APPLICATION NOTE

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

AN98021

100 - 450 MHz 250 W Power Amplifier
 Application Note AN98021

CONTENTS

1	INTRODUCTION
2	DESIGN CONSIDERATIONS
3	AMPLIFIER CONCEPT
4	INPUT CIRCUITRY
5	ADJUSTMENT OF THE AMPLIFIER
5.1	Tuning the outputnetwork
5.2	Testing the unit under RF conditions
5.3	Tuning the unit's inputnetwork
5.4	Combining the units
6	CONCLUSIONS
7	REFERENCES
8	APPENDIX A
9	APPENDIX B
10	APPENDIX C

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

1 INTRODUCTION

In this report the design procedures and measurement results are given of a two octave wideband amplifier (covering both the civil and military airbands between 100 and 450 MHz), equiped with two MOSFET devices, which is capable of generating 250 W of output power.

In order to achieve a good broadband capability one has to use devices with the output capacitance reduced to the utmost minimum. While applying PHILIPS' BLF548 MOSFETs it was possible to obtain a respectable powergain of more than 10 dB , throughout the whole band.

The BLF548 is a balanced N-channel enhancement mode vertical D-MOS transistor in a SOT262 package, especially designed for use in wideband amplifiers up to 500 MHz . The transistor is capable to deliver 150 W nominal outputpower at a supply voltage of 28 Volts. Due to the low output capacitance the attainable bandwidth will exceed 300 MHz .

2 DESIGN CONSIDERATIONS

While designing broadband amplifiers, one has to take several things into account:

- To select the right manufacturer, able to supply the products with a good reliability, gives a good support and offers a complete range of transistors e.g. for driverstages.
- To select the right active components, capable to fulfill the desired wishes, such as; high reliability, high powergain, high efficiency, excellent mismatch capabilities, right loadpower, good long-life properties and last but not least; good broadband capability.
- To terminate the transistor with the right load impedance, with other words, to determinate the right output matching network.
- To eliminate the $6 \mathrm{~dB} /$ octave gain slope throughout the band of operation, in order to achieve an acceptable gainflatness.
- To find the right input matching network; the input VSWR has to be low in order to achieve a good termination for the driverstage.
- To design the matching networks in such a way that they are capable to handle the, at some points very high, R.F. currents.

A balanced transistor was chosen in order to reduce the second harmonic (due to the push-pull effect) and to reduce the number of required components.

The criteria for chosen MOSFETs over bipolar transistors are; high powergain, high load mismatch capabilities, low noise and easy biasing.

Nowadays three major MOSFET suppliers are involved when $\mathrm{PI}=150 \mathrm{~W}$ is needed at $\mathrm{f}=500 \mathrm{MHz}$ and $\mathrm{Vds}=28 \mathrm{~V}$. Available are; BLF548, industry type A and industry type B. Table 1 gives an overview of the characteristics of these 3 types.

Table 1

	BLF548	TYPE A	TYPE B	UNIT
f	500	400	500	MHz
Gp	>10	>10	>8	dB
$\eta \mathrm{~d}$	>50	>50	>55	$\%$
Ciss	105	180	140	pF
Coss	90	200	100	pF
Crss	25	20	pF	
BW	300	133	MHz	

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

Application Note
AN98021

With: BW $=1 /(2 \pi$ * Rload * Co $)$; Rload $=\mathrm{Vds}^{2} /(2$ * PI) and Co $=1.15$ * Coss.
BW = bandwidth, Rload = loadresistance, Co = outputcapacitance.
In order to achieve the best possible broadband results, the BLF548 is a very good choice.
Other Philips MOSFETs in the 500 MHz series are, followed by nominal loadpower:

12.5 Volts - single ended

BLF521	2 W
BLF522	5 W

28 Volts - single ended

BLF542	5 W
BLF543	10 W
BLF544	20 W

28 Volts - push-pull

BLF544B	20 W
BLF545	40 W
BLF546	80 W
BLF547	100 W
BLF548	150 W

3 AMPLIFIER CONCEPT

The amplifier concept described in this paper is based upon two identical modular units, each containing one BLF548 MOSFET. Both units are combined by means of two $3 \mathrm{~dB}-90^{\circ}$ hybrid couplers, which is shown in Fig.1. The main advantage is that the input VSWR will be very good; since it is independent of the mismatch introduced by the units, the 50Ω termination will cause a good load for the driver stage, e.g. equipped with BLF544.

Fig. 1 Schematical representation of the concept of the eventual amplifier.

The following seven steps have been followed in order to develop a first prototype of one unit.

1. Determine the BLF548's 150 W output power load impedance between 100 and 500 MHz (50 MHz interval steps) by measurement techniques or simulations. At the moment of writing it was not possible to perform full automatic measurements at frequencies lower than 500 MHz with transistors build in a balanced SOT262 header. Therefore the load impedances have been calculated by means of the electrical equivalent diagram shown in Fig.2.
2. Find the correct output matching network which transforms the 50Ω termination to the required load impedance for the frequency range $100-500 \mathrm{MHz}$.
3. Optimize the outputmatching network of step 2 with help of linear simulation software, such as Touchstone (EESOF).
4. Since the matching network will not have an ideal behaviour, it is necessary to determine the actual load impedance of the selected output matching network, again in 50 MHz steps between $100-500 \mathrm{MHz}$.
5. Calculate (or even better, determine by means of load-pull measurements) both the powergain and input impedance of the transistor by presenting the load impedences, found at step 4, to it. This is very important to investigate the behaviour of the transistor while terminating it with the selected output matching network.
6. Choose the right input matching network which has a minimum returnloss (RI) at the highest frequency (450 MHz) and a declining RI for lower frequencies in a way that the gain increase effect for lower frequencies is equalized. Other possibilities, as feedback or frequency dependent damping at the gate side (by means of low Rgs), can be taken into consideration.
7. Optimize the input network for gainflatness by means of linear simulation software (Touchstone, EESOF). Remember the input VSWR throughout the band is taken care of by the use of 90° hybrids, which combine the two modular units.

Fig. 2 RF Power MOSFET equivalent diagram (one BLF548 section).

At the following pages the design steps are presented which were followed at PHILIPS' laboratories in order to design a 150 W unit. Using the diagram shown in Fig.2, powergain and impedances have been calculated first, using the data given in Table 2.

Table 2

Lg	0.58 nH	
Ls	0.11 nH	
Ld	0.50 nH	
Rg	0.09Ω	
Rs	0.08Ω	
Rd	0.19Ω	$1.15 \times$ Crss
Cgd	29 pF	$1.5 \times$ (Ciss-Crss)
Cgs	120 pF	$1.15 \times$ (Coss-Crss-Cs)
Cds	72 pF	2.4 pF
Cs	2.4 pF	$0.5 \times$ Gfs (for Class B)
Gfs'	1.6 S	

Rg, Rd, Rs are derived from Rdson measurements, Gfs and Cs are measured, Cgs, Cds, Cgd derived from measured Ciss, Coss, Crss respectively. Lg, Ls and Ld are calculated.

Some of the assumptions are based on empirical rules and have proven to be correct in the past.
Gp and Zin can now be calculated:

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

Zin $=R i+j X i$
$\mathrm{Gp}=10$ * ${ }^{10} \log \left(\mathrm{Gfs}{ }^{\prime} \times \mathrm{Rload} / \omega^{2} \times \mathrm{Ls} \times \mathrm{Ci}\right)$
with;
$\mathrm{Xi}=\omega \times \mathrm{Li}-1 /(\omega \times \mathrm{Ci})$
$\mathrm{Ri}=\left(\mