow S$ $\underline{When \ m = "0"}$ $B \qquad S$ $\Box \qquad \Box \qquad \leftarrow \Box$
	$\frac{When m = "1"}{B_{L}}$ B _L S _L $($
Description :	Transfers the contents of S to B. The contents of S do not change.

Status flags :

I	PL	Ν	V	m	х	D	I	Ζ	С
	_	Ν			_	_	_	Ζ	—

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TSB	B116, 9216	2	2

CLM	
TSB	; $B \leftarrow S$
SEM	
TSB	; $BL \leftarrow SL$

TSD

Function :	Transfer between registers									
Operation data length:	16 bits									
Operation :	$ DPR0 \leftarrow S \\ DPR0 \qquad S \\ \hline $									
Description :	Transfers the contents of S to ● The contents of S do not c			16-b	it len	gth.				
Status flags :		IPL	Ν	V	m	х	D	I	Ζ	С
		—	—			_	_		—	

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TSD	3116, 7016	2	4

Description example:

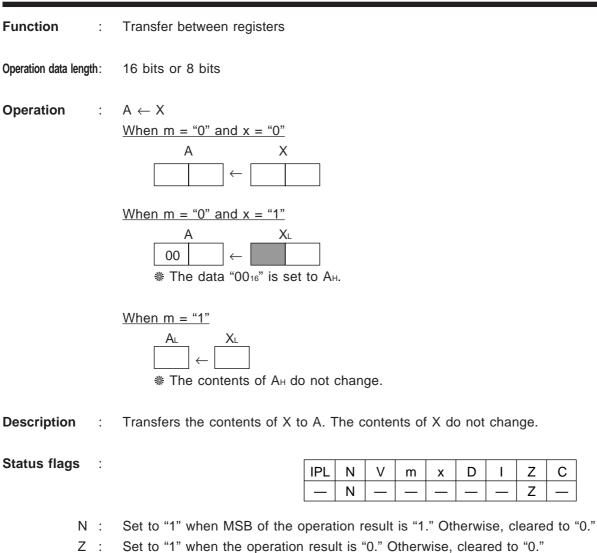
TSD

; DPR0 \leftarrow S

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$\begin{array}{c} X \leftarrow S \\ \underline{When \ x = "0"} \\ X & S \\ \hline \\ \hline \\ \underline{When \ x = "1"} \\ X_L & S_L \\ \hline \\ $
Description :	Transfers the contents of S to X. The contents of S do not change.

Status flags :

I	PL	Ν	V	m	х	D	I	Ζ	С
	_	Ν			_		_	Ζ	—


N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TSX	3116, F216	2	2

CLP	Х	
TSX		; $X \leftarrow S$
SEP	х	
TSX		; $X_{L} \leftarrow S_{L}$

ΤΧΑ

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТХА	A416	1	1

Description example:

TXA

; A \leftarrow X

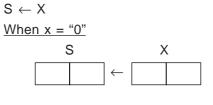
TXB

Function	:	Transfer between registers
Operation data leng	th:	16 bits or 8 bits
Operation		$B \leftarrow X$ $\underline{When \ m = "0" \ and \ x = "0"}$ $B \qquad X$ $\Box \qquad \leftarrow \Box$
		When m = "0" and x = "1" B XL 00 \leftarrow \leftarrow * The data "00 ₁₆ " is set to B _H .
Description	:	Transfers the contents of X to B. The contents of X do not change.
Status flags	:	IPL N V m x D I Z C N Z
Ν	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
Z	:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТХВ	8116, A416	2	2

Description example:

ТХВ


; $\mathsf{B} \leftarrow \mathsf{X}$

TXS

Function : Transfer between registers

Operation data length: 16 bits or 8 bits

Operation :

Wher	n x =	"1"				
	S				XL	_
	00		\leftarrow			
	∦ The	e data	"00	16" is	set to	Sн.

Description : Transfers the contents of X to S. The contents of X do not change.

Status flags :

IPL	N	V	m	х	D	I	Ζ	С
		_	_	—		—		

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TXS	3116, E216	2	2

CLP	Х	
TXS		; S ← X
SEP	х	
TXS		; SL \leftarrow XL, SH \leftarrow 0016

ΤΧΥ

Function : Transfer between registers

Operation data length: 16 bits or 8 bits

2

Operation

 $\begin{array}{c} Y \leftarrow X \\ \underline{When \ x = "0"} \\ Y & X \\ \hline \end{array} \leftarrow \boxed{\begin{array}{c} \\ \end{array}} \end{array}$

 $\begin{array}{c|c} \underline{When \ x = ``1''} \\ & Y_{L} & X_{L} \\ & & & \\ \hline & & \leftarrow & \\ & &$

Description : Transfers the contents of X to Y. The contents of X do not change.

Status flags :

IPL	Ν	V	m	x	D	I	Ζ	С
—	Ν	_			_	_	Ζ	—

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	TXY	3116, C216	2	2

CLP	Х	
TXY		; $Y \leftarrow X$
SEP	Х	
TXY		; $Y_L \leftarrow X_L$

TYA

Function :	Transfer between registers
Operation data length:	16 bits or 8 bits
Operation :	$A \leftarrow Y$ $\underline{When \ m = "0" \ and \ x = "0"}_{A} \qquad Y$ $\underline{A \qquad Y}$
Description :	Transfers the contents of Y to A. The contents of Y do not change.
Status flags :	IPL N V m x D I Z C - N Z
N :	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
Ζ:	Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТҮА	B416	1	1

Description example:

TYA

; A \leftarrow Y

TYB

Function		:	Transfer between registers
Operation data lea	ngth	:	16 bits or 8 bits
Operation			$B \leftarrow Y$ $\underline{When \ m = "0" \ and \ x = "0"}$ $B \qquad Y$ $\underline{B \qquad Y}$ $\underline{When \ m = "0" \ and \ x = "1"}$ $\underline{When \ m = "0" \ and \ x = "1"}$ $\underline{B \qquad Y \ }$ $\underline{When \ m = "0" \ and \ x = "1"}$ $\underline{B \qquad Y \ }$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ $\underline{When \ m = "1"}$ $\underline{B \ Y \ }$ $\underline{When \ m = "1"}$ Whe
Description		:	Transfers the contents of Y to B. The contents of Y do not change.
Status flags	i	:	IPL N V m x D I Z C - N Z
1	N	:	Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."
	Z		Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТҮВ	8116, B416	2	2

Description example:

ΤYΒ

; B \leftarrow Y

ΤΥΧ

Function : Transfer between registers

Operation data length: 16 bits or 8 bits

2

Operation

 $\begin{array}{c} X \leftarrow Y \\ \underline{When \ x = "0"} \\ \hline X & Y \\ \hline \hline \end{array} \leftarrow \boxed{\end{array}$

Description : Transfers the contents of Y to X. The contents of Y do not change.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
—	Ν	—	—		—		Ζ	

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ТҮХ	3116, D216	2	2

CLP	Х	
TYX		; $X \leftarrow Y$
SEP	Х	
TYX		; $X_L \leftarrow Y_L$

WIT

WalT

Function	:	Clock control
----------	---	---------------

Operation data length: -

- **Operation** : Stop the CPU clock.
- **Description** : Stops the internal clock. However, the oscillation of the oscillation circuit is not stopped. To restart the internal clock, generate an interrupt request or perform the hardware reset. The microcomputer will thereby be released from the WIT state.

Status flags :

IPL	Ν	V	m	х	D	I	Ζ	С
	—	—			—	—		—

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	WIT	3116, 1016	2	-

;

Description example:

WIT

XAB

Function : Transfer between registers

 $\mathsf{A}\rightleftarrows\mathsf{B}$

Operation data length: 16 bits or 8 bits

Operation :

 $\frac{\text{When } m = "0"}{A} \qquad B$

 $\frac{\text{When } m = "1"}{A_{L}} \xrightarrow{B_{L}}$

 \ast In this case, the contents of $A_{H}\,and$ B_{H} do not change.

Description : Exchanges the contentss of A and B.

Status flags

2

IPL	Ν	V	m	х	D	I	Ζ	С
_	Ν		—	_			Ζ	_

N : Set to "1" when MSB of the operation result is "1." Otherwise, cleared to "0."

Z : Set to "1" when the operation result is "0." Otherwise, cleared to "0."

Addressing mode	Syntax	Machine code	Bytes	Cycles
IMP	ХАВ	5516	1	2

CLM	х	
XAB		; A \rightleftharpoons B
SEM	х	
XAB		; Al \rightleftharpoons Bl

4.3 Notes on software development

4.3 Notes on software development

The following are notes on software development.

4.3.1 Instruction execution cycles

The number of instruction execution cycles shown in this manual is applied to an ideal operating state. The actual instruction execution cycles vary with the instruction queue, the bus width for memory access, and the setting for Wait state.

When estimating a theoretical program execution speed by using the values shown in this manual or when implementing timers by software, be sure to consider that the estimated or anticipated execution time is only an approximate value.

4.3.2 Status of flags m and x

Writing a 16-bit immediate value to the instruction operand while the contents of flag m is "1" (8 bits of data length) or an 8-bit immediate value to the instruction operand while the contents of flag m is "0" (16 bits of data length) causes the program to run out of control.

The above is also applied to flag x. Refer to the user's manual of the assembler you are using and make sure that no discrepancy will occur between the flag state and the data length to be operated on.

4.3.3 Tips for data area location

- (1) If the contents of low-order 8 bits of the direct page register (DPRnL) are set to any value other than "0016," the processing time is extended by 1 machine cycle as compared to the cases where the contents are set to "0016." Therefore, Mitsubishi recommends setting these low-order bits to "0016" whenever possible because this helps to increase the execution speed of program.
- (2) Mitsubishi recommends locating 16-bit data at even address boundaries whenever possible because this is effective for increasing the program execution speed. If 16-bit data are located at odd address boundaries, 2 bus cycles need to be generated for accessing this data, resulting in a reduced program execution speed.

4.3.4 Performing arithmetic operations in decimal

- (1) Arithmetic operations can be performed in decimal by setting flag D to "1." However, decimal operations can be performed only by the following 4 instructions:
 - ADC
 - ADCB
 - SBC
 - SBCB
- (2) Pay attention to the flag behavior when performing decimal operations. Although the results of decimal operations are reflected correctly in flag C, the results are not reflected in any of flags Z, N, and V.

APPENDIX

Appendix 1. 7900 Series machine instructions Appendix 2. Hexadecimal instruction code tables

Appendix 1. 7900 Series machine instructions

APPENDIX Appendix 1. 7900 Series machine instructions

Appendix 1. 7900 Series machine instructions

[How to use this table]

- The corresponding op code, the number of execution cycles, and the number of instruction bytes are indicated for each addressing mode of each instruction.
- A flag affected by the operation result is also indicated.
- For symbols used in this table, refer to the table on the next page. Also, refer to "Notes for machine instruction table" on pages 5-42 and 5-43.
- The operation length of an instruction of which column "Operation length (Bit)" includes "16/8" depends on the setting of flag m or x.

IMP Implied addressing mode E Accumulator E MM Indexta addressing mode Ei Accumulator E's high-order 16 bits (Accumulator E's high-order 16 bits (Accumulator E's high-order 16 bits (Accumulator E's high-order 8 bits DIR, V Direct indexed X addressing mode Xi Index register X's high-order 8 bits DIR, V Direct indexed X addressing mode Yi Index register Y's high-order 8 bits DIR, V Direct indexed X addressing mode Yi Index register Y's high-order 8 bits DIR, V Direct indexed Y addressing mode REL Relative addressing mode LOBN, Y Direct indexed Y addressing mode PC Program counter's high-order 8 bits LOBN, Y Direct indexed Y addressing mode PC Program counter's high-order 8 bits LOBN, Y Direct indexed Y addressing mode PC Program counter's high-order 8 bits LOBN, Y Absolute indexed A'addressing mode DFR Direct page register 0 ABS, X Absolute indexed A'addressing mode DFR DFR Direct page register 0 LABS, X Absolute indexed A'addressing mode DFR DFR Direct page register	
Accumulator E's low-order 16 bits (Accumulator DR Direct addressing mode X DR Direct indexed Y addressing mode X DR Direct indexed Y addressing mode X DR Direct indexed Y addressing mode Y DR Direct indexed Y addressing mode Y DR/ Direct indexed Y addressing mode Y DR/ Direct indexed Y addressing mode Y DR/ Direct indexed Y addressing mode REL Rabs, X Absolute indexed Y addressing mode PC Program counter's high-order 8 bits Bits Absolute indexed Y addressing mode PC Absolute indexed Y addressing mode DR Absolute indexed Y addressing mode DRO Direct page register 0 Direct page register 0 Absolute indexed Y addressing mode DRO Direct page register 0 Direct page register 0 Absolute indexed Y addressing mode DRO Direct page register 0 Direct page register 0 Absolute indexer Addressing mode DPRN Direct page register 10 </td <td></td>	
Chromosolution banches and addressing mode Xiii Index register X subjecter 8 bits DIR, X Direct indexed X addressing mode Xiiii DIR, Y Direct indexed X addressing mode Yiiii DIR, X Direct indexed X addressing mode Yiiiiii DIR, X Direct indexed X addressing mode Yiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	ulator B)
Direct adurts in mode Xi. Index register X injo-order 8 bits DIR, X Direct indexed X addressing mode Yi. Index register Y is high-order 8 bits DIR, V Direct indexed X indexessing mode Yi. Index register Y is high-order 8 bits DIR, V Direct indirect addressing mode Yi. Index register Y is high-order 8 bits DIR, V Direct indirect on indexed Y addressing mode S. Stack pointer DIR, V Direct indirect on indexed Y addressing mode PC. Program counter is high-order 8 bits ABS, X Absolute indexed Y addressing mode PC. Program counter is high-order 8 bits ABS, X Absolute indexed Y addressing mode DPR0. Direct page register 's high-order 8 bits ABL, Absolute indirect addressing mode DPR0. Direct page register 's high-order 8 bits ABS, X Absolute indirect addressing mode DPR0. Direct page register 's high-order 8 bits CASS, X Absolute indirect addressing mode DPR0. Direct page register 's high-order 8 bits Stack addressing mode DPR0. Direct page register 's high-order 8 bits Stack addressing mode DPR1.	lator A)
Diff. Y Direct indices Addressing mode X. Index register Y is low-order 8 bits (DR, X) Direct indices addressing mode Y. Index register Y is high-order 8 bits (DR, X) Direct indices addressing mode Y. Index register Y is high-order 8 bits (DR, Y) Direct indices of addressing mode Y. Index register Y is high-order 8 bits (DR, Y) Direct indices of addressing mode S. Stack pointer REL Relative addressing mode PC Program counter's high-order 8 bits ABS, X Absolute indexed X addressing mode PC Program counter's high-order 8 bits ABL, X Absolute indexed X addressing mode DFR0 Direct page register 0 ABL, X Absolute indexed X addressing mode DFR0 Direct page register 0 ABL, X Absolute indexed X addressing mode DFR0 Direct page register 0 ABL, X Absolute indexed X addressing mode DFR0 Direct page register 0 ABS, X) Absolute indexed X inderest addressing mode DFR0 Direct page register 0 STK Stack contrars fails mode PS Processor status register 1 Nigh-order 8 bits SR Stack contrars fails mode PS Processor status register 1 Nigh-order 8 bits SR St	
URX Direct indexed Y addressing mode Y Index register Y is high-order 8 bits (DR) Direct indexed X indirect addressing mode Yi Index register Y is high-order 8 bits (DR) Direct indirect indexed Y addressing mode Yi Index register Y is high-order 8 bits (DR) Direct indirect indirect indirexed Y addressing mode REL Relative addressing mode Absolute indirect addressing mode PC Program counter's high-order 8 bits Absolute indirect addressing mode PC Program counter's high-order 8 bits Absolute indirect addressing mode DFR Direct page register '0 in high-order 8 bits (ABS) Absolute indirect addressing mode DFR Direct page register '0's low-order 8 bits (ABS) Absolute indirect addressing mode DFR Direct page register '0's low-order 8 bits (ABS) Absolute indirect addressing mode DFR Direct page register '1's low-order 8 bits (RAS) Absolute indirect addressing mode DFR Direct page register '1's low-order 8 bits (RAS) Absolute indirect addressing mode DFR Direct page register '1's low-order 8 bits (RAS) Abs	
Direct indirect addressing mode Yi Index register Ys high-order 8 bits (DR, X) Direct indirect addressing mode S Stack pointer (DR) Direct indirect addressing mode S Stack pointer RAS Absolute addressing mode PC Program counter's low-order 8 bits ASA Absolute indexed Y addressing mode PC Program counter's low-order 8 bits ABS Absolute indexed Y addressing mode PC Program counter's low-order 8 bits ABS Absolute indexed Y addressing mode DT Direct page register 's high-order 8 bits ABS Absolute indirect addressing mode DPR0. Direct page register 's high-order 8 bits ABS Absolute indirect addressing mode DPR0. Direct page register 's high-order 8 bits ABS Absolute indirect addressing mode DPR0. Direct page register 's high-order 8 bits CABS Absolute bit reliative addressing mode DPR0. Direct page register 's high-order 8 bits STK Stack addressing mode DPR1. Direct page register 's high-order 8 bits STK Stack addressing mode PS Proces	
(DR), V. Direct indirect addressing mode Y. Index register Y's low-order 8 bits (LOR), V. Direct indirect of addressing mode Relative address (LOR), V. Direct indirect of addressing mode PC. Absolute indirect indirect of addressing mode PC. Program counter's low-order 8 bits Absolute indirect indirect of addressing mode PC. Program counter's low-order 8 bits ABS, X. Absolute long indexed X addressing mode PC. Program counter's low-order 8 bits ABL, X. Absolute long indexed X addressing mode DPR0. Direct page register 0 Absolute long indexed X addressing mode DPR0. Direct page register 0's low-order 8 bits CABS, X. Absolute indirect addressing mode DPR0. Direct page register 0's low-order 8 bits CABS, X. Absolute indirect indexed X indirect addressing mode DPR0. Direct page register 1's low-order 8 bits REL Relative addressing mode DPR0. Direct page register 1's low-order 8 bits RS, K. Absolute indirect indexed X addressing mode PS. DPR0. DR, P. Direct bit relative addressing mode PS. RS, S. Absolute indinect addressing mode PS.	
(DR), Y Direct indirect indices ing addressing mode S Stack pointer Relative addressing mode PC Program counter's high-order 8 bits ABS Absolute indexed Y addressing mode PC ABS, X Absolute indexed Y addressing mode PC ABS, X Absolute indexed Y addressing mode PG ABS, X Absolute indexed Y addressing mode PG ABS, X Absolute indexed Y addressing mode DPRO Direct page register 0 Direct page register 0 Absolute indexed Y addressing mode DPRO Absolute indexed Y addressing mode DPRO Direct page register 0's high-order 8 bits CARS, X Absolute indexed Y addressing mode DPRN Direct page register n Direct page register n's low-order 8 bits CARS, X Absolute indexed Y addressing mode PS DIRe, D, R Direct page register n's low-order 8 bits DIRe, D, R Direct page register n's low-order 8 bits Stack addressing mode PS DIR, A Discot brieffect addressing mode DIR, R Bitect page register n's low-order 8 bits DIR, N Stack addressing mode DIR, SR, X Bitect page register n's low-order 8 bits DIR, SR, X Bitect page register n's low-order 8 bit	
L(DR) Direct indirect long addressing mode PEL Relative address L(DR) Direct indirect long indexed Y addressing mode PC. Program counter's high-order 8 bits ABS Absolute indexed X addressing mode PC Program counter's high-order 8 bits ABS, Y Absolute indexed X addressing mode DT Data back register ABL, X Absolute indexed X addressing mode DPR0. Direct page register 0's low-order 8 bits (ABS) Absolute indirexed X addressing mode DPR0. Direct page register n's ligh-order 8 bits (ABS), Absolute indirexed X indirect addressing mode DPR0. Direct page register n's ligh-order 8 bits (ABS, Y, Absolute indirext addressing mode DPR0. Direct page register n's ligh-order 8 bits (ABS, Y, Absolute bit reliative addressing mode DPRn. Direct page register n's ligh-order 8 bits REL Relative addressing mode PS. Processor status register's ligh-order 8 bits SR SS, P, Absolute bit reliative addressing mode PS. Processor status register's ligh-order 8 bits SR Stack pointer reliative addressing mode PS. Processor status register's ligh-order 8 bits SR Stack pointer reliative addressing mode MS. MS. SR Stack pointer reliative addressing mode PS. Processor status register's l	
L(DIR), Y Direct indirect long indexed Y addressing mode PC Program counter's high-order 8 bits ABS, X Absolute indexed X addressing mode PC, Program counter's high-order 8 bits ABS, Y Absolute indexed X addressing mode PG Program counter's high-order 8 bits ABS, X Absolute indexed X addressing mode DT Data back register ABL, Absolute index addressing mode DPR0 Direct page register 0' ABS, X Absolute indirect addressing mode DPR0. Direct page register 1's high-order 8 bits ABS, X Absolute indirect addressing mode DPR0. Direct page register 1's high-order 8 bits CABS, X Absolute indirect addressing mode PS. Processor status register 1's high-order 8 bits CABS, X Absolute indirect indexed Y addressing mode PS. Processor status register 1's high-order 8 bits SR Stack pointer relative addressing mode PS. Processor status register 1's high-order 8 bits SR Stack pointer relative addressing mode PS. Processor status register 1's high-order 8 bits Matipied Matipied accumulation addressing mode PS. Processor status register 1's high-order 8 bits SR Stack pointer relative addressing mode PS. Processor status register 1's high-order 8 bits Matipied M	
ABS Absolute addressing mode PCi Program counter's high-order 8 bits ABS, X Absolute indexed Y addressing mode PC Program counter's high-order 8 bits ABS, Y Absolute long addressing mode DT Data back register ABL, X Absolute indirect addressing mode DPRO Direct page register 0's how-order 8 bits ALL, X Absolute indirect addressing mode DPRO Direct page register 0's how-order 8 bits ABS, V, X Absolute indirect addressing mode DPRN Direct page register 0's how-order 8 bits ALSS, V, X Absolute bit relative addressing mode DPRN Direct page register 0's how-order 8 bits REL Relative addressing mode DPRN Direct page register 0's high-order 8 bits REL Relative addressing mode PS Processor status register's high-order 8 bits RSS, D, R Absolute bit relative addressing mode PS Processor status register's high-order 8 bits RSK Stack pointer relative addressing mode MS Contents of memory contents of memory RSK Stack pointer relative addressing mode MS MS contents of memory at address or contents Multiplied accumulation addressing mode MS MS contents of memory at address or contents Multiplied accumulation addressing mode	
ABS, Y Absolute indexed X addressing mode PC, Program counter's four-order 8 bits ABS, Y Absolute indexed X addressing mode PG Program counter's four-order 8 bits ABL Absolute indexed X addressing mode DT Data back register ABL, X Absolute indexed X addressing mode DFRO. Direct page register 0 S high-order 8 bits ABS, Y Absolute indexed X indirect addressing mode DPRO. Direct page register 0 S high-order 8 bits ABS, X Absolute indexed X indirect addressing mode DPRn. Direct page register 0 S high-order 8 bits CABS, X Absolute indexed X indirect addressing mode DPRn. Direct page register 1 high-order 8 bits REL Relative addressing mode PS. Processor status register Direct page register 1 high-order 8 bits SR Stack pointer relative indirect indexed Y addressing PS. Processor status register Direct page register 0 S horder 8 bits GRN, Y Stack pointer relative indirect indexed Y addressing MK Stack pointer relative indirect indexed Y addressing Multiplied Multiplied accumulation addressing mode PS. Processor status register Multiplied accumulation addressing mode MK MK The bit inmediate value S high-order 8 bits GC Carry flag MM MK	
ABS, Y Absolute indexed Y addressing mode PG Program bank register ABL Absolute long indexed X addressing mode DTR Data back register ABL, X Absolute long indexed X addressing mode DPR0. Direct page register 0 (ABS) Absolute indirect addressing mode DPR0. Direct page register 0 (ABS, A) Absolute indirect indexed X indirect addressing mode DPR0. Direct page register 0 is low-order 8 bits (ABS, A) Absolute indexed X indirect addressing mode DPR1. Direct page register n is low-order 8 bits REL Relative addressing mode PS1. Processor status register SR Stack pointer relative addressing mode PS1. Processor status register SR Stack pointer relative addressing mode PS1. Processor status register Multipied Multipied accumulation addressing mode MS(S) Contents of memory Rod Instruction code (Op code) IMM In-bit immediate value (8 bits or 16 bits) n Number of cycles IMM 16-bit immediate value N	
ABL, X Absolute long indexed X addressing mode DPR0 Direct page register 0 (ABS) Absolute indirect addressing mode DPR0. Direct page register 0's low-order 8 bits (ABS, Absolute indirect addressing mode DPR0. Direct page register 0's low-order 8 bits (ABS, N) Absolute indirect addressing mode DPR0. Direct page register n's low-order 8 bits REL Relative addressing mode DPR0. Direct page register n's low-order 8 bits RSS, D, R Absolute bit relative addressing mode PS. Processor status register SR Stack pointer relative addressing mode PS. Processor status register Non-order 8 bits SR Stack pointer relative addressing mode PS. Processor status register Non-order 8 bits Multiplied Mode transfer addressing mode M(bit n) nth bit in processor status register Non-order 8 bits Multiplied accumulation Mode transfer addressing mode M(bit n) nth bit of memory nt bit mediate value Multiplied accumulation Mode transfer addressing mode M(bit n) nt bit mmediate value Non-order 8 bits C	
ABL, X Absolute iong indexed X addressing mode DPR0 Direct page register 0 (ABS) Absolute indirect addressing mode DPR0. Direct page register 0's high-order 8 bits (ABS, X) Absolute indirect addressing mode DPR0. Direct page register n STK Stack addressing mode DPRn. Direct page register n's high-order 8 bits DIR, P, R Direct page register n's high-order 8 bits Direct page register n's high-order 8 bits SR Stack addressing mode PS. Processor status register s low-order 8 bits SR Stack pointer relative addressing mode PS. Processor status register low-order 8 bits SR Stack pointer relative addressing mode PS. Processor status register low-order 8 bits Multiplied Multiplied accumulation addressing mode PS. Processor status register low-order 8 bits Multiplied Multiplied accumulation addressing mode MS. MS. Contents of memory n Number of cycles IMM memory nth bit in processor status register 3 low-order 8 bits C Carry flag ADv Value (2 bits or 16 bits) N Z Zaro flag IMM Immediate value (8 bits or 16 bits) C Carry flag ADv Value of 24-bit address's indjh-order 8 bits (Az)	
 (ABS) Absolute indirect addressing mode DPR0+ Direct page register 0's high-order 8 bits PS Processor status register's low-order 8 bits Stack pointer relative addressing mode PS, PS, Bits register 1's high-order 8 bits BLK Block transfer addressing mode Multiplied Multiplied accumulation addressing mode Multiplied accumulation addressing mode MM Momber of cycles MMM Horents of memory address's high-order 8 bits MMM Horents of memory address's high-order 8 bits MMM Horents of address's high-order 8 bits MMM Horents of address's high-order 8 bits MMM Horents of address's high-order 8 bits MMA Horents of address's high-order 8 bits ADa Value of 24-bit address's high-order 8 bits MM Horents address's high-order 8 bits MA Horents address's high-order 8 bits	
L(ABS) Absolute indirect long addressing mode DPR0. Direct page register 0's low-order 8 bits L(ABS, X) Absolute indexed X indirect addressing mode DPRn. Direct page register n's low-order 8 bits DR, b, R Relative addressing mode PS. Processor status register DR, b, R Direct bit relative addressing mode PS. Processor status register SR Stack pointer relative addressing mode PS. Processor status register SR Stack pointer relative addressing mode PS. Processor status register Multipled Absolute bit relative addressing mode MS. PS. SR Stack pointer relative indirect indexed Y addressing MG Contents of memory mode Multipled Multipled MG n-bit imeony address indicated by s pointer node Multipled Multipled MM n-bit immediate value (8 bits or othents) no Number of cycles IMM Immediate value (8 bits or 16 bits) n Number of bytes IMM Immediate value (8 bits or 16 bits) Z zero flag ADr Value of 24-bit address's indih-order 8 bits (Ar- D Decimal operation mode flag EAR Effective address's low-order 8 bits (Ar- V Overflow flag Imm n-bi	
(ABS, X) Absolute indexed X indirect addressing mode DPRn Direct page register n is high-order 8 bits STK Stack addressing mode PRn Direct page register n is high-order 8 bits REL Relative addressing mode PS Processor status register ABS, b, R Direct bit relative addressing mode PS SR Stack pointer relative addressing mode PS MS Stack pointer relative addressing mode PS mode PS Processor status register mode MS Contents of memory mode MS Contents of memory mode MS MS BLK Block transfer addressing mode MS nth bit of memory address indicated by s pointer mode MS The other memory accumulation Nmmber of cycles IMM n Number of bytes IMM C Carry flag ADu Z Zero flag ADu X Index register length election flag Index register length election flag EARµ EIR Relative address indice-order 8 bits M Go-berlind operation mode flag EIRetive address's low-order 8 bits Index register length election flag	
CTK Stack addressing mode DPRnL Direct page register is high-order 8 bits REL Retative addressing mode PS Processor status register's high-order 8 bits RSB, R, R Absolute bit relative addressing mode PSL Processor status register's high-order 8 bits SR Stack pointer relative addressing mode PSL Processor status register's high-order 8 bits Multiplied Multiplied accumulation addressing mode MS(S) Contents of memory at address indicated by spointer Multiplied Multiplied accumulation addressing mode M(bit n) nh bit in processor status register's high-order 8 bits node Multiplied accumulation addressing mode M(bit n) nh bit in memory node Instruction code (Op code) IIMM Inmediate value (B bits or 16 bits) n-bit immediate value's high-order 8 bits Index register ingth selection flag ADu Z Zero flag ADu Value of 24-bit address's high-order 8 bits (Az D Decimal operation mode flag EAR Effective address's high-order 8 bits (Az X Index register length selection flag EAR Effective address's high-order 8 bits (Az Y Overflow flag imm Number of bits) Ffective address's lob order 8 bits Y Logical ION Negative flag i	
REL Relative addressing mode DPRnL Direct page register is low-order 8 bits DIR, b, R Direct bit relative addressing mode PS Processor status register is low-order 8 bits SR Stack pointer relative addressing mode PS. Processor status register is low-order 8 bits SR Stack pointer relative addressing mode PS. Processor status register is low-order 8 bits Multiplied Macrometric indexed Y addressing mode MK Contents of memory mode MM n-bit increative addressing indee MM Multiplied accumulation MM n-bit memory at address indicated by significance garumutation Number of cycles IMM n-bit memory at address indicated by significance garumutation Number of cycles IMM n-bit memolate value (8 bits or 16 bits) accumutation Instruction code (Op code) IMM 16-bit immediate value (8 bits or 6 bits) Z zero flag ADn Value of 24-bit address's low-order 8 bits (Ar- D Decimal operation mode flag EAR Effective address's low-order 8 bits (Ar- M Data length selection flag <td< td=""><td></td></td<>	
DIR, b, R Direct bit relative addressing mode PS Processor status register's high-order 8 bits ABS, b, R Absolute bit relative addressing mode PSi. Processor status register's high-order 8 bits SR Stack pointer relative addressing mode PSi. Processor status register's high-order 8 bits (SR), Y Stack pointer relative addressing mode PSi. Processor status register's high-order 8 bits Multiplied Block transfer addressing mode M(S) Contents of memory at address indicated by s pointer nth bit in processor status register's high-order 8 bits Immediate value (8 bits or 16 bits) n n-bit memory contents of memory at address indicated by s pointer nth bit in processor status register's high-order 8 bits pointer nth bit in processor status register's high-order 8 bits pointer nth bit in memory contents of memory at address indicated by s pointer nth bit in memory contents of memory at address indicated by s pointer nth bit in processor status register's high-order 8 bits pointer nth bit in mediate value (8 bits or 16 bits) pointer IMM 16-bit immediate value's high-order 8 bits (Az- pointer Data length selection flag EAR pointer Ffective address's high-orde	
ABS, b, R Absolute bit relative addressing mode PSL Processor status register is improder 8 bits SR Stack pointer relative addressing mode PSL Processor status register is improder 8 bits SR Stack pointer relative addressing mode MK Into tit in processor status register is improder 8 bits BLK Block transfer addressing mode MK MKS Contents of memory accumulation accumulation addressing mode MK Immediate value (8 bits or 16 bits) op Instruction code (Op code) IMM Immediate value (8 bits or 16 bits) n Number of cycles IMM Immediate value (8 bits or 16 bits) Z Zero flag ADu Value of 24-bit address's high-order 8 bits (Arz Z Decimal operation mode flag ADu Value of 24-bit address's high-order 8 bits (Arz X Interrupt disable flag ADu Value of 24-bit address's low-order 8 bits (Arz N Negative flag Imm ADu Value of 24-bit address's high-order 8 bits (Arz N Negative flag Imm ADu Value of 24-bit address's high-order 8 bits (Arz N Negative flag Imm ADu Value of 24-bit address's low-order 8 bits (Arz N Negative flag Imm B-bit Immediate value Norder	
SR Stack pointer relative addressing mode FOR. Stack pointer relative indirect indexed Y addressing mode FOR. Stack pointer relative indirect indexed Y addressing mode (SR), Y Stack pointer relative indirect indexed Y addressing mode M BLK Block transfer addressing mode M(S) Gortents of memory Contents of memory accumulation M op Instruction code (Op code) IMM n Number of cycles IMM instruction code (Op code) IMM Inmediate value (8 bits or 16 bits) n Number of cycles IMM Z Zero flag IMM Z Zero flag ADH Value of 24-bit address's indir-order 8 bits (Ar- D Decimal operation mode flag EAR Y Overflow flag EAR V Overflow flag imm N Negative flag imm V Overflow flag imm N Negative flag imm V Overflow flag imm N Negative flag imm V Overflow flag imm N Negation i - Subtraction i X Multiplication is	1
(SR), Y Stack pointer relative indirect indexed Y addressing mode Microsofter (Contents of memory) Multiplied Blck Blck starsfer addressing mode M(bit n) Multiplied Multiplied accumulation addressing mode M(bit n) nth bit of memory accumulation Instruction code (Op code) IMM n-bit memory's address or contents n Number of cycles IMM n-bit memory's address or contents mmediate value (8 bits or 16 bits) n-bit memory's address's indip-order 8 bits g Instruction code (Op code) IMM n Number of cycles IMM g Instruction code (Cp code) IMM n Number of cycles IMM g Instruction code (Cp code) IMM n Number of cycles IMM g IMM 16-bit immediate value's high-order 8 bits Z Zero flag ADH Z Zero flag ADH V Value of 24-bit address's indip-order 8 bits x Index register length selection flag EAR B Addition imm PL Processor interrupt priority level dd A Multiplication i V Logical AND V <td></td>	
mode mode mode M(S) Contents of memory at address indicated by s pointer BLK Block transfer addressing mode M(S) Contents of memory at address indicated by s pointer Multiplied accumulation addressing mode M(bit n) nth bit of memory op Instruction code (Op code) IMM Immediate value (8 bits or 16 bits) m Number of cycles IMM Immediate value (8 bits or 16 bits) g Number of cycles IMM Immediate value (8 bits or 16 bits) g Number of cycles IMM Immediate value (8 bits or 16 bits) g Number of cycles IMM Immediate value (8 bits or 16 bits) g Zero flag IMM Immediate value (8 bits or 16 bits) Z Zero flag IMM 16-bit immediate value (8 bits or 16 bits) D Decimal operation mode flag AD Value of 24-bit address's high-order 8 bits (4 M Data length selection flag EAR Effective address's bits or 16 bits) m Data length selection flag imm Immediate value N Negative flag imm n-bit immediate value N Negative flag imm N Displacement for DPR (8 bits or 16 bits) Y Overlfow flag in k	
BLK Block transfer addressing mode M(bit n) Multiplied Multiplied accumulation addressing mode M(bit n) n Muttry is address or contents Immediate value (8 bits or 16 bits) op Instruction code (Op code) IMM Immediate value (8 bits or 16 bits) n Number of cycles IMM Immediate value (8 bits or 16 bits) # Number of cycles IMM 16-bit immediate value is low-order 8 bits C Carry flag ADH Value of 24-bit address's ingh-order 8 bits (Arz Z Zero flag ADH Value of 24-bit address's low-order 8 bits (Arz D Decimal operation mode flag EAR Effective address's low-order 8 bits (Arz X Index register length selection flag EAR, Effective address's low-order 8 bits (Arz N Negative flag imm n-bit immediate value n-bit immediate value N Negative flag imm B-bit immediate value Number of transfer bytes, rotation or repeated 0 V Overflow flag in in Number of transfer bytes, rotation or repeated 0 V Overflow flag in in D Num	. ataal
Multiplied Multiplied accumulation addressing mode M(bit n) n hth bit of memory accumulation norm Number of cycles IMM Inh bit of memory n Number of cycles IMM Inmediate value (8 bits or 16 bits) # Number of bytes IMM 16-bit immediate value's low-order 8 bits C Carry flag ADH Value of 24-bit address's high-order 8 bits (Ar- Z Zero flag ADH Value of 24-bit address's high-order 8 bits (Ar- D Decimal operation mode flag EAR Effective address's low-order 8 bits (Ar- X Index register length selection flag EAR_H Effective address's low-order 8 bits V Overflow flag imm n-bit immediate value IPL Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition in, iz source dest N Negative flag imm n-bit immediate value IPL Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition in, iz source dest X Multiplication source dest Operand to specify transfer source V Logical AND	y stack
accumulation Mn n-bit memory's address or contents op Instruction code (Op code) IMM n Number of cycles IMM with the procession IMM g Number of bytes IMM C Carry flag IMM Zero flag ADH Value of 24-bit address's high-order 8 bits Z Zero flag ADH V Decimal operation mode flag EAR D Decimal operation mode flag EAR r Index register length selection flag EAR W Overflow flag imm Data length selection flag EAR V Overflow flag imm N Negative flag imm V Overflow flag imm N Negative flag imm V Overflow flag imm N Negative flag imm V Overflow flag imm Addition i i, iz Subtraction source dest V Logical AND operand to specify transfer destination V Logical OR operand to specify transfer destination Accumulator A Accumulator's high-order 8 bits	
Backinstand Immediate value (3b its or 16 bits) op Instruction code (Op code) IMM Number of cycles IMM # Number of bytes IMM C Carry flag IMM Zero flag ADH Interrupt disable flag ADH D Decimal operation mode flag AD X Index register length selection flag EAR m Data length selection flag EAR MN Negative flag imm N Negative flag imm Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition i Number of registers pushed or pulled - Subtraction source dest V Logical AND v Logical AND	
nn Number of cycles IMMn n-bit immediate value's high-order 8 bits # Number of bytes IMMn 16-bit immediate value's high-order 8 bits C Carry flag ADr 16-bit immediate value's high-order 8 bits Z Zero flag IMM 16-bit immediate value's high-order 8 bits I Interrupt disable flag ADr Value of 24-bit address's high-order 8 bits (Azz D Decimal operation mode flag ADr Value of 24-bit address's low-order 8 bits (Azz X Index register length selection flag EAR Effective address's low-order 8 bits V Overflow flag imm n-bit immediate value n-bit immediate value N Negative flag imm n-bit immediate value n-bit immediate value V Overflow flag imm n-bit immediate value n-bit immediate value N Negative flag imm n-bit immediate value n-bit immediate value PL Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition i, i. Number of registers pushed or pulled - Subtraction source dest Operand to specify transfer source - Division dest Source Opera	
Image: Number of bytes IMM+ # Number of bytes C Carry flag Z Zero flag Interrupt disable flag ADu D Decimal operation mode flag X Index register length selection flag M EAR. Effective address's bits V Overflow flag N Negative flag V Overflow flag N Negative flag N Negative flag N Negative flag N Negative flag IPL Processor interrupt priority level - Subtraction - Logical AND - Logical CR - Novement to the arrow direction - Movement to the arrow direction - Movement to the arrow direction - Accumulator's high-order 8 bits Accumulator A's high-order 8 bits Accumulator A's high-order 8 bits Accumulator A's high-order 8 bits Accumulator A'	
# Number of bytes IMM. 16-bit immediate value's low-order 8 bits C Carry flag ADH Value of 24-bit address's high-order 8 bits (Az- Zero flag ADM Value of 24-bit address's middle-order 8 bits (Az- D Decimal operation mode flag ADL Value of 24-bit address's middle-order 8 bits (Az- D Decimal operation mode flag EAR Effective address's low-order 8 bits (Az- m Data length selection flag EAR Effective address's low-order 8 bits (Az- W Overflow flag imm 8-bit immediate value V Overflow flag imm 8-bit immediate value Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition i Number of transfer bytes, totation or repeated of - Subtraction i, ½ Number of transfer bytes, totation or repeated of × Multiplication source Operand to specify transfer source √ Logical AND Operand to specify transfer destination ∧ Logical AND √ Logical AND √ Logical OR √ Logical AND ∧	
Carry flag AD _H Value of 24-bit address's high-order 8 bits (Acz Z Zero flag AD _H Value of 24-bit address's high-order 8 bits (Acz I Interrupt disable flag AD _H Value of 24-bit address's involter 8 bits (Acz D Decimal operation mode flag EAR Effective address's low-order 8 bits (Acz X Index register length selection flag EAR Effective address's low-order 8 bits W Overflow flag imm B-bit immediate value bits V Overflow flag imm b-bit immediate value bits N Negative flag imm b-bit immediate value bits PL Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition i Number of registers pushed or pulled - Subtraction source Operand to specify transfer source - Division dest Operand to specify transfer source - Negation - Negation - Negation - Accumulator's low-order 8 bits - Movement to the arrow direction - - Movement to the arrow direction - - Accumulator A bits -	
ZZero inagADMValue of 24-bit address's middle-order 8 bits (i , Value of 24-bit address's middle-order 8 bits (i , Value of 24-bit address's middle-order 8 bits (i , Value of 24-bit address's middle-order 8 bits (i , Value of 24-bit address's middle-order 8 bits (i , EARxIndex register length selection flagEAREffective address's high-order 8 bitsxIndex register length selection flagEAREffective address's high-order 8 bitsVOverflow flagimm8-bit immediate valueNNegative flagimmn-bit immediate valueIPLProcessor interrupt priority levelddDisplacement for DPR (8 bits or 16 bits)+AdditioniNumber of transfer bytes, rotation or repeated 0-SubtractionsourceOperand to specify transfer destination \wedge Logical ANDdestOperand to specify transfer destination \vee Logical CRdistor or directiondest \leftarrow Novement to the arrow directiondestOperand to specify transfer destination \leftrightarrow ExchangeAccumulator A's high-order 8 bitsdestAccumulator A's high-order 8 bitsAccumulator A's high-order 8 bitsdestAccumulator A's high-order 8 bitsBAccumulator B's high-order 8 bitsBAccumulator B's high-order 8 bitsAccumulator B's high-order 8 bits	A23-A16)
Interrupt Disable hag AD. Value of 24-bit address's low-order 8 bits (Ar- D Decimal operation mode flag EAR Effective address's low-order 8 bits (Ar- x Index register length selection flag EAR Effective address's low-order 8 bits (Ar- m Data length selection flag EAR Effective address's low-order 8 bits W Overflow flag imm 8-bit immediate value IPL Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition i Number of transfer bytes, rotation or repeated 0 - Subtraction in, iz Number of transfer bytes, rotation or repeated 0 × Multiplication source Operand to specify transfer destination ^ Logical AND source Operand to specify transfer destination ^ Logical CR - Negation - - Negation - - Operand to specify transfer destination ^ Logical AND - - Operand to specify transfer destination - Novement to the arrow direction - - - <	
x Index register length selection flag EAR Effective address's (16 bits) m Data length selection flag EAR Effective address's (16 bits) V Overflow flag imm 8-bit immediate value N Negative flag imm 8-bit immediate value IPL Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition i Number of transfer bytes, rotation or repeated of Operand to specify transfer source - Subtraction source Operand to specify transfer destination × Logical AND dest Operand to specify transfer destination ∨ Logical OR Operand to specify transfer destination ✓ Logical AND ∨ Logical OR ✓ Logical AND ∨ Logical exclusive OR Absolute value Negation Accumulator's high-order 8 bits Accumulator A Accumulator A is high-order 8 bits Accumulator A's high-order 8 bits Accumulator A's high-order 8 bit	A7—A0)
mm Data length selection flag EAR. Effective address's low-order 8 bits V Overflow flag imm 8-bit immediate value N Negative flag imm n-bit immediate value Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition i Number of transfer bytes, totation or repeated of - Subtraction ii, iz Number of transfer bytes, totation or repeated or × Multiplication source Operand to specify transfer source · Logical AND source Operand to specify transfer source ∨ Logical OR dest Operand to specify transfer source ∨ Logical CR i i i ∨ Logical OR dest Operand to specify transfer source ∨ Logical CR i i i · Movement to the arrow direction i i i · Movement to the arrow direction i i i · Accumulator A bits Accumulator A bits i i Accumulator A is high-order 8 bits Accumulator A's high-order 8 bits i i Accumulator A's high-order 8 bits Bit Accumulator A's	
V Overflow flag imm 8-bit immediate value N Negative flag imm n-bit immediate value IPL Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition i Number of transfer bytes, rotation or repeated of - Subtraction in, iz Number of transfer bytes, rotation or repeated of × Multiplication source Operand to specify transfer opulled × Logical AND dest Operand to specify transfer destination × Logical QR dest Operand to specify transfer destination × Logical exclusive OR dest Operand to specify transfer destination × Logical exclusive OR dest Operand to specify transfer destination × Logical exclusive OR dest Operand to specify transfer destination × Movement to the arrow direction dest Operand to specify transfer destination ↔ Rocumulator's high-order 8 bits Accumulator A's high-order 8 bits Accumulator A's high-order 8 bits Accumulator A's high-order 8 bits Accumulator A's high-order 8 bits H Accumulator B's high-order 8 bits B Accumulator B's high-order 8 bits H Accumulator B's high-order 8 bits	
N Negative flag imm n-bit immediate value IPL Processor interrupt priority level dd Displacement for DPR (8 bits or 16 bits) + Addition i Number of transfer bytes, rotation or repeated (- Subtraction in, i Number of registers pushed or pulled X Multiplication source Operand to specify transfer source ↓ Logical AND dest Operand to specify transfer destination ∨ Logical OR dest Operand to specify transfer destination ↓ Absolute value	
Imple Processor interrupt priority level intervent of the processor interrupt priority level idt Displacement for DPR (8 bits or 16 bits) + Addition i Number of transfer bytes, totation or repeated of Number of transfer bytes, totation or repeated or Source - Subtraction is, iz Number of transfer bytes, totation or repeated or Division ★ Multiplication source Operand to specify transfer source ↓ Logical AND dest Operand to specify transfer source ∨ Logical OR dest Operand to specify transfer destination ✓ Logical exclusive OR dest Operand to specify transfer destination → Movement to the arrow direction dest Operand to specify transfer destination ← Movement to the arrow direction dest dest dest ← Movement to the arrow direction dest dest dest ← Accumulator's low-order 8 bits dest dest dest Accumulator A's high-order 8 bits Accumulator A's high-order 8 bits dest dest Accumulator A's high-order 8 bits Accumulator A's high-order 8 bits dest dest Bit Accumulator Bits Accumulator Bits dest dest	
+ Addition i Number of transfer bytes, rotation or repeated of Number of transfer bytes, rotation or repeated of Number of registers pushed or pulled × Multiplication source ÷ Division dest ∧ Logical AND dest ∨ Logical AND dest ∨ Logical OR dest √ Logical OR dest → Movement to the arrow direction dest ← Movement to the arrow direction dest ← Accumulator's low-order 8 bits dest Accumulator A's high-order 8 bits dest dest Accumulator A's high-order 8 bits dest dest B Accumulator B's high-order 8 bits dest	
- Subtraction it, i₂ Number of registers pushed or pulled × Multiplication source Operand to specify transfer source → Division dest Operand to specify transfer destination ∧ Logical AND dest Operand to specify transfer destination ∨ Logical exclusive OR dest Operand to specify transfer destination ↓ Absolute value dest Operand to specify transfer destination → Movement to the arrow direction dest dest ← Movement to the arrow direction dest dest ← Accumulator's high-order 8 bits dest dest Accumulator's high-order 8 bits dest dest dest Accumulator A's high-order 8 bits dest dest dest Accumulator A's high-order 8 bits dest dest dest Accumulator A's high-order 8 bits dest dest dest Bit Accumulator Bits dest dest dest	
X Multiplication source Operand to specify transfer source	ed operation
A Division dest Operand to specify transfer destination A Logical AND V Logical exclusive OR III Absolute value — Negation → Movement to the arrow direction ← Rovement to the arrow direction ← Accumulator's low-order 8 bits Accumulator A Accumulator A is high-order 8 bits Accumulator A's high-order 8 bits Ai Accumulator A's high-order 8 bits Ac Accumulator A's high-order 8 bits Bit Accumulator B bits	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
∨ Logical OR ∀ Logical exclusive OR Absolute value → Negation → Movement to the arrow direction ← Movement to the arrow direction ← Movement to the arrow direction Acc Accumulator Acc Accumulator AccH Accumulator A bits A Accumulator A AH Accumulator A's high-order 8 bits AL Accumulator A's high-order 8 bits B Accumulator B bits BH Accumulator B bits	
\forall Logical exclusive OR $ $ Absolute value $$ Negation \rightarrow Movement to the arrow direction \leftarrow Movement to the arrow direction \leftarrow Exchange Acc Accumulator Accumulator A comulator's low-order 8 bits Acc Accumulator A Ai Accumulator A's low-order 8 bits Ai Accumulator A's high-order 8 bits Bi Accumulator B bits Bi Accumulator B bits	
Image: Provide the second state of	
Negation \rightarrow Movement to the arrow direction \leftarrow Movement to the arrow direction \leftarrow Exchange Accumulator Exchange Acc Accumulator's high-order 8 bits Accumulator A Accumulator A AH Accumulator A's high-order 8 bits AL Accumulator A's high-order 8 bits B Accumulator B BH Accumulator B bits	
→ Movement to the arrow direction ← Movement to the arrow direction ⇔ Exchange Acc Accumulator Acc Accumulator Acc Accumulator's high-order 8 bits Acc Accumulator A A Accumulator A AH Accumulator A's high-order 8 bits AL Accumulator A's high-order 8 bits B Accumulator B BH Accumulator B's high-order 8 bits	
 ← Movement to the arrow direction ← Exchange Accumulator Accumulator's high-order 8 bits Accumulator A's high-order 8 bits Bit Accumulator B's high-order 8 bits 	
Exchange Acc Accumulator's high-order 8 bits AccL Accumulator's low-order 8 bits A Accumulator A A+ Accumulator A's high-order 8 bits AL Accumulator A's high-order 8 bits B Accumulator B BH Accumulator B's high-order 8 bits	
Acc Accumulator Acc+ Accumulator's high-order 8 bits AccL Accumulator is high-order 8 bits A Accumulator A's high-order 8 bits AH Accumulator A's high-order 8 bits AL Accumulator B BH Accumulator B is high-order 8 bits	
AccH Accumulator's high-order 8 bits AccL Accumulator's low-order 8 bits A Accumulator A AH Accumulator A's high-order 8 bits AL Accumulator A's high-order 8 bits B Accumulator B BH Accumulator B's high-order 8 bits	
AccL Accumulator's low-order 8 bits A Accumulator A's high-order 8 bits AH Accumulator A's high-order 8 bits Accumulator A's low-order 8 bits B Accumulator B's high-order 8 bits BH Accumulator B's high-order 8 bits	
A Accumulator A AH Accumulator A's high-order 8 bits AL Accumulator A's low-order 8 bits B Accumulator B BH Accumulator B's high-order 8 bits	
AH Accumulator A's high-order 8 bits AL Accumulator A's low-order 8 bits B Accumulator B's high-order 8 bits BH Accumulator B's high-order 8 bits	
AL Accumulator A's low-order 8 bits B Accumulator B BH Accumulator B's high-order 8 bits	
B Accumulator B B _H Accumulator B's high-order 8 bits	
B _H Accumulator B's high-order 8 bits	

7900 Series Machine Instructions

Symbol	Function	Operation	IN	1D		MM	Т	A		,	DIF		Ac DIF	_		_	-	-	_	_	(P	P	<u>v</u> 1.	ייח	R), Y	<u>d</u>	חיר	<u>, l</u>	/D'
Cymbol	1 diledon	length (Bit)			ор		‡ 0																						
ABS (Note 1)	Acc← Acc	16/8					E 8 E	14																					Ī
ABSD	E← E	32					3	1 5	2														T	Ī					Ť
ADC (Notes 1 and 2)	Acc←Acc + M + C	16/8			31 87 B1	3 3				21 8A A1	5 7	1	21 (38					80			81		8	8	3 3 D 3	82		8	9
ADCB (Note 1)	Accl←AcoL + IMM8 + C	8			87 31 1A B1	33	5			8A			зB					80			81		8	8		82		8	9
ADCD	E←E + M32 + C	32			1A 31 1C	4 6	5			21 9A	7		21 I 9B	в 3				21 90	9	3	21 91	10	3 2	:1 1 18	03	21 92	11 :	3 2	11 9
ADD (Notes 1 and 2)	Acc←Acc + M	16/8			26 81 26	1 2			.		3 4	3 1	2B 4 31 ± 2B	2 5 3				20		3	21		2 3 9	8	73	11 22 91 22		3 1 2 3 9 [.] 2!	19
ADDB (Note 1)	Accl←AccL + IMM8	8			29 29 81 29	12				24			20					20			21			.0		22			3
ADDD	E←E + M32	32			+ +	3 5	5			9A	6	2	9B :	7 2	2			11 90	9	3	11 91	10	3 1 9	11	03	11 92	11 3	3 1 9	11
ADDM (Note 3)	M←M + IMM	16/8					Ī			51 03	7	4												Ī					T
ADDMB	M8←M8 + IMM8	8								51 02	7	4																	T
ADDMD	M32←M32 + IMM32	32								51 83	10	7													T				T
ADDS	S←S + IMM8	16			31 0A	2 3	5																+	t	t			+	t
ADDX	X←X + IMM (IMM = 0 to 31)	16/8			01	2	2																+		t			+	t
ADDY (Note 4)	Y←Y + IMM (IMM = 0 to 31)	16/8			01 20 +	2 2																	+	t	t				t

		Т.			J		_	J	_			Т.			Л	 						bde		DIF		_		 _	_	_	1.0			Л						1	es:	-1.	े जन		IS T	Eg L	JIS T	
	BS n i			S, 1 n #						AB n											S Op				λ, b, n					R 1#), Y		BL n	K #	IA/	4 1 #	10 	비 키	d I			0 4		2 0 1	†1	1 7
·r			·r															- 1-	 		 	 -	 	 - r					-			-		-,			 	- L		•	•		/ •	• •	•	•	Z	
																																							•	•	•	о \	/	•••		•	Z	2
1	5	4 2 8 4 A	:1 (F	3	4 2 8	16	6	4	A1	8	5	2 8	1 7 D	7	5									_				2 8 A	1 6 3		3 2 8 3 A	11	1 3	3					•	•	• 1	4 \	/	• •		•	2	2
E		8	F		8	16			8C			8	D											_				8	3		8	4						,	•	•	• 1	4 \	/ ·	• •	•	•	z	-
1 E	7	4 2	:1 8 F	3	4 2 9	16	8	4	21 9C	8	5	2 90	1 9 D	9 1	5													2	18	: :	329	1 11	1 3						•	•	• 1	4 \	/	• •				
31 4	33	3 2 4 8	1	4 : 5 :	3 1 2 4 9	1	5	4	91	5	5	9	1 6	; ; ;	5		+							_				9 9	3 1 5		3 1 2 3 9	4 1 8							•	•	• 1	4 \	/	• •		•	2	
E		2	F		2	!6			20			21	D										_	_				2	3		2	4						,	•	•	• 1	v 1	/ ·	• •	•	•	2	
E	5 3	3 9	F	7 ;	3 1	11 96	8	4	11 9C	8	5	1 90	1 S D	9 1	5								_					1	18	1	3 1 9	1 11	1 3					,	•	•	• 1	v /	/ ·	• •	•	•	-	2
51)7	7	5																					_	_															•	•	• 1	N 1	/	• •		•		
51)6	7	5																					_	_														,	•	•	• 1	4 \	/ ·	• •	•	•	2	
51 1 37	0	8																																					•	•	• 1	۷١	V	• •		•		
					1												+											$\left \right $	$\left \right $										•	•	• 1	4 \	/	•		•	Z	
																																						,	•	•	• 1	1	/ ·	•	•	•	2	
		+			+												+						_				+	+					+			\vdash		+	•	•	• 1	۷ ۱	/	•		•••	Z	

		Operation		,					,									Лос	_	_	_		,			_		_	_	_	-
Symbol	Function	length (Bit)	/IP		IM ol r	M #	op	A	#							DIR n) L(E OP		
AND (Notes 1 and	Acc—Acc \M	16/8		6	-	1 2	PP		-	+	3 2	+	+	1 2	+		m		6	3		-	3	-	7	3	+	8 3	-	9	-
2)				8		2 3			8	31 4 6A	4 3	8 8 6	1 5 B	3					-	3		7	3	-+	7	3	-	3 3	91 69	9	3
ANDB (Note 1)	Accl←Accl ∧IMM8	8		2	11 2	1 2 2 3																									
ANDM (Note 3)	M←M∧IMM	16/8								51 63	74	ţ																			
ANDMB	M8←M8∧IMM8	8								51 62	7 4	1																			
ANDMD	M32←M32∧IMM32	32							83	51 1 3	0 7	7																			
ASL (Note 1)	Arithmetic shift to the left by 1 bit m = 0 Acc or M16 $C_{1} \leftarrow D_{1} \ldots D_{0} \leftarrow 0$ m = 1 Acc. or M8 $C_{1} \leftarrow D_{2} \ldots D_{0} \leftarrow 0$	16/8					03 81 03	2	1 2	21 :)A	7 8	3 2 0	1 8 B	3																	
ASL #n (Note 4)	Arithmetic shift to the left by n bits (n = 0 to 15) m = 0 A $C_{1} \leftarrow b_{15} \dots b_{26} \leftarrow 0$ m = 1 $C_{1} \leftarrow b_{17} \dots b_{26} \leftarrow 0$	16/8					40	mm																							
ASLD #n (Note 4)	Arithmetic shift to the left by n bits (n = 0 to 31) E $C \leftarrow b_{31}b_{0} \leftarrow 0$	32					D1 40 + imi	8 + mm	2																						
ASR (Note 1)	Arithmetic shift to the right by 1 bit m = 0 Acc or M16 m = 1 Acc. or M8 m = 1	16/8						1		21 IA	7	3 2 4		3																	
ASR #n (Note 4)	Arithmetic shift to the right by n bits (n = 0 to 15) m = 0 A \rightarrow D tsbo \rightarrow C m = 1 AL \rightarrow D tbo \rightarrow C	16/8					80	6 + mm																							

AL	3S	/	AB	S,	Х	AE	35	, Y		AB	3L	/	AB	L,	Х	(/	١B	S)	L(AE	3S)) (A	BS	S, X	3	ST	1oc FK	Τ	RE	L	DI	IR, I	o, R	AB	S, I	b, R		SF	2	(SI	R),	Y	В	LK		M	AA	1(8	7	6	5	tu: 4	3	2	1
n qc	n ‡	ŧ c	op	n	#	ор	n	#	op	o r	1 #	# c	р	n	#	ор	n	#	op	n	#	0	p r	1 #	‡ 0	ρı	n #	ŧ o	p r	n #	0	n	#	op	n	#	ор						op	n	# 0	p	n #	ŧ	IP	L	Ν	۷	m	х	D	I	Z
E 3	3	3	6F	4	3	11 66	5	4	11 60	5	5		11 5D	6	5									ſ	ſ	ſ	ſ										11 63	5	3	11 64	8	3		ſ				ŀ	•	ŀ	Ν	•	•	•	•	•	z
81 4 E	4 4	1 8	81 6F	5	4	91 66	5	4	91 6C	1 5	5 5	5 9	91 6D	6	5																						91 63	5	3	64 91 64	8	3															
			JI			00			00	,												T															00			04								•	•	•	N	•	•	•	•	•	Z
51 7 57	7 5	5																																														•	•	•	N	•	•	•	•	•	Z
51 7	7 5																																																		N		•		•		
56																																																		•	N	•	•	•	•	•	
51 1) 57	0 8	3																																														•	•	•	N	•	•	•	•	•	2
21 7 E	7	4 2	21 DF	8	4																																											•	•	•	N	•	•	•	•	•	Z
																																																•	•		N	•	•	•	•	•	
																																																•	•	•	N	•	•	•	•	•	
21 7 E	7 4	4 2 4	21 4F	8	4																																											•	•	•	И	•	•	•	•	•	2
																																													+			•	•	•	N	•	•	•	•	•	

				_	_	_		_	_					Ad	dre	ess	ing	g N	100	de	s	_	_	_	_	_	_			_	_	_
Symbol	Function	Operation length (Bit)	IN				1M		А			١R																			(DIR	
ASRD #n (Note 4)	Arithmetic shift to the right by n bits (n = 0 to 31)	32	ор	n #	# 0	pı	n #	D1 80	n 8 +	2	op	n	¥ 0	p n	#	op	n	#	op	n	#	op	n	# 0	op	n	# 0	op	n #	t of	> n	#
								im																								
BBC (Note 3)	if $M(bit n) = 0$ then $PC \leftarrow PC + cnt + REL (-128 to +127)$ (cnt: Number of bytes of instruction)	16/8																														
BBCB	if M8(bit n) = 0 then $PC \leftarrow PC + cnt + REL$ (-128 to +127) (cnt: Number of bytes of instruction)	8																														
BBS (Note 3)	if $M(bit n) = 1$ then $PC \leftarrow PC + cnt + REL (-128 to +127)$ (cnt: Number of bytes of instruction)	16/8																														
BBSB	if M8(bit n) = 1 then $PC \leftarrow PC+cnt+REL$ (-128 to +127) (cnt: Number of bytes of instruction)	8																														
BCC	if C = 0 then PC←PC + 2 + REL (−128 to +127)	-																														
BCS	if C = 1 then PC←PC + 2 + REL (−128 to +127)	-																														
BEQ	if Z = 1 then PC←PC + 2 + REL (−128 to +127)	-																														
BGE	if N \forall V = 0 then PC \leftarrow PC + 2 + REL (–128 to +127)	_																														
BGT	if Z = 0 and N \forall V = 0 then PC \leftarrow PC + 2 + REL (–128 to +127)	-																														
BGTU	if C = 1 and Z = 0 then $PC \leftarrow PC + 2 + REL$ (–128 to +127)	-																														
BLE	if Z = 1 or N \forall V = 1 then PC \leftarrow PC + 2 + REL (–128 to +127)	-																														
BLEU	if C = 0 or Z = 1 then PC \leftarrow PC + 2 + REL(-128 to +127)	-																														
BLT	if N∀V = 1 then PC←PC + 2 + REL (−128 to +127)	_																														

ΔF	3S	A	RS	×	A	BS		A	Δ	BL		Δ	B		x	0	AR	S)	T	(A							ST	od K	es I	RE		יח	Rh	R	AF	IS I	h F	2	SF	2	6	SR)	Y		3LI	$\langle \rangle$	Ν	1AJ		10	9	8	7	6	Sta	tus 4	3	291 2	1
p r) 1 #	00	o n	#	0), 1 #	+ + (- pl	n	#	0	p	n	#	op	n	#	0	.,л р	n	-) #	op	n	~) #	or	n	#	ор	n	#		n	, iX #	0	n 10,1	, n #	0	o n	、 #	or	2 n	, 1	ор	n	#	op	n	#	10	IPI		/N	V	m	X	3 D	4	7
T	t	ľ	ſ		Ī	T	t	t	·					t				ſ	t		t		Ì															Ī	t			t								•	•	•	N	•	•	•	•	•	2
																																41 5A	9	5	4' 5E	9	6													•	•	•	•	•	•	•	•	•	
								T																								52	8	4	57	8	5													•	•	•	•	•	•	•	•	•	
																																41 4A	9	5	4 [.] 4E	1 9	6													•	•	•	•	•	•	•	•	•	•
																																42	8	4	47	8	5													•	•	•	•	•	•	•	•	•	
								+						+						+									90	6	2																			•	•	•	•	•	•	•	•	•	
								+												+			-						BO	6	2																			•	•	•	•	•	•	•	•	•	
																													FO	6	2																			•	•	•	•	•	•	•	•	•	-
																													CO	6	2																			•	•	•	•	•	•	•	•	•	
																													80	6	2																			•	•	•	•	•	•	•	•	•	,
																													40	6	2																			•	•	•	•	•	•	•	•	•	
																													AO	6	2																			•	•	•	•	•	•	•	•	•	
						T																							60	6	2																			•	•	•	•	•	•	•	•	•	
+	+	+	\mid			+	+	+				╞	\dagger	+	_			╞	+	+	+					$\left \right $		$\left \right $	E0	6	2	\mid	\mid	$\left \right $	╞	$\left \right $	╞		╞	$\left \right $	╞	$\left \right $								•	•	•	•	•	•	•	•	•	ł

			Γ												Ac	ldr	es	sin	ng	M	od	le	s												-
Symbol	Function	Operation	IN	ИP		IN	ЛМ	Τ	A	١	Τ	DI	IR	[DIR	, X	1	DIR	- 2, `	Y	(C	DIF	R)	(D	DIR,	, X)	(C	DIR), Y	L(DI	R)	L(C	DIR)	, Y
		length (Bit)	ор	n	# 0	op	n #	0	p I	n #	c	p r	n #	‡ o	p r	n #	0	p r	h ł	ŧ c	р	n	#	op	n	#	op	n	#	ор	n	#	ор	n	#
BMI	if N = 1 then PC \leftarrow PC + 2 + REL (–128 to +127)	-																																	
BNE	if Z = 0 then PC←PC + 2 + REL (−128 to +127)	-																																	
BPL	if N = 0 then PC←PC + 2 + REL (−128 to +127)	-																																	
BRA/BRAL (Note 5)	$\begin{array}{l} PC{\leftarrow}PC \leftarrow \text{on } t + REL \\ (BRA; -128 \ \text{to } +127, \\ BRA; -32767) \\ (cnt: Number of \ bytes \ of \ instruction) \\ PG{\leftarrow}PG + 1 \\ (When carry \ occurs) \\ PG{\leftarrow}PG + 0 \\ (When borrow \ occurs) \end{array}$	-																																	
BRK (Note 6)	$\begin{array}{l} PC\!$	_	00 1	15	2																														
BSC (Note 7)	if A(bit n) or M(bit n) = 0 (n = 0 to 15), then $PC \leftarrow PC + cnt + REL (-128 to +127)$ (cnt: Number of bytes of instruction)	16/8						0 Ai + n	D	7 3			1 4	1																					
BSR	(S)←PC PC←PC + 2 + REL (−1024 to +1023)	-																																	
BSS (Note 7)	if A(bit n) or M(bit n) = 1 (n = 0 to 15), then PC \leftarrow PC + cnt + REL (-128 to +127) (cnt: Number of bytes of instruction)	16/8						0 80 + n		7 3	8 7 8 + n		1 4	ł																					
BVC	if V = 0 then PC←PC + 2 + REL (−128 to +127)	-																																	
BVS	if V = 1 then PC←PC + 2 + REL (−128 to +127)	-																																	
				-	-	-		-	-	-	-		-	+	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-

		_				Т		_		_				Т				Т														de			_			_		_		Т	 _	—				_	 											s r		
AE	3S ה⊺	#	AE	S	, > [#	4	۹B اما	S, 	Y #			BL	#	4	\B م	5L,	X #	6	(A)	"I BS	5) #		AE	3S T) ((AB	n S	X) #	0'	S1	K	#	R J	EL	#	UIF	≺,b n	, R #	AB	S, I	b, F		R	#	SF	۲),	Y # .				IA/ n	۱ #	10	9 IPl	8	7	6	5	4	3 D	2	1
		#	οp		"		P		ff		P		#		P				γP		#	υμ			*	γµ		#	4					6		op		"			"			# 0	γP			op	#	op		"	•	•	•		•		•		•	Т
																																0	00	6	2	_																	•	•	•	•	•	•	•	•	•	
																																1	0	6	2																		•	•	•	•	•	•	•	•	•	
																															T	2	0	5	2							ſ											•	•	•	•	•	•	•	•	•	
																																4	17	5	3																											
																																																					•	•	•	•	•	•	•	•	1	
11	0	5																																																			•	•	•	•	•	•	•	•	•	
																																	8 F	7	2																		•	•	•	•	•	•	•	•	•	
'11 :0 ⊦ 1	0	5																																																			•	•	•	•	•	•	•	•	•	
																																5	10	6	2																		•	•	•	•	•	•	•	•	•	
	I						I																									7	0	6	2								Ĩ	Ĩ									•	•	•	•	•	•	•	•	•	

			Γ							_	_	_	_	_	A	dd	re	ssi	ng	Μ	od	es				_		_	_	_		_	_	٦
Symbol	Function	Operation length (Bit)		M			IMI			А			DIF															R), 1						
			op	n	#	10	p n	#	-	-	-	-	-	-	ор	n	#	op	n	# (pp I	n	# 0	p I	n i	# 0	p I	n #	ор	n	#	ор	n	#
CBEQ (Notes 1 and 3)	+127)	16/8							A6 81		3	41 6A	9	5																				
	(cnt: Number of bytes of instruction)				L	+			A6							4	_	_	4	4	+	4	4	+	+	4	+			Ц				_
CBEQB (Note 1)	if Acc. = IMM8 or M8 = IMM8 then PC \leftarrow PC + cnt + REL (-128 to +127) (cnt: Number of bytes of instruction)	8							A2 81 A2	6 7	3	62	8	4																				
CBNE (Notes 1 and 3)	if Acc \neq IMM or M \neq IMM then PC \leftarrow PC + cnt + REL (-128 to +127) (cnt: Number of bytes of instruction)	16/8							B6 81		3	41 7A	9	5																				
CBNEB (Note 1)	if Acc \neq IMM8 or M8 \neq IMM8 then PC \leftarrow PC+cnt+REL(-128 to	8				+			B6 B2	6	3	72	8	4		+			+	+	t		+			+	t	t						
	+127) (cnt: Number of bytes of instruction)								81 82	7	4																							-
CLC	C←0	-	14	1	1																													
CLI	l←0	-	15	3	1																													_
CLM	m←0	-	45	3	1	1																												_
CLP	$PS_{L}(bit n) \leftarrow 0$ (n = 0 to 7. Multiple bits can be specified.)	-				96	3 4	2																										_
CLR (Note 1)	Acc←0	16/8								1	1 2														T		Ī							_
CLRB (Note 1)	Acc⊥←0016	8				$\left \right $			54 44	1	1					+				+	+					+	T	t						
									81 44	2	2																							
CLRM	M←0	16/8										D2	5	2																				
CLRMB	M8←00 ₁₆	8				T						C2	5	2													Î							_
CLRX	X←0	16/8	E4	1	1	T																					Ì							_
CLRY	Y←0	16/8	F4	1	1	T															T						T							-

AI	BS	3	A	B	S.	Х	A	BS	;, '	Y	A	٨B	3L		A	BL		x	()	٩B	S)	L	.(A			dd (A								EL	-	DI	R, I	D, F	A	BS.	, b,	R		SR		(5	R)), Y	1	BL	K	Т	M	٩A		Pro		в	7	6	5	4	3	2	T1	1
2	n	#	op	p	n	#	op	r	1	¥	op	r	ī	#	op	1	Ì	#	op	n	#	1 0	p	n	#	op	n i	#	ор	n	#	¥ c	рр	n	#	op	n	#	0	p	n	#	op	n	#	ot	'n	#	0	p r	1 #	ŧ o	рI	n	#		۶L		N	V	m	х	D	ī	z	7
																																																								•	•	•	N	v	•		•			
																																																								•	•	•	N	v	•	•	•	•	z	2
																															Ī																									•	•	•	N	v	•	•	•	•	z	2
																											Ī													Ī										ľ						•	·	•	N	v	•	•	•	•	z	-
																															Ī																									•		•	•	•	•	•	•	•	•	
																											T													T																•		•	•	•	•	•	•	0	•	
													t														t				T	T								t																•	·	•	•	•	0	•	•	•	•	
																															Ī																									•	•	•	Sp be		cifi	ed	l fl: "C	l ag)."	1	
																						T									T	T																								•		•	0	•	•	•	•	•	1	
																															l																									•	•	•	0	•	•	•	•	•	1	
5	5	3																				T					ĺ				Ī									ĺ																•	•	•	•	•	•	•	•	•	•	
5	5	3																																																l			ĺ			•	·	•	•	•	•	•	•	•	•	
																																																								•	•	•	0	•	•	•	•	•	1	
													I																		Ī									Ī																•	•	•	0	•	•	•	•	•	1	

			Г												Ad	dr	ess	sin	g	Mo	ode	es									_	-	-	
Symbol	Function	Operation length (Bit)		MF			MN			A			IR		DIR																			R), Y
		iongin (bit)	-	_		ор	n	# 0	р	n	# c	p	n ‡	# 0	p n	#	0	p n	#	0	p r	n #	# 0	р	n	#	op	n	# 1	эр	n	# 0	ıρ	n #
CLV	V←0	-	65	1	1																													
CMP (Notes 1 and 2)	Acc – M	16/8				46 81 46		_			F	14	1	2 4 3 8 4						40)		4	41		3	11 48 91 48		3	42		4 3 9	49	9 3 9 3
CMPB (Note 1)	Acc _L – IMM8	8				38																												
CMPD	E – IMM32	32				3C	3	5			В	A 6	5 2	2 B	B 7	2				1 [.] Bi	19	9 3	3 1 B	11 31	10	3	11 B8	10	3	11 1 32	11	3 1 B	11	2 3
CMPM (Note 3)	M – IMM	16/8									5	1 8 3	5 4	4																				
СМРМВ	M8 – IMM8	8									2		5	4																				
CMPMD	M32 – IMM32	32									5 A	1 3	7	7																				
CPX (Note 8)	X – M	16/8				E6	1	2			2	2	3	2																			T	
CPY (Note 8)	Y-M	16/8				F6	1	2			3	2 3	1 2	2																				
DEBNE (Note 4)	$\begin{array}{l} M{\leftarrow}M-IMM(IMM=0\ to\ 31)\\ \text{if}\ M\neq0,\ \text{then}\ PC{\leftarrow}PC+cnt+REL\\ (-128\ to\ +127)\\ (cnt:\ Number\ of\ bytes\ of\ instruction) \end{array}$	16/8									A	;11 0 +		4																				
DEC (Note 1)	$Acc \leftarrow Acc - 1$ or $M \leftarrow M - 1$	16/8							33 81 33		19 2	2	6	2 4 9	I 8	8 3																		
DEX	X←X – 1	16/8	E3	1	1																													
DEY	Y ← Y − 1	16/8	F3	1	1			Ĩ																	Ī			Ī		Ī				
DIV (Notes 2, 9, and 10)	A (quotient) ← (B, A) ÷ M B (remainder)	16/8				31 E7	15	3			2 E	11 A	63	3 2 E	1117 B	7 3				2 El	1 11 D	3 3	3 2 E	21 ⁻ E1	19	3	21 E8	19	3	21 2 E2	20		21 2	1 3

																							A	do	dre	es	siı	٦g	Μ	10	de																								Ρ	ro	се	ss	or 3	Sta	atu	IS I	reg	ist	ter
ABS		AB								٩B													3S											-									SI			SR				Lł			МА			9	8	7	6	5	4	3	2	1	0
op n 🕴	#	ор	n	#	op	p r	1	#	op	r	١	#	op		n	#	ор	ſ	1	# 1	ор	n	#	0	р	n	#	op	r	1	# (эр	n	#	0	1	1	¢ (р	n	#	op	n	1	f 0	p I	n	#	op	n	#	ор	n	#		IP	L	Ν	۷	m	х	D	I	Z	Ċ
																																																							•	•	•	•	0	•	•	•	•	•	•
4E 3 3					46		L		4C		L		4D											ľ						t								t				43			4										•	•	•	N	v	•	•	•	•	z	. (
81 4 4 4E	4	81 4F	5	4	91 48	6	4	4	91 4C	5	ę	5	91 4D	6	5	5																										91 43	5	3	4	4	3	3							•	•		N	v	•	•	•		z	2 (
BE 6	3	BF	7	3	11 B6	8	4	4	11 BC	8		5	11 BC	9	9	5																										11 B3	8	3	B	11 14	1	3							•	•	•	N	v	•	•	•	•	z	(
51 5 27	5																													Ī								Ī								T									•	•	•	N	v	•	•	•	•	z	C
51 5 26	5														+																															+									•	•	•	N	v	•	•	•	•	z	C
51 7 A7	8																													T																									•	•	•	N	v	•	•	•	•	z	: 0
41 4 2E	4																																																						•	•	•	N	v	•	•	•	•	z	. (
41 4 3E	4																																							_															•	•	•	N	v	•	•	•	•	z	c
D1 11 4 E0 +	5																																																						•	•	•	•	•	•	•	•	•	•	•
97 6 3	3	41 9F	8	4															ſ											$\left \right $																+		+							•	•	•	N	•	•	•	•	•	z	
																														t																									•	•	•	N	•	•	•	•	•	z	
																																														+									•	•	•	N	•	•	•	•	•	z	
21 16 4 EE	4	21 EF	17	4	21 E6	11	7	4	21 EC	17	7	5	21 E[11	8	5														+				_								21 E3	17	7 3	2	12	0	3							•	•	•	N	v	•	•	•	1	z	c

													A	٨do	dre	ssi	ng	Mo	od	es										-	
Symbol	Function	Operation length (Bit)	IM			MN			A		DI					DI															R), Y
		iengui (Dil)	op 1	n #	f op	n	#	op	nŧ	# 0	p r	n #	р	n	#	ор	n	# 0	р	n ‡	ŧ o	p	n #	ор	n	#	ор	n	₿ o	ρĺ	#
DIVS (Notes 2, 9, and 10)	A (quotient) ←(B, A) ÷ M B (remainder) (Signed)	16/8			31 F7		3			21 F/	1 2 A	3 3	21 FB	24	3			2 Fi	12	5 3	3 2 F	12	16 3	21 F8	26	3	21 F2	27	3 2 F	12 9	B 3
DXBNE (Note 4)	$\begin{array}{l} X{\leftarrow}X-IMM \;(IMM=0\;\;to\;31)\\ \text{if }X\neq 0,\; \text{then }PC{\leftarrow}PC+\text{cnt}+REL\\ (-128\;to\;+127)\\ (\text{cnt: Number of bytes of instruction}) \end{array}$	16/8			01 C0 + imi		3																								
DYBNE (Note 4)	$\begin{array}{l} Y{\leftarrow}Y-IMM \;(IMM=0\;to\;31)\\ \text{if}\; Y{\neq}0,\; \text{then}\; PC{\leftarrow}PC+\text{cnt}+REL\\ (-128\;to\;+127)\\ (\text{cnt}:\; Number\; of\; bytes\; of\; instruction) \end{array}$	16/8			01 E0 + imi		3																								
EOR (Notes 1 and 2)	Acc←Acc∀M	16/8			76 81	2	2 3			81	14		7B 81	5				7	1 6		3 1 7 3 9 7	1	7 3	78 91	7	3	72			'9 11 9	3
EORB (Note 1)	Accl←Accl∀IMMB	8			76 33 81 33	1 2				7/	4		7B						0		/	1		78			72		7	9	
EORM (Note 3)	M←M∀IMM	16/8								51 73	1 7	4																		Ī	
EORMB	M8←M8∀IMM8	8								51 72	1 7	4																		T	
EORMD	M32←M32∀IMM32	32								51 F:	1 10) 7	,																		
EXTS (Note 1)	Acc \leftarrow -Acc. (Extension sign) (Bit 7 of Acc. = 0) brs b7 b0 00000000 0 Acc \leftarrow Acc \leftarrow (Bit 7 of Acc. = 1) brs b7 b0 [11111111 1]	16								2																					
EXTSD	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32						31 B0	5 3	2																					
EXTZ (Note 1)	Acc←AccL (Extension zero) b15 b8 b7 b0 00000000	16							1	1																				T	
EXTZD	$\begin{array}{c c} E \leftarrow E_{L} (= A) \; (Extension \; zero) \\ b_{15} & b_8 \; b_7 & b_0 \\ \hline 000000000 & \\ \hline \\ E_{H} (B) & E_{L} (A) \end{array}$	32						31 A0	3	2																					

A	BS	A	٩B	S.	x	AB	IS.	Y		AE	3L	Т	AE	3L.	X		(AE	SS) [_(A						ig I S				RE	L	DII	R, b	, R	AB;	S, b	, R	:	SR		(SF	२),	Y	B	LK	Т	M	AA	1	Pro 0 9	ce	550	or : 6	Sta 5	atu 4	s r 3	eg 2	jis T
рр	n i	ŧο	pp	n	#	ор	n	#	op	1	n	#	ор	n	#	0	p I	n i	# c	p	n	# c	p	n	#	op	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	#	op	n	# 0					n #	1	IP	L	7 N	v	m	x	D	ī	2
1 2 E	13 4	4 2 F	21 2 F	24	4	21 F6	24	4	21 FC	24	4 :	5	21 FD	25	5																							21 F3	24	3	21 2 F4	27	3							•	•	N	V	•	•	•	I	Z
																																																	•	•	•	•	•	•	•	•	•	•
																																																	•	•	•	•	•	•	•	•	•	
11	3 3 4 4	8	18		4	76 91		4	7C 91	5		5	7D 91	6		L																						73 91	- 1	3	74 91	- 1	- L						•			N	•	•	•	•	•	
E		71	F			76			70	;	T		7D																									73			74					T			•	•	•	N	•	•	•	•	•	:
i1 7	7 8	5																	+																														•	•	•	• N	•	•	•	•	•	
1	7 8	5																																															•	•	•	N	•	•	•	•	•	
11	0	В																																															•	•	•	N	•	•	•	•	•	
																																																	•	•	•	N	•	•	•	•	•	
																																																	•	•	•	N	•	•	•	•	•	
																																																	•	•	•	0	•	•	•	•	•	
																			+				+																		+		+	+			+		•	•	•	0	•	•	•	•	•	

		Onortin	L	_	_		_	_	_	_	_	_	_	-	_	_	-	ing	-	_	_	-	_		_		_	_	_	_	_	_	_
Symbol	Function	Operation length (Bit)		MF			1M	t	A			DIF																YL					
			lob	n	#	op	л #	-	+-	n #	-	-	-			-	op	n	# 0	-p	n	# 0	qc	n i	# 0	ip I	л #	# op) n	#	ор	1	#
INC (Note 1)	Acc←Acc + 1 or	16/8						A:	31	1	82	6	2	41 8B	8	3																	
(M←M + 1							8	1 2	2 2				00																			
							\perp	A:	3			Ц															\downarrow				L	L	
INX	X←X + 1	16/8	C3	1	1																												
INY	Y←Y + 1	16/8	D3	1	1	Т	Τ	T	Τ	Γ	Π	П					Π		T	T	Τ		T	T	T		T	Τ	Т		Π	Γ	Γ
JMP/JMPL	When ABS specified	-	Π			T	t	t	t	T	П	Π					Π	Ť	1	1	1		T	t	t	t	t	t	t		Г	F	t
	PCL←ADL PCH←ADM											ļļ																					
	When ABL specified																																
	PCL←ADL																																
	PCн←ADм PG←ADн											ļļ																					
	When (ABS) specified																																
	PCL←(ADM, ADL)																																
	PCH←(ADM, ADL + 1)																																
	When L(ABS) specified PCL←(ADM, ADL)																																
	$PCH \leftarrow (ADM, ADL + 1)$ $PG \leftarrow (ADM, ADL + 2)$																																
	When (ABS,X) specified PCL←(ADM, ADL + X)																																
	PCH←(ADM, ADL + X + 1)						\perp	\downarrow	\perp	\perp	\square	Ц						\downarrow						\downarrow		1	⊥	\perp			L	L	
JSR/JSRL	When ABS specified M(S)←PCн	-																															
	S←S–1																																
	M(S)←PCL S←S−1																																
	PCL←ADL																																
	РСн←АДм																																
	When ABL specified M(S)←PG																																
	S←S – 1																															1	
	M(S)←РСн S←S – 1											H																				1	
	M(S)←PCL																																
	S←S – 1 PCL←ADL																																
	PCн←ADм PG←ADн																																
	When (ABS,X) specified M(S) — PCн																																
	S←S – 1 M(S)←PC∟																																
	S←S – 1																																
	$PCL \leftarrow (AD_M, ADL + X)$ $PCH \leftarrow (AD_M, ADL + X + 1)$																																
LDA	Acc←M	16/8	Π		T	16 1	1 2	2	Τ	Г	1A	3	2	1B	4	2	Π	T	1	11 (6		11	7	3 1	8 6	6 2	2 11	1 8	3	19	8	2
(Notes 1 and 2)							+	-		-	H	H							- H	10	_		11	-	+		+	12	+	+		$\frac{1}{2}$	1
-						81 1 16	4 ³	'			81 1 A			81 1B	5	3				91 10	0		91 11		3 8	31 7 18	7 3	3 91 12		3	81 19		3
LDAB	Acc←M8 (Extension zero)	16	Π	Π		28 1	1 2	!†	t	t	0A	3	2	0B	4	2	Π	Ť		11 (6			7	3 ()8 F	6 2	2 11	18	3	09	9 8	
(Note 1)					.	+	+	_			μ	μ	-							00 91	_		01	+	+	+	+	02	+	\vdash		19	3
					· 1	81 2	23				81	4	3	81	5	3		· 1	h	нĿ	6	3	91	7	3 8	31 7	73	3 91	1 8	3	81		

A		;]	AE	35	,)	k)	٩E	s	, Y	1	AI	BL		A	BL	.,)	((A	BS)	L(A	B:	S) (AB	S,	X)	3	STI	<	es I	RE	L	DI	R, t), R	AE	3S,	b, F	2	S	R	(SF	t), '	Y	B	LK	Т	M	AA	1			B	7	S1	5	4	3	2	1
ор		#	ор	n	#	ŧ (op	n	#	d	p	n	#	op	r	Ì	¥ c	p	n	# 1	эþ	n	# (op	n	#	op	n	#	op	n	#	op	n	#	op	p n	#	0	p r	n #	ŧ o	р	n	# 0	pp	n ‡	≠ o	р	n ‡	ŧ		۶L	1	v١	/ n	n	x	D	I	2
37	5		41 8F		4	4																																														•	•	• 1	N	•	•	•	•	•	
																																																			•		•	• 1	N	•	•	•	•	•	
																																																			•		•	• •	4		•	•	•	•	
9C 4	1	3								A	C	5	4				5	31 iC	7	4	31 5D	9	4 E	BC	7	3																									•		•	•	•		•	•	•	•	
эD	6	3								A	D	7	4										6	3D	8	3																									•		•	•	• •	• •	•	•	• •	•	
E :			1F 81 1F		L	1	6			L					L																								11 13 91	1 5	5 3	3 1 1 3 9 1	1 8	8:	3						•	•		• •	• •		•	•	•	•	4
)E 3	3	3	0F 81 0F	4	3	1	11 06	5	4	0	С	4	4	00	5	4	1																						11 03	15	5	3 1 C 3 9 0	1	8	3			t			•	•		• () •	, ,	•	•	•	•	

														A	١dd	dre	ssi	ng	M	od	les	5										_	
Symbol	Function	Operation length (Bit)		MР		IN			/			DI			IR,		DI				DIR							L					
		iongui (Bit)	ор	n	-	p I	+	+	p	n #	+-	+-	+-	-	-	-	ор	n	-+	+	-+	-	+	+	+	+	ר#	+	-	_	op	n	_
LDAD	E←M32	32			2	.c	3 8	5			8/	A 6	2	8B	7	2				11 30	9		11 1 31	0	38	89	2	11 82	11	3	89	11	2
LDD n (Notes 11 and 12)	DPRn←IMM16 (n = 0 to 3. Multiple DPRs can be specified.)	16			? B	81 0 81 04	1 2	2																									
LDT	DT -IMM8	8		_	3	2	i 2	li																								_	_
LDX (Note 8)	X←M	16/8			c	;6	1 1	2			02	2 3	2				41 05	5	3														_
LDXB	X-IMM8 (Extension zero)	16			2	.7	1 2	2																								_	
LDY (Note 8)	Y←M	16/8			C	06 1	1 2	2			12	3	2	41 1B	5	3																-	-
LDYB	Y←IMM8 (Extension zero)	16			3	7	1 2	2																T									
LSR (Note 1)	Logical shift to the right by 1 bit m = 0 Acc or M16 $0 \rightarrow \boxed{D15D0} \rightarrow C$ m = 1 Acc. or M8 $0 \rightarrow \boxed{D11D0} \rightarrow C$	16/8						8		1 1	2	1 7 A	7 3	21 2B	8	3																	
LSR #n (Note 4)	$ \begin{array}{l} \mbox{Logical shift to the right by n bits (n = 0 to 15) } \\ m = 0 & \\ 0 \rightarrow \boxed{b_{15} \dots b_{20}} \rightarrow C \\ m = 1 & \\ 0 \rightarrow \boxed{b_{75} \dots b_{20}} \rightarrow C \end{array} $	16/8						C		6 2 +																							
LSRD #n (Note 4)	$ \begin{array}{c} \mbox{Logical shift to the right by n bits (n = 0 to 31)} \\ \mbox{E} \\ \mbox{0 \rightarrow [b31]b0]} \rightarrow \mbox{C} \end{array} $	32						C	ŀ	8 2 +																							

															_												ode	_			_					_	_					_						Ρ	ro	ces	so	r S	Sta	tus	re	gi	ste
AB	S	AI	3S	, X	A	BS	i, 1	1	AE	3L	4	AB	BL,	Х	(,	AB	S)	L	(A	BS)(/	AB:	S, I	X)	S	Tł	<	F	RE	L	DIF	R, b	R	ABS	6, b,	R	;	SR	(SF	۲),	Y	BL	K	1	MA	۱A ا	10	9	8	7 N	6	5	4	3	2	1
op n	#	op	n	#	ot	o r	1 #	0	p	n	# 0	op	n	#	op	n	#	0	p I	1#	‡ 0	p	n	#	op	n	#	op	n	#	op	n	#	op	n	#	ор	n	# 0	pp	n	# 0	pp I	n#	ot	o n	n #		IPI	-	Ν	V	m				
BE 6	3	8F	7	3	11 86	8	4	8	c	7	4 8	BD	8	4																							11 83	8	3 1	11 · 14	11	3						•	•	•	N	•	•	•	•	•	Z
																																																•	•	•	•	•	•	•	•	•	•
																																																•	•	•	•	•	•	•	•	•	•
07 3	3				41 06	5	4	1														T																										•	•	•	N	•	•	•	•	•	Z
																																															Ī	•	•	•	0	•	•	•	•	•	Z
7 3	3	41 1F	5	4																																											Ī	•	•	•	N	•	•	•	•	•	2
																						T																									Ī	•	•	•	0	•	•	•	•	•	
1 7 E	4	21 2F	8	4																																												•	•	•	0	•	•	•	•	•	12
																																																•	•	•	0	•	•	•	•	•	
																																																•	•	•	0	•	•	•	•	•	2

		Operation					_						_		_		_		stir	_				_			_		_	_	_	_	_	_	
Symbol	Function	length (Bit)			۱۱ op	MP n	# 0	MI n In	M h#	or	A	#] 00	DIR	2 #	DIF	۲,) nl :	(# 1	DIF	λ, Υ η Γι	í t o	(DI	IR) nT) ((DI	R, I	X) # ((DII	R), \ n #	(L t or	(DI	R) #	L(D	IR)	, Y
MOVM	m = 0	16/8		IMM	UP I	-	7					TT I			3	31			74			<u>р</u> ,	1	<i>n</i> (-	101	1	"	οp 	-	#
(Note 2)	M16(dest)←M16(source) m = 1			DIR		┥	+	+	╈	$\left \right $	┢		58	6		47	+	+	+	╉	╀	┼	+	+	┥			┥	╈	┢	┢	Η	H	_	_
	M8(dest)←M8(source)		ce			+	+	+	╀		╞		Η			+	+	+	+	+	╀	+	+	+	+			+	+	╀	╞	Η	H	_	_
			Source	DIR, X ABS		+	+	+	+		╞		5C	6	4	+	+	+	+	+	╀	+	+	+	+			+	+	╞	╞	+	\vdash	_	_
				ABS, X		+	-	╀					5D	7	4	+		+	+	+	┼		+	+	+			+	+	┢	+	Η	H	_	-
MOVMB	M8(dest)←M8(source)	8		IMM		+	+	+			╞		A9	5	3		7	4	+	+	╀	+	+	+	+			+	+	┢	┢	Η	H	_	_
				DIR		+		╈			$\left \right $		48	6		3A		+	+	t	╈	t	╎	+	+			+	+	┢	t	Η	H	_	_
			Source	DIR, X		+		t			t					+			+	t	t	t	+	1	+			+	╈	t	t	Η		_	_
			Š	ABS		+	+	t			t		4C	6	4	+		+	+	t	t	t	+	+	+			+	╈	t	t	Η		_	_
				ABS, X		1	1	t			t		4D	7	4	1			1	t	t	t	1	1	1			1	t	t	t	Η	Π	-	-
MOVR (Notes 7 and 13)	m = 0 M16(dest1) ← M16(source1) : :	16/8		IMM				T					10	3 + 5n	+						Ī									T				_	
	M16(dest n)←M16(source n) m = 1 M8(dest1) ←M8(source1)			DIR				T					61 50	3 + 6n	+															T	T			_	-
	: : M8(dest n)←M8(source n) (n = 0 to 15)		Source	DIR, X									n																					_	-
				ABS									90	3 + 6n	+																				
				ABS, X									10 + n		+																				
MOVRB (Note 7)	M8(dest1) ←M8(source1) : M8(dest n)←M8(source n)	8		IMM									00 + n	5n	+ 2n																				
	(n = to 15)			DIR									40	3 + 6n	+																				
			Source	DIR, X																															
				ABS									61 80 + n	3 + 6n	2 + 3n																				
				ABS, X									00	3 + 6n	+	Ī	Ī	Ī	Ī	Ī	Ī		Ī	Ī	T										

	-		—		_	-	_	_		-	_	_	_	-	_	_	_	-	_	_	_	—	_	_	_	_	_	_	_	_	io	_	-	_	_		-				-		_	-		_		—			-	_		_					ro										-
A	BS	5	A	BS	(,) 	4	B	S,	Y	1	A	B	L	1	AE	L,	X	1	(A)	BS	S)	L	(A)	B	S)	(A	BS	S,)	K)	S	T	K		R	E	L	D	IR,	b,	R	AE	BS,	b,	R	5	SR		(\$	SR), '	Y	В	LK	<u>_</u>	N	1A	A #	10			3	1	6	5	4	3	2	1	1
							ρ	n	#	0	P	n	#	0	γp	n	#	0	p	n	#	0	p I	n	#	op	ľ	1	¥ (υp	n	#	0	ρ	n	#	0	P	n	#	ot	, r	1	Ŧ	υp	n	#	op		17	¥ 0	p	n	#	op	n	#	-	IP T	-	+	+	-	-+	_	D	-	-	+
96			57	6		1	ļ											ļ																																								ŀ	ŀ	ľ	'	ľ	•	•	•	•	•	•	•
78	5	4																																																																			
79	6	4																																																																			
7C	5	5																																																																			
39	4	4	31 3E	6	1	5								I				I					Ι					Ι					T					Ι	T				T															•	•	•	•	•	•	•	•	•	•	•	•
58	5	4				T												T						T									T					I					T						Ι																				
59	6	4			T	T					Ī			T				T					T	T				T					T				l	T	T				T						T	Ī	T																		
БС	5	5		ſ	T	t								T				T	T				T	T				T					t	T			T	t	T				t	T					T	T	t	T	T																
1	1			t	t	t	1			T	t			t				t	1			ſ	t	T				t				ſ	t	1			T	t	T			ſ	t	1	t				t	t	T	1	1																
51 : 30 - + 4	3+	2+		ſ	T	t				T	t			t				t	1				T	T			t	T	1		-		t	1			T	t					t						t	t	T	1	1					•	•	1	•	•	•	•	•	•	•	•	•
n																																																																					
51 : 70 : + 5	3 + 5n	2 + 3n																																																																			
71 70 + 6	3 + Sin	2 + 3n									1																																																										
n 51 : 30 + 5	3 +	2 + 4n	ŀ		T	t					t			t				t					T					T			-	t	$\left \right $					t					$\left \right $																										
n			┝	╞		+			-		+			+				╀	+				+	+	-				+	-			+	+	_			+	+	_		╞	+	+	+	_		$\left \right $	+	╀	+	┥	┦	-	_	-	-												
51 : 20 - + 4 n	3 + In	2 + 3n									ĺ																																															•	•	•		•	•	•	•	•	•	•	
" 51 : 50 - + 5	3	2+	t	t	t	t				t	+			t				t	+				t	+				t	╡				t	+			t	t	+		ŀ	t	t	+	+			t	t	t	╡	+	+																
n									L																																																												
71 : 50 - + 6 n	3 + 6n	2 + 3n																ſ							-				Ī						-										Ī	-				ſ																			
51 3 40 + 5 n	+	÷			Ī	T					t			T				T															T					T					T																										
+				t	t	t				t	t			t				t	+				t	╎			t	t					t				T	t					t		1				t	t	t	+	╡				\vdash												

			L	_	_		_		_	_		_	_	_	Ac	ldr	ess	sin	g١		de		_	_		_	_			_	_	_	_
Symbol	Function	Operation length (Bit)		MF			ИM			A			IR				1			(DI	R)	(D	NR,	X)	(D	IR),	ΥI	L(D	IR)	L(I	DIR	.), Y
		icingui (Dit)	ор	n	#	ор	n	# 0	р	n	# 0	р	n	# 0	p r	n #	0	o n	#	op	n	#	ор	n	# 0	op	n	# 0	p r	#	ор	n	#
MPY (Notes 2 and 14)	(B, A)←A X M	16/8				31 C7	8	3			2' C	1 9 A	9 :	3 2 C	1 1(;B	0 3				21 C0			21 C1	12		21 C8		3 2 C		3	21 C9		3
MPYS (Notes 2 and 14)	(B, A)←A X M (Signed)	16/8				31 D7	8	3			2' D	1 9 A	9 :	3 2 D	1 1()B	0 3				21 D0	11	3	21 D1	12	3	21 D8	12	3 2 C	21 1:	3 3	21 D9		3
MVN (Note 15)	$\begin{array}{l} M(Y+k){\leftarrow} M(X+k) \\ k=0 \text{ to } i-1 \\ \left(\begin{array}{c} \mathrm{i:} \ \text{Number of transfer bytes} \\ \text{specified by accumulator } A \end{array} \right) \end{array}$	16/8																															
MVP (Note 16)	$\begin{array}{l} M(Y-k){\leftarrow} M(X-k) \\ k=0 \text{ to } i{\leftarrow}1 \\ (i: Number of transfer bytes \\ specified by accumulator A \end{array} \right)$	16/8																															
NEG (Note 1)	Acc←-Acc	16/8					T	Ī	24	1	1	T	Τ	T	Τ	Γ	Γ			Γ							T	T	Γ	Γ		Γ	
									B1 24	2	2																						
NEGD	E←−E	32							31 BO	4	2																						
NOP	$PC \leftarrow PC + 1$ When catty occurs in PC $PG \leftarrow PG + 1$	-	74	1	1																												
ORA (Notes 1 and 2)	Acc←Acc∨M	16/8					1							2 5		1 2				11 50 91			51		_	58		3 1 5	2		59		
, ·						81 56	2	3			8 5		4 3	38 5		5 3				91 50	6	3	91 51	7		91 58		3 9 5		3	91 59		3
ORAB (Note 1)	Accı←Aco.∨IMM8	8					1	_																									
ORAM (Note 3)	M←M∨IMM	16/8									5' 3'		7 .	4																			
ORAMB	M8←M8∨IMM8	8									5 3.		7	4																			
ORAMD	M32←M32∨IMM32	32									5 B	11 3	0	7																			
PEA	$\begin{array}{l} M(S) \leftarrow IMMH\\ S \leftarrow S-1\\ M(S) \leftarrow IMML\\ S \leftarrow S-1 \end{array}$	16																															
PEI	$\begin{array}{l} M(S) {\leftarrow} M((DPRn) + dd + 1) \\ S {\leftarrow} S + 1 \\ M(S) {\leftarrow} M((DPRn) {+} dd) \\ S {\leftarrow} S - 1 \qquad (n = 0 \text{ to } 3) \end{array}$	16																															

		1					_					Т			7	(.												de	_		٦,				 	_	_	0.0		(0)			_		Т						ess							
A op	BS n I i		ABS Ind I							AB I n		1	۹DI NRI	.,) n I :	# 1	A) lac	nT) #	∟(/ on	чВ	5) #	(A	b n), X 1 ≜) t o	S ol	n K h Ta	# r		EL n i					i, b, n			SR n		(SI				BLK n			AA n			9 PL	8		5 5 / m	4	3	12	-	1
																	-	-	- 1-				-	+	+	-	+	+	-	+	+	-	+	+	 -									-	-		-	+	T	-		-			-	-	+	-
Æ) 4	Ċ	F		+	26	10	4	CC		5	c	D	1	5																					0	C3	10	3	21 C4	13	3						ľ	•	•	• •			•	•	•	Z	
21 9 DE) 4	4 2 D	11	0	4 2 C	21	10	4	21 DC	10	5	2 D	111 00	1	5																					1	21 D3	10	3	21 D4	13	3						ľ	•	•	• •	۰ ۱	•	•	•	•	Z	-
																																											2B	5 + 5 i	4			•	•	•	•	•	•	•	•	•	•	•
																																											31 2A	9 + 5 i	4			•	•	•	•	•	•	•	•	•	•	
																																													+			•		•	• •	4 1	••	•	•	•	1	
																																																•		, ,	• •	1 V	•	•	•	•	Z	
		+														+											+						+												+					•	•	•	•	•		•		
5E 81 5E					5	56			5C			5	D																								53 91		3	11 54 91	8							ľ	•	•	•	•	•	•	•	ŀ		
E		5	-			00			50			5																								-	53			54								•	•	•	• •		•	•	•	•	1	
51 37	7 5	5																								T																						,	•	•	• 1	4.	•	• •	•	•		
51 7 36	7 8	5	+												+	+																													+			•		•	• •	•	•	•	•	•		
51 1 B7	0	В	+												+	+																	+															•			• •	1.	•	•	•	•	;	
		+	+													+									3	1 : C	5 4	1																		-		•	•	•	•	•	•	•	•	•	•	
+																+									3	1 7 B	7 3	3		+	+	+			+			_	_	_			_					•		•	• •	•	•	•	•	•	•	

		0						_			_			A	١dd	dre	ss	ing	_	_	_	_			_			_			_	_	_
Symbol	Function	Operation length (Bit)		MP			1M	1	/			DI						IR,					(DIF										
PER	$\begin{array}{l} EAR{\leftarrow}PC+IMM16\\ M(S){\leftarrow}EARH\\ S{\leftarrow}S-1\\ M(S){\leftarrow}EARL\\ S{\leftarrow}S-1\\ S{\leftarrow}S-1 \end{array}$	16	op	n	# C	op	n #	* 0	p	n #	¢ 0	pr	n #	• op	n	#	op	n	# 0	op	n	# C	i qi	n #	# 0	p	n #	ot	o n	#	op	n	#
PHA	$\begin{array}{l} m = 0 & \\ M(S) \leftarrow A_{H} & \\ S \leftarrow S - 1 & \\ M(S) \leftarrow A_{L} & \\ S \leftarrow S - 1 & \\ m = 1 & \\ M(S) \leftarrow A_{L} & \\ S \leftarrow S - 1 & \\ \end{array}$	16/8																															
РНВ	$\begin{array}{l} m=0 \\ M(S) \leftarrow BH \\ S \leftarrow S - 1 \\ M(S) \leftarrow BL \\ S \leftarrow S - 1 \\ m=1 \\ M(S) \leftarrow BL \\ S \leftarrow S - 1 \end{array}$	16/8																															
PHD	$\begin{array}{l} M(S) \leftarrow DPR0 \mbox{\tiny H} \\ S \leftarrow S - 1 \\ M(S) \leftarrow DPR0 \mbox{\tiny L} \\ S \leftarrow S - 1 \end{array}$	16																															
PHD n (Note 11)	$\begin{array}{l} M(S) \leftarrow DPRn H \\ S \leftarrow S - 1 \\ M(S) \leftarrow DPRn L \\ S \leftarrow S - 1 \qquad (n = 0 \text{ to } 3) \end{array}$ When multiple DPRs are specified, the above operations are repeated.	16																															
PHG	$\begin{array}{l} M(S) \leftarrow PG \\ S \leftarrow S-1 \end{array}$	8																															
PHLD n (Note 11)	$\begin{array}{l} M(S) \leftarrow DPRn H \\ S \leftarrow S - 1 \\ M(S) \leftarrow DPRn L \\ S \leftarrow S - 1 \\ DPRn \leftarrow IMM16 (n = 0 \text{ to } 3) \\ When multiple DPRs are \\ specified, \text{ the above} \\ operations are repeated. \end{array}$	16																															
PHP	$\begin{array}{l} M(S) \leftarrow PSH\\ S \leftarrow S-1\\ M(S) \leftarrow PSL\\ S \leftarrow S-1 \end{array}$	16																															
РНТ	$\begin{array}{l} M(S) \leftarrow DT \\ S \leftarrow S - 1 \end{array}$	8																															

		4		_	~		_		J	_	 	_					,				. /			d											_	DI			Т			_	г	_	-	Т	0						т	 		Pro		es:	so -T	r S	Sta	tu	s r	eg	jis T	st
AE	1 #	1	nd nd	0, n	× #		1	5, 1,	r y	P	⊾ ה	#	A	DL T	-, 	^ #	() 07	ΗĒ	1) #		n D	1) () t ()	nd n	n n	, ^ [#	1	ਠ ਜ	n	\ #	-	규	EL	#		n, l	, t ≠	ł	nn Inn	n, 0	, K #	1	े जन	R	#	0,0	r(), n	, 1 #	0	BL	r∖ [#	1	۹A T	1 ¹	1	י <u>ן א</u>	8	<u>/ </u>	0	о ~	4	3	<u>l</u>	ŧ.	-
			~~~		n	9			T	-		m	~			m	~				90				1		1		11 10						m	-		1		74		n					op		n						•		Т	•	•	•	•	•	•	•	•	
																												8	15	4	1																								•	•		•	•	•	•	•	•	•		
																												8	11	5	2																								•			•	•	•	•	•	•	•	•	
																												8	3	4	1																								•			•	•	•	•	•	•	•		
																													38 1 11 16 18 1																										•	•		•	•	•	•	•	•	•		
																			Ī									_	11 10	_	_	-																							ŀ	•		•	•	•	•	•	•	•	ŀ	
																												0	18 1             																										•			•	•	•	•	•	•	•		
ſ																												A	.5	4	1																								•			•	•	•	•	•	•	•	•	
ſ																												3	11 0	4	2																								•	•		•	•	•	•	•	•	•	•	

			Γ											Ac	ddr	es	sir	ng	Mo	ode	es							_		_		
Symbol	Function	Operation length (Bit)		ИP			IM		A			DIR		DIF						(D	IR)	(	DIR	t, X	) (C	DIR)	, Y	L(	DI	۲)	_(DI	R),
PHX	$\begin{array}{l} x = 0 \\ M(S) \leftarrow X_{H} \\ S \leftarrow S - 1 \\ M(S) \leftarrow X_{L} \\ S \leftarrow S - 1 \\ x = 1 \end{array}$	16/8	op	n	# c	p I	n #	ot	n	#	op	n	# 0	p I	n #	# c	i qi	n #	# 0	p r	n #	¥ 0	p n	#	op	n	#	op	n	# 0	q	ni
РНҮ	$\begin{array}{l} M(S) \leftarrow X_L\\ S \leftarrow S-1\\ \\ \\ M(S) \leftarrow Y_H \end{array}$	16/8																														
	$\begin{array}{l} S \leftarrow S - 1 \\ M(S) \leftarrow Y_L \\ S \leftarrow S - 1 \end{array} \\ x = 1 \\ M(S) \leftarrow Y_L \\ S \leftarrow S - 1 \end{array}$																															
PLA	$\begin{array}{l} m = 0 \\ S \leftarrow S + 1 \\ A \sqcup \leftarrow M(S) \\ S \leftarrow S + 1 \\ A \amalg \leftarrow M(S) \\ m = 1 \\ S \leftarrow S + 1 \\ A \sqcup \leftarrow M(S) \end{array}$	16/8																														
PLB	$\begin{array}{l} m = 0 \\ S \leftarrow S + 1 \\ B \sqcup \leftarrow M(S) \\ S \leftarrow S + 1 \\ B \amalg \leftarrow M(S) \\ m = 1 \\ S \leftarrow S + 1 \\ B \sqcup \leftarrow M(S) \end{array}$	16/8																														
PLD	S←S + 1 DPR0L←M(S) S←S + 1 DPR0H←M(S)	16																														
PLD n (Notes 11 and 12)	$\begin{array}{l} S \leftarrow S+1 \\ DPRn \leftarrow M(S) \\ S \leftarrow S+1 \\ DPRn \vdash (S) \\ n=0 \text{ to } 3) \end{array}$ When multiple DPRs are specified, the above operations are repeated.	16																														
PLP	$\begin{array}{l} S {\leftarrow} S + 1 \\ PS {\scriptstyle L} {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PS {\scriptstyle H} {\leftarrow} M(S) \end{array}$	16																														
PLT	$S \leftarrow S + 1$ DT $\leftarrow M(S)$	8																														

		_				_		_					_			_	_			_				do												_			_				_			_				_			-							sor						
	3S										BL		A	BL	-, -	X	(	AE	S	)	L(/	٩B	(SS	) (/	AB	S,	, Х	0	S	ЗT	K T	1	R	EL	-	D	R,	b,	R	AB	S, I	), F	2		SR						BLI				AA	1	0 9	8	3	7	6 5	5	4	3	2	1
	n #	7 (	ор	n	#	0		#	op	P	n	#	0			#	ot	r	1 7	# 1	op	n	#	0	p	n	Ĥ	+	_	_	+-	+	p	n	#	0	1	n	#	op	n	#	10	p	n	#	op	n	#	op	n	#	op	r	1#	+-				۱V						
																													C5	4		1																								•	•	•			•	•	•	•	•	•
																												E	5	4	1																									•	•					•	•	•	•	•
																												9	95	4	1																									•	•	•	• 1	N	•	•	•	•	•	
																												8	81 95	5	2																									•	•		• •	N	•	•	•	•	•	
																												g	93	5	1	T																								•	•			•		•	•	•	•	
Ī	Ī																											1	77 ?0	11	2	!					Ī																			•	•			•		•	•	•	•	
																												1	77 ?0	8 + 3 i																																				
																												E	35	5	1																										Va sta	alu acł	¢	es	tor	rei	d fi	roi	n	
																												(n (s)	31 50	6	2	2																								•	•		• •	v •		•	•	•	•	2

					_	_	_	_	_	_	_	_	_	A	dd	Ire	ssi	ng	M	od	es		_	_		_		_		_	_	_	_
Symbol	Function	Operation length (Bit)	IM			IMI		Ĺ	A			DIF						R, `		(D			(DIF	<b>λ</b> , λ	()	DIR	R), Y	Ĺ	(DI	R)	L(C	DIR),	Y
		iongui (Bit)	op 1	n #	t op	n	#	op	n	#	op	n	#	ор	n	#	ор	n ‡	¥ c	p	n	# 0	n di	n #	10	p r	n #	op	n	#	ор	n	#
PLX	$\begin{array}{l} x = 0 \\ S \leftarrow S + 1 \\ X \sqcup \leftarrow M(S) \\ S \leftarrow S + 1 \\ X \amalg \leftarrow M(S) \\ x = 1 \\ S \leftarrow S + 1 \\ X \sqcup \leftarrow M(S) \end{array}$	16/8																															
PLY	$\begin{array}{l} x = 0 \\ S \leftarrow S + 1 \\ Y_{L \leftarrow M}(S) \\ S \leftarrow S + 1 \\ Y_{H \leftarrow M}(S) \\ x = 1 \\ S \leftarrow S + 1 \\ Y_{L \leftarrow M}(S) \end{array}$	16/8																															
PSH (Note 17)	M(S to S − i + 1)←A, B, X S←S − i i: Number of bytes corresponding to register pushed on stack	16/8																															
PUL (Note 18)	A, B, X←M(S + 1 to S + i) S←S + i i: Number of bytes corresponding to register restored from stack	16/8																															
RLA (Note 3)	Rotate to the left by n bits m = 0 (n = 0 to 65535) $(-b_{15}b_{0})$ m = 1 (n = 0 to 255) $(-b_{7}b_{0})$	16/8			31 07		3																										
RMPA (Note 19)	$\begin{array}{l} m = 0 \\ Repeat \\ (B, A) \leftarrow (B, A) + M(DT:X) \times \\ M(DT:Y) (Signed) \\ X \leftarrow X + 2 \\ i \leftarrow i - 1 \\ Until \ i = 0 \\ m = 1 \\ Repeat \\ (BL, AL) \leftarrow (BL, AL) + M(DT,X) \\ M(DT,Y) (Signed) \\ X \leftarrow X + 1 \\ Y \leftarrow Y + 1 \\ i \leftarrow i - 1 \\ Until \ i = 0 \\ i \in Numder \ of \ repetitions \ (0 \ to \ 255) \end{array}$	16/8																															_

		_			_				_				_				_				_											le				_							_							_				_											us				
AB	SS T	ľ	AB:	S,	X	AB	S	Y	1	A	BI	-	14	۱B	L,	X	(	A	3S	)	L(	AE	3S	)(	AB	SS,	, X	)	S	T	K	1	R	εE	L	P	IR	, b,	R	A	3S,	b,	R	;	SF	2	(\$	SF	t),	Y	E	BLł	(			۱A	1				7	6	5	4	4	3	2	1	4
op n	1 #	0	p	n	#	ор	n	#	0	р	n	#	C	р	n	#	0	p	n	#	ор	r	1 7	‡ (	pp	n	Ĥ	1	pp	n	ž	¢ C	p	n	#	0	р	n	#	0	p r	1	¥ (	эр	n	#	0	р	n	# (	op	n	#	op		1 #	1	1	IPL	-	Ν	۷	'n	Þ	(	D	I	Z	-
																												C	15	4	1																											•	•	•	N	•	•		•	•	•	z	
																												F	-5	4	1																											•	•	•	N	•	•		•	•	•	z	-
																														11 + +																												•	•	•	•	•	•		•	•	•	•	
																												6		13 + 3 i	L																											is th	re e '	st va	or Iu	ed e.	, tł In	nis th	e o	ec oth	coi ne	m r	
																																																										•	•	•	•	•	•		•	•	•	•	
																																																						5A	1	mm		•	•	•	N	v			•	•	•	Z	

													,	٩d	dre	ss	ing	M	od	les	5									_	_
Symbol	Function	Operation length (Bit)	IN			IMN			A,	Ι	D					D			(D												R), Y
		icingui (Dit)	ор	n i	# O	p n	#	ор	n ‡	# C	p I	n ‡	# op	n	#	ор	n	#	р	n	# C	p I	n #	t of	p n	#	ор	n	# 0	γp	n #
ROL (Note 1)	Rotate to the left by 1 bit m = 0 Acc or M16 bisbok-C m = 1 Acc or M8 bybok-C	16/8						13 81 13		1	M T	7 3	3 21 18		3																
ROL #n (Note 4)	Rotate to the left by n bits (n = 0 to 15) m = 0 m = 1 $(-b_{15}b_{0}) - C +$ m = 1	16/8						C1 60 + ir	+  nm	2																					
ROLD #n (Note 4)	Rotate to the left by n bits (n = 0 to 31) $\overbrace{(-b_{31}b_{0}}^{E} \leftarrow C$	32						D1 60 + ii imm	+  mm	2																					
ROR (Note 1)	Rotate to the right by 1 bit m = 0 $\downarrow C \rightarrow Dis bo \rightarrow$ m = 1 $\downarrow C \rightarrow Dr bo \rightarrow$	16/8						53 81 53		3		7 3	3 21 3E		3																
ROR #n (Note 4)	Rotate to the right by n bits (n = 0 to 15) m = 0 $agg( \Box \rightarrow b t \overline{b} ( I , I , b 0 ) \rightarrow I $ m = 1 $agg( \Box \rightarrow b \overline{b} ( I , I , b 0 ) \rightarrow I $	16/8						C1 20 + ii	+   mm																						+
RORD #n (Note 4)	Rotate to the right by n bits (n = 0 to 31) E $b_{31}$	32						D1 20 + ii imm	+   mm																						

																								A									es																							1	Pr	ос	es	s	or :	Sta	atu	SI	reç	gis	ste
A	3S	Ţ	AB	SS,	Х	A	B	S,	Υ	1	١B	8L		A	ЗL	., )	<	(/	٩E	S	)	L(/	٩B	S)	0	۱B	S,	X)		S	ΓK	[	I	RE	L	D	IR	, b,	R	AB	S, I	b, F	ł	5	SR		(S	R)	, Y	ſ	BL	ĸ		M/	٩A	1	0	9	8	7	6	5	4	3 D	2		1
ор	n ‡	¥	op	n	#	0	р	n	#	op	r	۱	#	ор	r	1	#	op	r	\$	# 0	р	n	#	0	р	n	#	0	p I	n	#	ор	n	#	0	р	n	#	op	n	Ĥ	0	p	n	#	ор	n	#	op	n	#	0	p I	n #	ŧ	I	PL		Ν	۷	m	х	D	1	2	Z
21 7 IE	. 4	1 1	21 1F	8	4																																																					•	•	N	•	•	•	•	•		7
																																																									•	•	•	N	•	•	•	•	•		Z
																																																								•	•	•	•	N	•	•	•	•	•	Z	
21 7 E	. 4	4 2	21 3F	8	4																																																				•	•	•	N	•	•	•	•	•		Z
																																																								,	•	•	•	N	•	•	•	•	•		z
																											_																													•	•	•	•	N	•	•	•	•	•	Z	2

			L												A	dd	res	ssi	ng	M	od	les	3											_
Symbol	Function	Operation length (Bit)		MF		l op	MN			A	#			# 0															Y					
RTI	$\begin{array}{l} S {\leftarrow} S {+} 1 \\ PS {\iota} {\leftarrow} M(S) \\ S {\leftarrow} S {+} 1 \\ PS {i} {\leftarrow} M(S) \\ S {\leftarrow} S {+} 1 \\ PC {\iota} {\leftarrow} M(S) \\ S {\leftarrow} S {+} 1 \\ PC {\iota} {\leftarrow} M(S) \\ S {\leftarrow} S {+} 1 \\ PC {\leftarrow} M(S) \end{array}$	-		12	_	0p			4					n c	14			1			1			op		IT V	44							
RTL	$\begin{array}{l} S{\leftarrow}S+1\\ PC\iota{\leftarrow}M(S)\\ S{\leftarrow}S+1\\ PCt{\leftarrow}M(S)\\ S{\leftarrow}S+1\\ PG{\leftarrow}M(S)\\ \end{array}$	-	94	10	1																													
RTLD n (Notes 11 and 12)	$\begin{array}{l} S \leftarrow S+1 \\ DPRnL \leftarrow M(S) \\ S \leftarrow S+1 \\ DPRnH \leftarrow M(S) \\ S \leftarrow S+1 \\ PCL \leftarrow M(S) \\ S \leftarrow S+1 \\ PCL \leftarrow M(S) \\ S \leftarrow S+1 \\ PG \leftarrow M(S) \\ S \leftarrow S+1 \\ PG \leftarrow M(S) , (n=0 \text{ to } 3. \text{ Multiple DPRs} \\ can \text{ be specified.} \end{array}$	16																																
RTS	$\begin{array}{l} S {\leftarrow} S+1 \\ PO_L {\leftarrow} M(S) \\ S {\leftarrow} S+1 \\ PO_H {\leftarrow} M(S) \end{array}$	-	84	7	1																													
RTSD n (Notes 11 and 12)	$\begin{array}{l} S {\leftarrow} S + 1 \\ DPRnL {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ DPRn {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PCL {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PCL {\leftarrow} M(S) \\ S {\leftarrow} S + 1 \\ PCH {\leftarrow} M(S), (n = 0 \text{ to } 3. \text{ Multiple DPRs} \\ \text{can be specified.} \end{array}$	16																																
SBC (Notes 1 and	$\overline{\mathbf{C}} - \mathbf{M} - \overline{\mathbf{C}}$	16/8				31 A7		3				21 AA	5	3	21 \B	6	3			2	1	7	3	21 A1	8	3	21 48	8	3 2 A	11 9 2	9 3	3 2 A	110	3
2)						B1 A7	3	3			ţ	41 (A	7	3 /	-+	8	3			4		9	3		10	3		10	3 A A	11	1 3	B A	1 1:	:
SBCB (Note 1)	Aco.←Acc∟− IMM8 − C	8				31 1B B1 1B	3																				-							
SBCD	E←E - M32 - Ĉ	32				31 1D		6			E	21 3A	7	3	21 3B	8	3			2	1 80	9	3	21 B1	10	3	21 1 38	0	3 2 B	111	1 3	2' B	1 12 9	3
SEC	C←1	-	04	1	1																													
SEI	l←1	-	05	4	1																													

Α	BS	; ]	AB	s	x	AB	s	Y	A	٨BI	1	A	BI	>	đ	(A	RS	3	10	AB					)			de: T		FI		DIR	? h	R	AB	S F	R	Γ	SF	2	(5	SR	), Y		BL	к	N	ΛA,	Α	10	q	8	7	6	5	4	s r	2	T
	n											0	p r	n 1	# 0	p	n	#	op	n	#	op	n	#	o	ī	n	¥ c																					#	1.	IP	L	N	v	m	4 x	D	1	Ŀ
	+	+	1	+	+	-	+			┢	F	t	+	t	$^{+}$	+	+		-			F	t	t	t	t	$^{+}$	$^{+}$	1	+	+	-				-	┢	<u> </u>	1	t	T.	t	t	-	t	+	-									d f			1.
																																																			tac		ie	310	ле	ui	101		
				_									+	+	+	+														_		_																				Ι.							Т
				+													_								77	7 1:	5	2		+																											•		
																									?0																																		
																									77	7 1)	2	2																															
																										3	51																																
																																																		ŀ	•	ŀ	•	•	•	ŀ	•	•	
-				+										T											77 ?8	14	4 2	2																						•	•	•	•	•	•	•	•	•	
																									77	71	1	2																															
																									?8	3 -	+ 3 i																																
21 \E	5 7	4	21 \F	6	4	21 \6	6	4	21 AC	6	5	2 Al	1 7 D	ę	5																							21 A3	6	3	21 A4	1 9	3							•	•	•	N	v	•	•	•	•	l
A1 AE	7	4	41 AF	8	4 /	41 46	8	4	A1 AC	8	5	A' Al	1 9 D		5	+														_	_	_						A1 A3	8	3	A1 A4	11	3										N	v				•	
21 BE	7	4	21 BF	8	4 2	21 36	8	4	21 BC	8	5	2 Bl	1 9 D	ę	5											I												21 B3	8	3	21 B4	111	3							•	•	•	N	v	•	•	•	•	
	+		+	+	+			_	_					+			+	_												-																				•	•	•	•	•	•	•	•	•	
														Γ	I	I								ſ			T	T	Ī	T	T									Γ	Γ				ſ					•	•	•	•	•	•	•	•	1	Í

															Ac	ldr	es	si	ng	Μ	od	les	3										_	-	
Symbol	Function	Operation length (Bit)		MF			MN			A			IR		DIR																	R)			
		lengin (bit)	-	n	-	ор	n	#	ор	n	# (	p	n i	# 0	p r	1 A	‡ 0	р	n	# (	р	n	#	op	n	#	ор	n	#	ор	n	#	ор	n	#
SEM	m←1	-	25	3	1																														
SEP	$PS_{L}(bit n) \leftarrow 1$ (n = 0 to 7. Multiple bits can be specified.)	-				99	3	2																											
STA (Note 1)	M←Acc	16/8										1		2 D			2			b	0			D1				7		D2		3			
												1 8 A	5	3 8 D		5 3	3			9	11	7	3	91 D1	8	3	81 D8			91 D2	9	3	81 D9	10	3
STAB (Note 1)	M8←Aca.	8									+	+	4	2 C	+	5	2			1	+	7	3	-	8	3	C8		2		9	-	C9	9	2
											8	1 8 ;A	1	3 8 C	В	6 ;	3			k	20		-	C1			81 C8			C2			81 C9		
STAD	M32←E	32									E	A 6	5	2 E	B	7 :	2				1	9		11 E1	10	3	E8	9		11 E2	11	3	E9	11	1
STP	Oscillation stopped	-	31 30	-	2																														
STX	M←X	16/8									E	2 4		2			4 E	1	6	3															-
STY	У' М	16/8									F	24	2	2 4 Fl	1 6 B	6 :	3																		
SUB (Notes 1 and	Acc—Acc – M	16/8				36	1	2			3	A :	3	2 31	3 4	1 :	2	T			11 30	6	3	11 31	7	3	11 38	7	3	11 32	8	3	11 39	9	3
2)						81 36	2	3				11 IA	4	3 8 31		5 :	3			0 00	11 10	6	3	91 31	7	3	91 38	7		91 32	8	3	91 39	9	3
SUBB (Note 1)	AccL←AcoL – IMM8	8				39	1	2			T		T			T	T	T																	
						81 39	2	3																											
SUBD	E←E – M32	32				3D	3	5			Α	A 6	5 1	2 A	B	7 2	2				1	9	3	11 A1	10		11 A8		3	11 A2	11	3	11 A9	12	3
SUBM (Note 3)	M←M – IMM	16/8									5		7	4																					
SUBMB	M8←M8 – IMM8	8									5		7	4			T																		
SUBMD	M32←M32 – IMM32	32									40 O)	i1 1 13	0	7																					

	-	_			V			~	Ē			Τ.	DI	~	L		0						sir					-	1						Г	0.0		(0)	2		DI	14	Τ.				roc			_	-		<u> </u>	_		
	BS		AE op			AB				AB											(AE				T			EL			, b,					SR		(SF		Y # c	BL			MA				8								
14	11	t,	υþ	"	17	μη	1"	#	14	1"	#	14	1"	#	14	1	#	μ	1"	"	μh h	1	tî.	h	- 1	17	υμ	1	"	~	-	10	۳ ⁽¹	#	-uh	11	#	νμ	"	# 0	"	. #		1"	#	_	IPL		-	-	m	-	-	-+	2	
																																														•	•	•	•	•	1	•	•	•	•	
																																				_										•	•				cifie					
E	4	3	DF	5	3	11 D6	6	4	DC	5	4	DI	6	4																+	+	+			11 D3	6	3	11 D4	9	3	╎					•	•	•	•	•	•	•	•	•	•	
1 E	5	4	81 DF	6	4	91 D6	6	4	81 D0	6	5	8' D[	1 7	5																					91 D3	6	3	91 D4	9	3																
E	4	3	CF	5	3	11 C6	6	4	co	5	4	CE	6	4																					11 C3	6	3	11 C4	9	3						•	•	•	•	•	•	•	•	•	•	
Е	5	4	81 CF	6	4	91 C6	6	4	81 CC	6	5	81 C[	7	5																					C3	6		C4		3																
E			EF		3	11 E6	8	4	EC	7	4	EI	8	4																					11 E3	8	3	11 E4	11	3						•	•	•	•	•	•	•	•	•	•	
																																														•	•	•	•	•	•	•	•	•	•	
7	4	3																																							T					•	•	•	•	•	•	•	•	•	•	
7	4	3																																		_	_									•	•	•	•	•	•	•	•	•	•	
E	3	3	3F	4	3	11 36	5	4	11 30	5	5	11 3E	6	5															-						11 33	5	3	11 34	8	3	+		╞			•	•	•	N	v	•	•	•	•	Z	
11 E	4	4	81 3F	5	4	91 36	5	4	91 30	5	5	91 3[	6	5																					91 33	5	3	91 34	8	3																
																																														•	•	•	N	V	•	•	•	•	z	
E	6	3	AF	7	3	11 A6	8	4	11 AC	8	5	11 A[	9	5																					11 A3	8	3	11 A4	11	3						•	•	•	N	v	•	•	•	•	z	
17	7	5																																			_									•	•	•	N	V	•	•	•	•	z	
1 6	7	5																																			_									•	•	•	N	v	•	•	•	•	z	
i11 7	10	8																												+	+						_			+	+					•	•	•	N	v	•	•	•	•	Z	

		0				_						_						ss							_			_			_		_		_
Symbol	Function	Operation length (Bit)		MF			MN			A	"		DIF					D																	IR), Y
			ор	n	#	op	-		ор	n	#	op	n	#	op	n	#	ор	n	#	ор	n	#	#	op	n	#	op	n	#	ор	n	#	op	n #
SUBS	S←S – IMM8	16				31 0B	2	3																											
SUBX (Note 4)	X ← X − IMM (IMM = 0 to 31)	16/8				01 40 + im		2																											
SUBY (Note 4)	Y←Y – IMM (IMM = 0 to 31)	16/8				01 60 + im		2																											
TAD n (Note 20)	DPRn←A (n = 0 to 3)	16	31 n2		2																														
TAS	S←A	16	31 82	2	2																														
TAX	X←A	16/8	C4	1	1																														
TAY	Y←A	16/8	D4	1	1																														
TBD n (Note 20)	DPRn←B (n = 0 to 3)	16	B1 n2	3	2																														
TBS	S←B	16	B1 82		2																														
ТВХ	X←B	16/8	81 C4		2																														
ТВҮ	Y←B	16/8	81 D4	2	2																														
TDA n (Note 20)	A←DPRn (n = 0 to 3)	16/8	31 40 + n2		2																														
TDB n (Note 20)	B←DPRn (n = 0 to 3)	16/8	B1 40 + n2		2																														
TDS	S←DPR0	16	31 73		2																														

																					ess																																	ster
A	BS	A	۱B	S,	ΧA	٨BS	S, Y		AB	L	AE	ЗL,	Х	(/	B	S)	L(/	AB:	S) (	(AB	S, 1	X)	S	TK	:	R	EL	. [	DIR,	b, I	r ae	BS,	b, F	2	SF	2	(S	R),	Υ	Bl	K	1	MА	A	10	9	8	7	6	5	4	3	2	1 0
ор	n i	# c	pp	n	₿ C	pp I	n #	op	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	# (	ор	n	# C	pp	n i	‡ 0	p n	n #	t of	o n	#	ор	n	# C	p	h #	ŧ op	n	#		IPL	L	Ν	V	m	х	D	1 2	z c
		Τ		Τ	Т	Т	Т		Γ																		Ι			Τ		Γ	Τ	Τ	Γ					Τ	Τ	Τ						N	v		•		• [z	z c
																																																						1
																																																N	v		•		•	zc
		1			$\perp$																																																$\perp$	$\perp$
																																															•	N	v		•	•	•   z	zc
4	+	+	+	4	+	+	+	1	L										_	4	4	_		_	4	_	4	_	+	+	+	+	+	1	$\vdash$				+	+	+	+				μ						_	+	+
																																													•	•	•	•	•	•	•	•	•  •	•
								1																											[																			
								1																											[																			
+	+	+	+	$\downarrow$	+	+	+	+	$\vdash$	-	$\parallel$		$\square$	H					_	4	+	-		_	+	+	4	+	+	+	+	+	+	+	1	-	$\square$		+	+	+	+		$\parallel$		μ		$\square$	$\square$		-	+	+	+
								1																											1										•	•	•	•	•	•	•	•	۰ŀ	•
									1																															1			[											
								1																											1																			
+	+	+	+	+	+	+	+	+	┞	$\vdash$	$\vdash$	$\vdash$	H	H					+	+	+	+	+	╡	+	+	+	+	+	+	+	+	+	+	+	┞	$\square$	+	+	+	+	+	$\vdash$	$\vdash$	$\vdash$		$\vdash$	$\vdash$	$\square$		$\downarrow$	+	+	+
								1																											1										•	•	•	Ν	•	•	•	•	•   z	: •
									1																																		[								J			
+	+	+	+	+	+	+	+	+	┞	$\vdash$	$\square$	-	$\vdash$	$\vdash$					+	+	+	+	+	+	+	+	+	+	+	+	+	+	╀	+	⊢	-	H	+	+	+	+	+	-	$\vdash$	$\vdash$	μ	$\vdash$	$\mathbb{H}$	$\square$		+	+	+	+
									1																															1			[		•	•	•	Ν	•	•	٠	•	•   z	: <b> •</b>
								1																											[																			
								1																											1																			
+	+	+	+	+	+	+	+	+	┞	+	H	-	Н	$\vdash$					+	+	+	+	+	+	+	+	+	+	+	+	+	+	╀	+	╀	$\vdash$	H	+	+	+	+	+	$\vdash$	H	$\vdash$	$\square$	$\vdash$	Н	$\vdash$		+	+	+	+
								1																											1										•	•	•	•	•	•	•	•	• •	·ŀ
									1																																		[											
								1																											1																			
+	+	+	+	+	+	+	+	+	┞	+	H	-	Н	$\vdash$					+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	╀	$\vdash$	H	+	+	+	+	+	$\vdash$	$\mathbb{H}$	$\vdash$	$\square$	$\vdash$	Н	$\vdash$		+	+	+	+
									1																											1							[		•	•	•	•	•	•	•	•	۰ŀ	·  •
								1																											[																			
									1																															1			[											
+	+	+	+	+	+	+	+	+	┝	+	H	$\vdash$	Н	H	Η		$\mid$		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	╀	+	H	+	+	+	+	+	┝	$\mathbb{H}$	$\vdash$	Η	$\vdash$	Н	$\vdash$		+	+	+	+
								1																											[										•	•	•	N	•	•	•	•	•	<u>z</u>  •
								1																											1																			
								1																											1																			
+	+	+	+	+	+	+	+	+	┢	+	H	$\vdash$	Η	Н	Η		Η		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Н	+	+	+	+	+	┢	$\vdash$	Η	Η	$\vdash$	H	Η		┥	+	+	+
								1																											[										•	<b> </b> •	•	N	•	•	•	•	'  ^z	<u>-</u>  •
								1																											1																			
									1																											1							[											
┥	+	+	+	+	+	+	+	+	t	+	H		Η	H	Η				+	┥	+	+	+	┥	+	+	┥	+	+	+	+	+	+	+	+	$\vdash$	Η	+	+	+	$^{+}$	+		H		H						+	+	<u>.</u>
								1																											1										•	<b> </b>	<b> </b>		•	•	•	•	'	• •
									1																															1			[											
								1																											[																			
╡	+	t	t	1	T	t	t	t	t	T	П		Π	Π			Π		+	┥	1	1	1	t	+	1	1	1	t	T	t	t	t	t	t		Π		+	t	t	t		Π		H	1.	N					.†.	<u>-</u> •
									1																															1			[		'	ľ	1		<b> </b>		-	1	·   2	· *
								1																											1																			
								1	1																	_[									1											Ľ								
T		T	T	T	T	Τ	Τ		Γ										1	T	T			T	1	T	T		T	T		Τ	T	Τ	Γ					T	T												.1.	Τ.
									1																																		[		Ľ	Ľ		Ľ			1	ľ	1	ľ
									1																																		[								J			
								1																											[																			
																		_	_																										_			_					-	

Processor Status register

			Γ															ssi														_	-
Symbol	Function	Operation length (Bit)		M			IM			A			DIF		D	R,	Х	DI	R, '	Y	(D	IR	) (	DIF	R, X	) ([	DIR	), Y	L(	DIF	R) [	_(DI	R), Y
							p n	1 #	op	p r	n #	op	n	#	ор	n	#	op	n	# c	pp	n	# 0	p r	ז #	op	o n	#	ор	n	# c	λb I	n #
TSA	A←S	16/8	31 92		2	2																											
TSB	B←S	16/8	B1 92		2	2																											
TSD	DPR0←S	16	31 70		2	!																											
TSX	X←S	16/8	31 F2		2	!																											
TXA	A←X	16/8	A4	1	1																											Ť	T
ТХВ	B←X	16/8	81 A4		2	2																											
TXS	S←X	16/8	31 E2		2	2																											
TXY	Y←X	16/8	31 C2	2	2	2																											
TYA	A←Y	16/8	B4	1	1	I																											
ТҮВ	B←Y	16/8	81 B4	2	2	2																											
ТҮХ	X—Y	16/8	31 D2	2	2																												
WIT	CPU clock stopped	-	31 10		2																												
ХАВ	A≒B	16/8	55	2	1	I																										Ī	

	Т						T			Т											:55										_			_	_		Т			T			Τ.					Les							
ABS	14	ABS	S, )	K A	BS	<u>s, '</u>	1	AB	SL.	4	٩BI	L, )	4	(A	BS	5)	L(A	BS	5)(	AB	S, )	()	S	TK	-	R	EL	•	DIR	ζ, b,	R	ABS	5, b,	, R	- 5	SR	(	SR	t), `	1	BL	ĸ	1	MA	A	10	9	8 L	7	6	5	4	3	2	1
p n i	# c	i qi	n #	0	p r	n #	0	p r	† ۱	¢ α	pp	n	# (	р	n	#	ор	n	# 0	op	n	# (	рр	n	#	ор	n	#	ор	n	#	ор	n	#	ор	n	# c	pp I	n ‡	[‡] 0	p r	1 #	op	n	1 #										
																																														•	•	•	N	•	•	•	•	•	z
																																														•	•	•	N	•	•	•	•	•	z
																																									ľ					•	•	•	•	•	•	•	•	•	•
		T	Ī																																											•	•	•	N	•	•	•	•	•	z
																																														•	•	•	N	•	•	•	•	•	z
		T																																												•	•	•	N	•	•	•	•	•	z
																																														•	•	•	•	•	•	•	•	•	•
		Ī	Ī																																											•	•	•	N	•	•	•	•	•	Z
		Ī																																												•	•	•	N	•	•	•	•	•	Z
																																														•	•	•	N	•	•	•	•	•	z
		T																																												•	•	•	N	•	•	•	•	•	z
				ĺ																																										•	•	•	•	•	•	•	•	•	•
																																														•	•	•	N	•	•	•	•	•	Z

Addressing Modes

## APPENDIX

#### Appendix 1. 7900 Series machine instructions

#### Notes for machine instructions table

This table lists the minimum number of instruction cycles for each instruction. The number of cycles of the addressing mode related with DPRn (n = 0 to 3) is applied when  $DPRn_{L} = 0$ . When  $DPRn_{L} \neq 0$ , add 1 to the number of cycles.

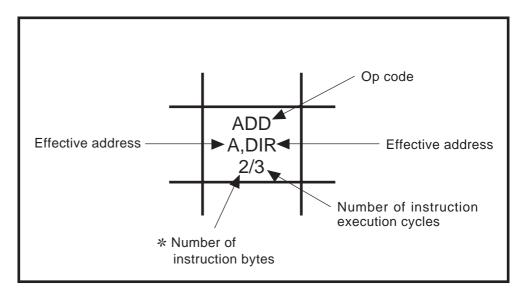
The number of cycles also varies according to the number of bytes fetched into the instruction queue buffer, or according to whether the memory accessed is at an odd address or an even address. Furthermore, it also varies when the external area is accessed with BYTE = "H."

- Note 1. The op code at the upper row is used for accumulator A, and the op code at the lower row is used for accumulator B.
- Note 2. When handing 16-bit data with flag m = 0 in the IMM addressing mode, add 1 to the numder of bytes (#).
- Note 3. When handing 16-bit data with flag m = 0, add 1 to the number of bytes.
- Note 4. Imm is the immediate value specified with an operand.
- Note 5. The op code at the upper row is used for branching in the range of -128 to +127, and the op code at the lower row is used for branching in the range of -32768 to +32767.
- Note 6. The BRK instruction is a reserved instruction for debugging tools; it cannot be used when an emulator is used.
- Note 7. Any value from 0 through 15 is placed in an "n" in column "Addressing Modes."
- Note 8. When handling 16-bit data with flag x = 0 in the IMM addressing mode, add 1 to the numder of bytes.
- Note 9. The number of cycles is the case of the 16-bit ÷ 8-bit operation. In the case of the 32-bit ÷ 16-bit operation, add 8 to the number of cycles.
- Note 10. When a zero division interrupt occurs, the number of cycles is 16 cycles. It is regardless of the data length.
- Note 11. When placing a value in any of DPRs, the lower row is applied. When placing values to multiple DPRs, the lower row is applied. The letter "i" represents the number of DPRn specified: 1 to 4.
- Note 12. A "?" indicates that the bit corressing to the specified DPRn becomes "1."
- Note 13. When the source is in the addressing mode and flag m = 0, the number of bytes (#) is incremented by n (n = 0 to 15).
- Note 14. The number of cycles of the case of the 8-bit X 8-bit operation. In the case of the 16-bit X 16-bit operation, add 4 to the number of cycles.

- Note 15. The number of cycles is the case where the number of bytes to be transferred (#) is even. When the number of bytes to be transferred (#) is odd, the number is calculated as;  $5 \times i + 10$
- Note 16. The number of cycles is the case where the number of bytes to be transferred (#) is even. When the number of bytes to be transferred (#) is odd, the number is calculated as; 5 X i + 14 Note that it is 10 cycles in the case of 1-byte thanster.
- Note 17. Add the number of cycles corresponding to the registers to be stored. in is the number of registers to be stored among A, B, X, Y, DPR0, and PS. i2 is the number of registers to be stored between

Note 18. Letter "i" indicates the number of registers to be restored.

DT and PG


Note 19. The number of cycles is applied when flag m = "1." When flag m="0," the number is calculated as;

18 X imm + 5

Note 20. Any value from 0 through 3 is placed in an "n" in column "Addressing Modes."

[How to use these tables]

- First, see instruction code table 0-A.
- For an instruction of which op code consists of 2 bytes, the code corresponding to the 2nd byte is listed in another table. The 1st byte of the instruction listed in another table is indicated as "PAGE XX" in instruction code table 0-A.
- See the following:



* The inside of parentheses is applied when 16-bit data is handled with flag m = "0" or flag x= "0." Unless otherwise noted, the instruction is unaffected by flags m and x.

Instruction code table 0-A

	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	decimal notation	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	0	BRK (Note 1) IMP 2/15	PAGE10	LDX DIR 2/3	ASL A 1/1	SEC IMP 1/1	SEI IMP 1/4		LDX ABS 3/3	LDAB A,(DIR),Y 2/6	LDAB A,L(DIR),Y 2/8	LDAB A,DIR 2/3	LDAB A,DIR,X 2/4	LDAB A,ABL 4/4	LDAB A,ABL,X 4/5	LDAB A,ABS 3/3	LDAB A,ABS,X 3/4
0001	1	BPL REL 2/6	PAGE1-A	LDY DIR 2/3	ROL A 1/1	CLC IMP 1/1	CLI IMP 1/3	LDA A,IMM 2(3)/1	LDY ABS 3/3	LDA A,(DIR),Y 2/6	LDA A,L(DIR),Y 2/8	LDA A,DIR 2/3	LDA A,DIR,X 2/4	LDA A,ABL 4/4	LDA A,ABL,X 4/5	LDA A,ABS 3/3	LDA A,ABS,X 3/4
0010	2	BRA REL 2/5	PAGE2-A	CPX DIR 2/3	ANDB A,IMM 2/1	NEG A 1/1	SEM IMP 1/3	ADD A,IMM 2(3)/1	LDXB IMM 2/1	LDAB A,IMM 2/1	ADDB A,IMM 2/1	ADD A,DIR 2/3	ADD A,DIR,X 2/4	LDAD E,IMM 5/3	ADDD E,IMM 5/3	ADD A,ABS 3/3	ADD A,ABS,X 3/4
0011	3	BMI REL 2/6	PAGE3-A	CPY DIR 2/3	EORB A,IMM 2/1	EXTZ A 1/1	EXTS A 1/1	SUB A,IMM 2(3)/1	LDYB IMM 2/1	CMPB A,IMM 2/1	SUBB A,IMM 2/1	SUB A,DIR 2/3	SUB A,DIR,X 2/4	CMPD E,IMM 5/3	SUBD E,IMM 5/3	SUB A,ABS 3/3	SUB A,ABS,X 3/4
0100	4	BGTU REL 2/6	PAGE4	BBSB DIR,b,REL 4/8	LSR A 1/1	CLRB A 1/1	CLM IMP 1/3	CMP A,IMM 2(3)/1	BBSB ABS,b,REL 5/8	MOVMB DIR/DIR 3/6		CMP A,DIR 2/3	CMP A,DIR,X 2/4	MOVMB DIR/ABS 4/6	MOVMB DIR/ABS,X 4/7	CMP A,ABS 3/3	CMP A,ABS,X 3/4
0101	5	BVC REL 2/6	PAGE5	BBCB DIR,b,REL 4/8	ROR A 1/1	CLR A 1/1	XAB IMP 1/2	ORA A,IMM 2(3)/1	BBCB ABS,b,REL 5/8	MOVM DIR/DIR 3/6		ORA A,DIR 2/3	ORA A,DIR,X 2/4	MOVM DIR/ABS 4/6	MOVM DIR/ABS,X 4/7	ORA A,ABS 3/3	ORA A,ABS,X 3/4
0110	6	BLEU REL 2/6	PAGE6	CBEQB DIR/IMM,REL 4/8	ORAB A,IMM 2/1	ASR A 1/1	CLV IMP 1/1	AND A,IMM 2(3)/1	PUL STK 2/Note 2	MOVMB ABS/DIR 4/5	MOVMB ABS/DIR,X 4/6	AND A,DIR 2/3	AND A,DIR,X 2/4	MOVMB ABS/ABS 5/5		AND A,ABS 3/3	AND A,ABS,X 3/4
0111	7	BVS REL 2/6	PAGE7	CBNEB DIR/IMM,REL 4/8		NOP IMP 1/1		EOR A,IMM 2(3)/1	PLD n /RTLD n /RTSD n STK 2/Note 3	MOVM ABS/DIR 4/5	MOVM ABS/DIR,X 4/6	EOR A,DIR 2/3	EOR A,DIR,X 2/4	MOVM ABS/ABS 5/5		EOR A,ABS 3/3	EOR A,ABS,X 3/4
1000	8	BGT REL 2/6	PAGE0-B	INC DIR 2/6	PHD STK 1/4	RTS IMP 1/7	PHA STK 1/4	MOVM DIR/IMM 3(4)/5	INC ABS 3/6	LDAD E,(DIR),Y 2/9	LDAD E,L(DIR),Y 2/11	LDAD E,DIR 2/6	LDAD E,DIR,X 2/7	LDAD E,ABL 4/7	LDAD E,ABL,X 4/8	LDAD E,ABS 3/6	LDAD E,ABS,X 3/7
1001	9	BCC REL 2/6	PAGE1-B	DEC DIR 2/6	PLD STK 1/5	RTL IMP 1/10	PLA STK 1/4	MOVM ABS/IMM 4(5)/4	DEC ABS 3/6	CLP IMM 2/4	SEP IMM 2/3	ADDD E,DIR 2/6	ADDD E,DIR,X 2/7	JMP ABS 3/4	JSR ABS 3/6	ADDD E,ABS 3/6	ADDD E,ABS,X 3/7
1010	А	BLE REL 2/6	PAGE2-B	CBEQB A/IMM,REL 3/6	INC A 1/1	TXA IMP 1/1	PHP STK 1/4	CBEQ A/IMM,REL 3(4)/6	BRAL REL 3/5	PSH STK 2/Note 4	MOVMB DIR/IMM 3/5	SUBD E,DIR 2/6	SUBD E,DIR,X 2/7	JMPL ABL 4/5	JSRL ABL 4/7	SUBD E,ABS 3/6	SUBD E,ABS,X 3/7
1011	В	BCS REL 2/6	PAGE3-B	CBNEB A/IMM,REL 3/6	DEC A 1/1	TYA IMP 1/1	PLP STK 1/5	CBNE A/IMM,REL 3(4)/6		LDD n /PHD n /PHLD n STK/IMM /Note 5 and 6	MOVMB ABS/IMM 4/4	CMPD E,DIR 2/6	CMPD E,DIR,X 2/7	JMP (ABS,X) 3/7	JSR (ABS,X) 3/8	CMPD E,ABS 3/6	CMPD E,ABS,X 3/7
1100	С	BGE REL 2/6	PAGE8	CLRMB DIR 2/5	INX IMP 1/1	TAX IMP 1/1	PHX STK 1/4	LDX IMM 2(3)/1	CLRMB ABS 3/5	STAB A,(DIR),Y 2/7	STAB A,L(DIR),Y 2/9	STAB A,DIR 2/4	STAB A,DIR,X 2/5	STAB A,ABL 4/5	STAB A,ABL,X 4/6	STAB A,ABS 3/4	STAB A,ABS,X 3/5
1101	D	BNE REL 2/6	PAGE9	CLRM DIR 2/5	INY IMP 1/1	TAY IMP 1/1	PLX STK 1/4	LDY IMM 2(3)/1	CLRM ABS 3/5	STA A,(DIR),Y 2/7	STA A,L(DIR),Y 2/9	STA A,DIR 2/4	STA A,DIR,X 2/5	STA A,ABL 4/5	STA A,ABL,X 4/6	STA A,ABS 3/4	STA A,ABS,X 3/5
1110	Е	BLT REL 2/6	ABS A 1/3	STX DIR 2/4	DEX IMP 1/1	CLRX IMP 1/1	PHY STK 1/4	CPX IMM 2(3)/1	STX ABS 3/4	STAD E,(DIR),Y 2/9	STAD E,L(DIR),Y 2/11	STAD E,DIR 2/6	STAD E,DIR,X 2/7	STAD E,ABL 4/7	STAD E,ABL,X 4/8	STAD E,ABS 3/6	STAD E,ABS,X 3/7
1111	F	BEQ REL 2/6	RTI IMP 1/12	STY DIR 2/4	DEY IMP 1/1	CLRY IMP 1/1	PLY STK 1/4	CPY IMM 2(3)/1	STY ABS 3/4	<			R	SR EL			->

#### Instruction code table 1-A (PAGE 1-A)

_																	
	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	decima notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0	LDAB A,(DIR) 3/6	LDAB A,(DIR,X) 3/7	LDAB A,L(DIR) 3/8	LDAB A,SR 3/5	LDAB A,(SR),Y 3/8		LDAB A,ABS,Y 4/5									
0001	1	LDA A,(DIR) 3/6	LDA A,(DIR,X) 3/7	LDA A,L(DIR) 3/8	LDA A,SR 3/5	LDA A,(SR),Y 3/8		LDA A,ABS,Y 4/5									
0010	2	ADD A,(DIR) 3/6	ADD A,(DIR,X) 3/7	ADD A,L(DIR) 3/8	ADD A,SR 3/5	ADD A,(SR),Y 3/8		ADD A,ABS,Y 4/5		ADD A,(DIR),Y 3/7	ADD A,L(DIR),Y 3/9			ADD A,ABL 5/5	ADD A,ABL,X 5/6		
0011	3	SUB A,(DIR) 3/6	SUB A,(DIR,X) 3/7	SUB A,L(DIR) 3/8	SUB A,SR 3/5	SUB A,(SR),Y 3/8		SUB A,ABS,Y 4/5		SUB A,(DIR),Y 3/7	SUB A,L(DIR),Y 3/9			SUB A,ABL 5/5	SUB A,ABL,X 5/6		
0100	4	CMP A,(DIR) 3/6	CMP A,(DIR,X) 3/7	CMP A,L(DIR) 3/8	CMP A,SR 3/5	CMP A,(SR),Y 3/8		CMP A,ABS,Y 4/5		CMP A,(DIR),Y 3/7	CMP A,L(DIR),Y 3/9			CMP A,ABL 5/5	CMP A,ABL,X 5/6		
0101	5	ORA A,(DIR) 3/6	ORA A,(DIR,X) 3/7	ORA A,L(DIR) 3/8	ORA A,SR 3/5	ORA A,(SR),Y 3/8		ORA A,ABS,Y 4/5		ORA A,(DIR),Y 3/7	ORA A,L(DIR),Y 3/9			ORA A,ABL 5/5	ORA A,ABL,X 5/6		
0110	6	AND A,(DIR) 3/6	AND A,(DIR,X) 3/7	AND A,L(DIR) 3/8	AND A,SR 3/5	AND A,(SR),Y 3/8		AND A,ABS,Y 4/5		AND A,(DIR),Y 3/7	AND A,L(DIR),Y 3/9			AND A,ABL 5/5	AND A,ABL,X 5/6		
0111	7	EOR A,(DIR) 3/6	EOR A,(DIR,X) 3/7	EOR A,L(DIR) 3/8	EOR A,SR 3/5	EOR A,(SR),Y 3/8		EOR A,ABS,Y 4/5		EOR A,(DIR),Y 3/7	EOR A,L(DIR),Y 3/9			EOR A,ABL 5/5	EOR A,ABL,X 5/6		
1000	8	LDAD E,(DIR) 3/9	LDAD E,(DIR,X) 3/10	LDAD E,L(DIR) 3/11	LDAD E,SR 3/8	LDAD E,(SR),Y 3/11		LDAD E,ABS,Y 4/8									
1001	9	ADDD E,(DIR) 3/9	ADDD E,(DIR,X) 3/10	ADDD E,L(DIR) 3/11	ADDD E,SR 3/8	ADDD E,(SR),Y 3/11		ADDD E,ABS,Y 4/8		ADDD E,(DIR),Y 3/10	ADDD E,L(DIR),Y 3/12			ADDD E,ABL 5/8	ADDD E,ABL,X 5/9		
1010	A	SUBD E,(DIR) 3/9	SUBD E,(DIR,X) 3/10	SUBD E,L(DIR) 3/11	SUBD E,SR 3/8	SUBD E,(SR),Y 3/11		SUBD E,ABS,Y 4/8		SUBD E,(DIR),Y 3/10	SUBD E,L(DIR),Y 3/12			SUBD E,ABL 5/8	SUBD E,ABL,X 5/9		
1011	В	CMPD E,(DIR) 3/9	CMPD E,(DIR,X) 3/10	CMPD E,L(DIR) 3/11	CMPD E,SR 3/8	CMPD E,(SR),Y 3/11		CMPD E,ABS,Y 4/8		CMPD E,(DIR),Y 3/10	CMPD E,L(DIR),Y 3/12			CMPD E,ABL 5/8	CMPD E,ABL,X 5/9		
1100	С	STAB A,(DIR) 3/7	STAB A,(DIR,X) 3/8	STAB A,L(DIR) 3/9	STAB A,SR 3/6	STAB A,(SR),Y 3/9		STAB A,ABS,Y 4/6									
1101	D	STA A,(DIR) 3/7	STA A,(DIR,X) 3/8	STA A,L(DIR) 3/9	STA A,SR 3/6	STA A,(SR),Y 3/9		STA A,ABS,Y 4/6									
1110	Е	STAD E,(DIR) 3/9	STAD E,(DIR,X) 3/10	STAD E,L(DIR) 3/11	STAD E,SR 3/8	STAD E,(SR),Y 3/11		STAD E,ABS,Y 4/8									
1111	F																

	011011										_						
	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	adecima notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
0000	0											ASL DIR 3/7	ASL DIR,X 3/8			ASL ABS 4/7	ASL ABS,X 4/8
0001	1											ROL DIR 3/7	ROL DIR,X 3/8			ROL ABS 4/7	ROL ABS,X 4/8
0010	2											LSR DIR 3/7	LSR DIR,X 3/8			LSR ABS 4/7	LSR ABS,X 4/8
0011	3											ROR DIR 3/7	ROR DIR,X 3/8			ROR ABS 4/7	ROR ABS,X 4/8
0100	4											ASR DIR 3/7	ASR DIR,X 3/8			ASR ABS 4/7	ASR ABS,X 4/8
0101	5																
0110	6																
0111	7																
1000	8	ADC A,(DIR) 3/7	ADC A,(DIR,X) 3/8	ADC A,L(DIR) 3/9	ADC A,SR 3/6	ADC A,(SR),Y 3/9		ADC A,ABS,Y 4/6		ADC A,(DIR),Y 3/8	ADC A,L(DIR),Y 3/10	ADC A,DIR 3/5	ADC A,DIR,X 3/6	ADC A,ABL 5/6	ADC A,ABL,X 5/7	ADC A,ABS 4/5	ADC A,ABS,X 4/6
1001	9	ADCD E,(DIR) 3/9	ADCD E,(DIR,X) 3/10	ADCD E,L(DIR) 3/11	ADCD E,SR 3/8	ADCD E,(SR),Y 3/11		ADCD E,ABS,Y 4/8		ADCD E,(DIR),Y 3/10	ADCD E,L(DIR),Y 3/12	ADCD E,DIR 3/7	ADCD E,DIR,X 3/8	ADCD E,ABL 5/8	ADCD E,ABL,X 5/9	ADCD E,ABS 4/7	ADCD E,ABS,X 4/8
1010	A	SBC A,(DIR) 3/7	SBC A,(DIR,X) 3/8	SBC A,L(DIR) 3/9	SBC A,SR 3/6	SBC A,(SR),Y 3/9		SBC A,ABS,Y 4/6		SBC A,(DIR),Y 3/8	SBC A,L(DIR),Y 3/10	SBC A,DIR 3/5	SBC A,DIR,X 3/6	SBC A,ABL 5/6	SBC A,ABL,X 5/7	SBC A,ABS 4/5	SBC A,ABS,X 4/6
1011	В	SBCD E,(DIR) 3/9	SBCD E,(DIR,X) 3/10	SBCD E,L(DIR) 3/11	SBCD E,SR 3/8	SBCD E,(SR),Y 3/11		SBCD E,ABS,Y 4/8		SBCD E,(DIR),Y 3/10	SBCD E,L(DIR),Y 3/12	SBCD E,DIR 3/7	SBCD E,DIR,X 3/8	SBCD E,ABL 5/8	SBCD E,ABL,X 5/9	SBCD E,ABS 4/7	SBCD E,ABS,X 4/8
1100	с	MPY (DIR) 3/11/Note 7	MPY (DIR,X) 3/12/Note 7	MPY L(DIR) 3/13/Note 7	MPY SR 3/10/Note 7	MPY (SR),Y 3/13/Note 7		MPY ABS,Y 4/10/Note 7		MPY (DIR),Y 3/12/Note 7	MPY L(DIR),Y 3/14/Note 7	MPY DIR 3/9/Note 7	MPY DIR,X 3/10/Note 7	MPY ABL 5/10/Note 7	MPY ABL,X 5/11/Note 7	MPY ABS 4/9/Note 7	MPY ABS,X 4/10/Note 7
1101	D	MPYS (DIR) 3/11/Note 7	MPYS (DIR,X) 3/12/Note 7	MPYS L(DIR) 3/13/Note 7	MPYS SR 3/10/Note 7	MPYS (SR),Y 3/13/Note 7		MPYS ABS,Y 4/10/Note 7		MPYS (DIR),Y 3/12/Note 7	MPYS L(DIR),Y 3/14/Note 7	MPYS DIR 3/9/Note 7	MPYS DIR,X 3/10/Note 7	MPYS ABL 5/10/Note 7	MPYS ABL,X 5/11/Note 7	MPYS ABS 4/9/Note 7	MPYS ABS,X 4/10/Note 7
1110	E	DIV (DIR) 3/18/Note 8,9	DIV (DIR,X) 3/19/Note 8,9	DIV L(DIR) 3/20/Note 8,9	DIV SR 3/17/Note 8,9	DIV (SR),Y 3/20/Note 8,9		DIV ABS,Y 4/17/Note 8,9		DIV (DIR),Y 3/19/Note 8,9	DIV L(DIR),Y 3/21/Note 8,9	DIV DIR 3/16/Note 8,9	DIV DIR,X 3/17/Note 8,9	DIV ABL 5/17/Note 8,9	DIV ABL,X 5/18/Note 8,9	DIV ABS 4/16/Note 8,9	DIV ABS,X 4/17/Note 8,9
1111	F	DIVS (DIR) 3/25/Note 8,9	DIVS (DIR,X) 3/26/Note 8,9	DIVS L(DIR) 3/27/Note 8,9	DIVS SR 3/24/Note 8,9	DIVS (SR),Y 3/27/Note 8,9		DIVS ABS,Y 4/24/Note 8,9		DIVS (DIR),Y 3/26/Note 8,9	DIVS L(DIR),Y 3/28/Note 8,9	DIVS DIR 3/23/Note 8,9	DIVS DIR,X 3/24/Note 8,9	DIVS ABL 5/24/Note 8,9	DIVS ABL,X 5/25/Note 8,9	DIVS ABS 4/23/Note 8,9	DIVS ABS,X 4/24/Note 8,9

Instruction code table 2-A (PAGE 2-A)

#### Instruction code table 3-A (PAGE 3-A)

	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4 Hex	adecimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	0			TAD,0 IMP 2/3					RLA A 3(4)/n+5 /Note 10			ADDS IMM 3/2	SUBS IMM 3/2				
0001	1	WIT IMP 2/-		TAD,1 IMP 2/3								ADCB A,IMM 3/3	SBCB A,IMM 3/3	ADCD E,IMM 6/4	SBCD E,IMM 6/4		
0010	2			TAD,2 IMP 2/3								MVP BLK 4/5i+9/Note 11	MVN BLK 4/5i+5/Note 12				
0011	3	STP IMP 2/-		TAD,3 IMP 2/3								MOVMB DIR,X/IMM 4/7	MOVMB ABS,X/IMM 5/6				
0100	4	PHT STK 2/4		TDA,0 IMP 2/2					MOVM DIR,X/IMM 4(5)/7			LDT IMM 3/4	PEI STK 3/7	PEA STK 4/5	PER STK 4/6		
0101	5	PLT STK 2/6		TDA,1 IMP 2/2					MOVM ABS,X/IMM 5(6)/6		Multip	RMPA blied accumu 3/14imm+5 /Note 13	Ilation	JMP (ABS) 4/7	JMPL L(ABS) 4/9		
0110	6	PHG STK 2/4		TDA,2 IMP 2/2													
0111	7	TSD IMP 2/4		TDA,3 IMP 2/2	TDS IMP 2/2												
1000	8	NEGD E 2/4		TAS IMP 2/2					ADC A,IMM 3(4)/3								
1001	9	ABSD E 2/5		TSA IMP 2/2													
1010	А	EXTZD E 2/3							SBC A,IMM 3(4)/3								
1011	В	EXTSD E 2/5															
1100	С			TXY IMP 2/2					MPY IMM 3(4)/8/Note 7								
1101	D			TYX IMP 2/2					MPYS IMM 3(4)/8/Note 7								
1110	Е			TXS IMP 2/2					DIV IMM 3(4)/15/Note 8,9								
1111	F			TSX IMP 2/2					DIVS IMM 3(4)/22/Note 8,9								

			· · · ·														
	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4 Hexa	adecima notation	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	0						LDX DIR,Y 3/5	LDX ABS,Y 4/5									
0001	1												LDY DIR,X 3/5				LDY ABS,X 4/5
0010	2															CPX ABS 4/4	
0011	3															CPY ABS 4/4	
0100	4											BBS DIR,b,REL 5(6)/9				BBS ABS,b,REL 6(7)/9	
0101	5											BBC DIR,b,REL 5(6)/9				BBC ABS,b,REL 6(7)/9	
0110	6											CBEQ DIR/IMM,REL 5(6)/9					
0111	7											CBNE DIR/IMM,REL 5(6)/9					
1000	8												INC DIR,X 3/8				INC ABS,X 4/8
1001	9												DEC DIR,X 3/8				DEC ABS,X 4/8
1010	А																
1011	В																
1100	с																
1101	D																
1110	Е						STX DIR,Y 3/6										
1111	F												STY DIR,X 3/6				

Instruction code table 4 (PAGE 4)

#### Instruction code table 5 (PAGE 5)

	03-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4 Hei	xadecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0000	0			ADDMB DIR/IMM 4/7	ADDM DIR/IMM 4(5)/7			ADDMB ABS/IMM 5/7	ADDM ABS/IMM 5(6)/7								
0001	1			SUBMB DIR/IMM 4/7	SUBM DIR/IMM 4(5)/7			SUBMB ABS/IMM 5/7	SUBM ABS/IMM 5(6)/7								
0010	2			CMPMB DIR/IMM 4/5	CMPM DIR/IMM 4(5)/5			CMPMB ABS/IMM 5/5	CMPM ABS/IMM 5(6)/5								
0011	3			ORAMB DIR/IMM 4/7	ORAM DIR/IMM 4(5)/7			ORAMB ABS/IMM 5/7	ORAM ABS/IMM 5(6)/7								
0100	4																
0101	5																
0110	6			ANDMB DIR/IMM 4/7	ANDM DIR/IMM 4(5)/7			ANDMB ABS/IMM 5/7	ANDM ABS/IMM 5(6)/7								
0111	7			EORMB DIR/IMM 4/7	EORM DIR/IMM 4(5)/7			EORMB ABS/IMM 5/7	EORM ABS/IMM 5(6)/7								
1000	8				ADDMD DIR/IMM 7/10				ADDMD ABS/IMM 8/10								
1001	9				SUBMD DIR/IMM 7/10				SUBMD ABS/IMM 8/10								
1010	А				CMPMD DIR/IMM 7/7				CMPMD ABS/IMM 8/7								
1011	В				ORAMD DIR/IMM 7/10				ORAMD ABS/IMM 8/10								
1100	С																
1101	D																
1110	Е				ANDMD DIR/IMM 7/10				ANDMD ABS/IMM 8/10								
1111	F				EORMD DIR/IMM 7/10				EORMD ABS/IMM 8/10								

	3–D0																
	adecima	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4	notation	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0000	0	MOVRB DIR/IMM 2n+2/5n+3 /Note 14															$\rightarrow$
0001	1	MOVR DIR/IMM 2n(3n)+2/5n+3 /Note 14															$\rightarrow$
0010	2	MOVRB ABS/IMM 3n+2/4n+3/ Note 14															$\rightarrow$
0011	3	MOVR ABS/IMM 3n(4n)+2/4n+3 /Note 14															$\rightarrow$
0100	4	MOVRB DIR/DIR 2n+2/6n+3 /Note 14															
0101	5	MOVR DIR/DIR 2n+2/6n+3 /Note 14															$\rightarrow$
0110	6	MOVRB ABS/DIR 3n+2/5n+3 /Note 14															$\rightarrow$
0111	7	MOVR ABS/DIR 3n+2/5n+3 /Note 14															$\rightarrow$
1000	8	MOVRB DIR/ABS 3n+2/6n+3 /Note 14															$\rightarrow$
1001	9	MOVR DIR/ABS 3n+2/6n+3 /Note 14															
1010	A	MOVRB ABS/ABS 4n+2/5n+3 /Note 14															$\rightarrow$
1011	в	MOVR ABS/ABS 4n+2/5n+3 /Note 14															$\rightarrow$
1100	с																
1101	D																
1110	Е																
1111	F																

#### Instruction code table 6 (PAGE 6)

#### Instruction code table 7 (PAGE 7)

	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4 Hex	adecima	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0000	0	MOVRB DIR/ABS,X 3n+2/6n+3 /Note 14															<b></b>
0001	1	MOVR DIR/ABS,X 3n+2/6n+3 /Note 14															
0010	2																
0011	3																
0100	4																
0101	5																
0110	6	MOVRB ABS/DIR,X 3n+2/6n+3 /Note 14															
0111	7	MOVR ABS/DIR,X 3n+2/6n+3 /Note 14															
1000	8								DIR,t	SS b,REL 11							
1001	9																
1010	A								B DIR,t 4/	SC p,REL 11							
1011	в																
1100	с								ABS.	SS b,REL 10							
1101	D																
1110	Е								ABS,	SC b,REL /10							
1111	F																

11300	CIION				21												
	3-D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7–D4	adecima notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Ш	F
0000	0								LSF 2/im /Not	1,#n \ m+6 e 15							
0001	1																
0010	2								ROF 2/im /Not	R,#n m+6 e 15							
0011	3																
0100	4								ASL / 2/im /Not	.,#n m+6 e 15							
0101	5																
0110	6								ROL / 2/imi /Not	.,#n m+6 e 15							
0111	7																
1000	8								ASF 2/im /Note	1,#n m+6 e 15							
1001	9																
1010	А								DE	BNE M,REL							
1011	В								4/	12							
1100	С																
1101	D																
1110	Е																
1111	F																

Instruction code table 8 (PAGE 8)

#### Instruction code table 9 (PAGE 9)

	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	adecimal	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
0000	0								LSR 2/im /Not	D,#n							
0001	1								2/im /Not	m+8 e 16							
0010	2								ROR	D,#n							
0011	3								2/im /Not	m+8 e 16							
0100	4								ASL	D,#n							
0101	5								2/im /Not	m+8 e 16							
0110	6								ROL	D,#n							
0111	7								2/im /Not	m+8 e 16							
1000	8								ASR	D,#n m+8 e 16							
1001	9								2/Im /Not	m+8 e 16							
1010	А																
1011	в																
1100	С																
1101	D																
1110	E								ABS/IN	BNE /M,REL							
1111	F								5	/11							

					10/												
	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7–D4	adecimal	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0000	0								AD	DX IM							
0001	1								2	/2							
0010	2								AD	IDY							
0011	3								2	/2							
0100	4									IBX							
0101	5								2	/2							
0110	6								SL	IBY							
0111	7								2	/2							
1000	8								BS A,b, 3	SS REL /7							
1001	9																
1010	A								B A,b, 3	SC REL /7							
1011	в																
1100	С								DXE	3NE REL							
1101	D								IMM 3	7							
1110	Е								DYE	3NE							
1111	F								3	/7							

Instruction code table 10 (PAGE 10)

#### Instruction code table 0-B (PAGE 0-B)

	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4 Hex	adecimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	0				ASL B 2/2					LDAB B,(DIR),Y 3/7	LDAB B,L(DIR),Y 3/9	LDAB B,DIR 3/4	LDAB B,DIR,X 3/5	LDAB B,ABL 5/5	LDAB B,ABL,X 5/6	LDAB B,ABS 4/4	LDAB B,ABS,X 4/5
0001	1				ROL B 2/2			LDA B,IMM 3(4)/2		LDA B,(DIR),Y 3/7	LDA B,L(DIR),Y 3/9	LDA B,DIR 3/4	LDA B,DIR,X 3/5	LDA B,ABL 5/5	LDA B,ABL,X 5/6	LDA B,ABS 4/4	LDA B,ABS,X 4/5
0010	2				ANDB B,IMM 3/2	NEG B 2/2		ADD B,IMM 3(4)/2		LDAB B,IMM 3/2	ADDB B,IMM 3/2	ADD B,DIR 3/4	ADD B,DIR,X 3/5			ADD B,ABS 4/4	ADD B,ABS,X 4/5
0011	3				EORB B,IMM 3/2	EXTZ B 2/2	EXTS B 2/2	SUB B,IMM 3(4)/2		CMPB B,IMM 3/2	SUBB B,IMM 3/2	SUB B,DIR 3/4	SUB B,DIR,X 3/5			SUB B,ABS 4/4	SUB B,ABS,X 4/5
0100	4				LSR B 2/2	CLRB B 2/2		CMP B,IMM 3(4)/2				CMP B,DIR 3/4	CMP B,DIR,X 3/5			CMP B,ABS 4/4	CMP B,ABS,X 4/5
0101	5				ROR B 2/2	CLR B 2/2		ORA B,IMM 3(4)/2				ORA B,DIR 3/4	ORA B,DIR,X 3/5			ORA B,ABS 4/4	ORA B,ABS,X 4/5
0110	6				ORAB B,IMM 3/2	ASR B 2/2		AND B,IMM 3(4)/2				AND B,DIR 3/4	AND B,DIR,X 3/5			AND B,ABS 4/4	AND B,ABS,X 4/5
0111	7							EOR B,IMM 3(4)/2				EOR B,DIR 3/4	EOR B,DIR,X 3/5			EOR B,ABS 4/4	EOR B,ABS,X 4/5
1000	8						PHB STK 2/5										
1001	9						PLB STK 2/5										
1010	А			CBEQB B/IMM,REL 4/7	INC B 2/2	TXB IMP 2/2		CBEQ B/IMM,REL 4(5)/7									
1011	в			CBNEB B/IMM,REL 4/7	DEC B 2/2	TYB IMP 2/2		CBNE B/IMM,REL 4(5)/7									
1100	С					TBX IMP 2/2				STAB B,(DIR),Y 3/8	STAB B,L(DIR),Y 3/10	STAB B,DIR 3/5	STAB B,DIR,X 3/6	STAB B,ABL 5/6	STAB B,ABL,X 5/7	STAB B,ABS 4/5	STAB B,ABS,X 4/6
1101	D					TBY IMP 2/2				STA B,(DIR),Y 3/8	STA B,L(DIR),Y 3/10	STA B,DIR 3/5	STA B,DIR,X 3/6	STA B,ABL 5/6	STA B,ABL,X 5/7	STA B,ABS 4/5	STA B,ABS,X 4/6
1110	Е		ABS B 2/4														
1111	F																

Instru	ction	code ta	able 1-B	B (PAGE	<u>E 1-B)</u>												
	3–D0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D7-D4	adecimal notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0	LDAB B,(DIR) 3/6	LDAB B,(DIR,X) 3/7	LDAB B,L(DIR) 3/8	LDAB B,SR 3/5	LDAB B,(SR),Y 3/8		LDAB B,ABS,Y 4/5									
0001	1	LDA B,(DIR) 3/6	LDA B,(DIR,X) 3/7	LDA B,L(DIR) 3/8	LDA B,SR 3/5	LDA B,(SR),Y 3/8		LDA B,ABS,Y 4/5									
0010	2	ADD B,(DIR) 3/6	ADD B,(DIR,X) 3/7	ADD B,L(DIR) 3/8	ADD B,SR 3/5	ADD B,(SR),Y 3/8		ADD B,ABS,Y 4/5		ADD B,(DIR),Y 3/7	ADD B,L(DIR),Y 3/9			ADD B,ABL 5/5	ADD B,ABL,X 5/6		
0011	3	SUB B,(DIR) 3/6	SUB B,(DIR,X) 3/7	SUB B,L(DIR) 3/8	SUB B,SR 3/5	SUB B,(SR),Y 3/8		SUB B,ABS,Y 4/5		SUB B,(DIR),Y 3/7	SUB B,L(DIR),Y 3/9			SUB B,ABL 5/5	SUB B,ABL,X 5/6		
0100	4	CMP B,(DIR) 3/6	CMP B,(DIR,X) 3/7	CMP B,L(DIR) 3/8	CMP B,SR 3/5	CMP B,(SR),Y 3/8		CMP B,ABS,Y 4/5		CMP B,(DIR),Y 3/7	CMP B,L(DIR),Y 3/9			CMP B,ABL 5/5	CMP B,ABL,X 5/6		
0101	5	ORA B,(DIR) 3/6	ORA B,(DIR,X) 3/7	ORA B,L(DIR) 3/8	ORA B,SR 3/5	ORA B,(SR),Y 3/8		ORA B,ABS,Y 4/5		ORA B,(DIR),Y 3/7	ORA B,L(DIR),Y 3/9			ORA B,ABL 5/5	ORA B,ABL,X 5/6		
0110	6	AND B,(DIR) 3/6	AND B,(DIR,X) 3/7	AND B,L(DIR) 3/8	AND B,SR 3/5	AND B,(SR),Y 3/8		AND B,ABS,Y 4/5		AND B,(DIR),Y 3/7	AND B,L(DIR),Y 3/9			AND B,ABL 5/5	AND B,ABL,X 5/6		
0111	7	EOR B,(DIR) 3/6	EOR B,(DIR,X) 3/7	EOR B,L(DIR) 3/8	EOR B,SR 3/5	EOR B,(SR),Y 3/8		EOR B,ABS,Y 4/5		EOR B,(DIR),Y 3/7	EOR B,L(DIR),Y 3/9			EOR B,ABL 5/5	EOR B,ABL,X 5/6		
1000	8																
1001	9																
1010	А																
1011	в																
1100	С	STAB B,(DIR) 3/7	STAB B,(DIR,X) 3/8	STAB B,L(DIR) 3/9	STAB B,SR 3/6	STAB B,(SR),Y 3/9		STAB B,ABS,Y 4/6									
1101	D	STA B,(DIR) 3/7	STA B,(DIR,X) 3/8	STA B,L(DIR) 3/9	STA B,SR 3/6	STA B,(SR),Y 3/9		STA B,ABS,Y 4/6									
1110	Е																
1111	F																

#### Instruction code table 2-B (PAGE 2-B)

	Do																
	3-D0	0000	0001	0010	0011	0100	0101	0110		1000	1001	1010	1011	1100	1101	1110	1111
D7–D4	adecima notation	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0000	0																
0001	1																
0010	2																
0011	3																
0100	4																
0101	5																
0110	6																
0111	7																
1000	8	ADC B,(DIR) 3/9	ADC B,(DIR,X) 3/10	ADC B,L(DIR) 3/11	ADC B,SR 3/8	ADC B,(SR),Y 3/11		ADC B,ABS,Y 4/8		ADC B,(DIR),Y 3/10	ADC B,L(DIR),Y 3/12	ADC B,DIR 3/7	ADC B,DIR,X 3/8	ADC B,ABL 5/8	ADC B,ABL,X 5/9	ADC B,ABS 4/7	ADC B,ABS,X 4/8
1001	9																
1010	А	SBC B,(DIR) 3/9	SBC B,(DIR,X) 3/10	SBC B,L(DIR) 3/11	SBC B,SR 3/8	SBC B,(SR),Y 3/11		SBC B,ABS,Y 4/8		SBC B,(DIR),Y 3/10	SBC B,L(DIR),Y 3/12	SBC B,DIR 3/7	SBC B,DIR,X 3/8	SBC B,ABL 5/8	SBC B,ABL,X 5/9	SBC B,ABS 4/7	SBC B,ABS,X 4/8
1011	в																
1100	С																
1101	D																
1110	Е																
1111	F																

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1111 F
D7-D4         notation         0         1         2         3         4         5         6         7         8         9         A         B         C         D         E           0000         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	
0001         1         TBD1 IMP 23         TBD1 23         ADCB B,IMM 2/3         SBCB B,IMM 3/3         SBCB B,I	
0001         1         IMP         BIMM         BIM	
0010         2         IMP 2/3         Imp         Imp<	
0011         3         IMP 2/3         Imp         Imp<	
2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2         2/2 <td></td>	
0110 6 TDB,2 MP 2/2 TDB,3	
2/2 TDB3	
0111 7 TDB.3 MP	
1000 8 TBS HMP 2/2 ADC B,MM 3(4)/3	
1001 9 TSB IMP 2/2	
1010 A SBC B,IMM 3(4)/3	
1011 B	
1100 C	
1101 D	
1110 E	
1111 F	

Instruction code table 3-B (PAGE 3-B)

#### Notes for machine instructions table

This table lists the minimum number of instruction cycles for each instruction. The number of cycles of the addressing mode related with DPRn (n = 0 to 3) is applied when  $DPRn_{L} = 0$ . When  $DPRn_{L} \neq 0$ , add 1 to the number of cycles.

The number of cycles also varies according to the number of bytes fetched into the instruction queue buffer, or according to whether the memory accessed is at an odd address or an even address. Furthermore, it also varies when the external area is accessed with BYTE="H."

Note 1. The BRK instruction is a reserved instruction for debugging tools; it cannot be used when an emulator is used.

Note 2. 3i + 13	i is the number of registers to be restored.
-----------------	----------------------------------------------

Note 3.	PLDn : 11,	PLD (n1,, ni) : 3i + 8	(n1,, ni): 0 to 3 (numbers representing DPRn)
	RTLDn : 15,	RTLD (n1,, ni) : 3i + 12	i is the number of DPRs specified (1 to 4).
	RTSDn : 14,	RTSD (n1,, ni) : 3i + 11	

Note 4. 2i₁ + i₂ + 11 Add the number of cycles corresponding to the registers to be stored. i₁ is the number of registers to be stored among A, B, X, Y, DPR0, and PS. i₂ is the number of registers to be stored between DT and PG.

APPENDIX

Appendix 2. Hexadecimal instruction code tables

- Note 5.LDDn: 4,LDD  $(n_1, ..., n_i)$ : 2i + 2 $(n_1, ..., n_i)$ : 0 to 3 (numbers representing DPRn)PHDn: 2,PHD  $(n_1, ..., n_i)$ : 2i is the number of DPRs specified (1 to 4).PHLDn: 4,PHLD  $(n_1, ..., n_i)$ : 2i + 2
- Note 6.LDDn: 13,LDD  $(n_1, ..., n_i)$ : 2i + 11 $(n_1, ..., n_i)$ : 0 to 3 (numbers representing DPRn)PHDn: 12,PHD  $(n_1, ..., n_i)$ : i + 11i is the number of DPRs specified (1 to 4).PHLDn: 14,PHLD  $(n_1, ..., n_i)$ : 3i + 11
- Note 7. The number of cycles is the case of the 8-bit X 8-bit operation. Add 4 to the number of cycles in the case of the 16-bit X 16-bit operation.
- Note 8. The number of cycles is the case of the 16-bit ÷ 8-bit operation. Add 8 to the number of cycles in the case of the 32-bit ÷ 16-bit operation.
- Note 9. When a zero division interrupt occurs, the number of cycles is 16 cycles. It is regardless of the data length.
- Note 10. n is the number of rotation specified by imm. m = 0: n = 0 to 65535 m = 1: n = 0 to 255
- Note 11. The number of cycles is the case where the number of bytes to be transferred (#) is even. When the number of bytes to be transferred (#) is odd, the number is calculated as; 5 X i + 14

Note that it is 10 cycles in the case of 1-byte transfer.

- Note 12. The number of cycles is the case where the number of bytes to be transferred (#) is even. When the number of bytes to be transferred (#) is odd, the number is calculated as;  $5 \times i + 10$
- Note 13. The number of cycles is the case where flag m="1." When flag m="0," the number is calculated as;

18 X imm + 5 (imm = number of repeat times, 0 to 255)

Note 14. n = 0 to 15

Note 15. imm = 0 to 15

Note 16. imm = 0 to 31

### MITSUBISHI SEMICONDUCTORS Software Manual 7900 Series

Jul., First Edition 1998

Editioned by Committee of editing of Mitsubishi Semiconductor Software Manual

Published by Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

©1998 MITSUBISHI ELECTRIC CORPORATION

Software Manual 7900 Series

# RenesasTechnologyCorp. Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan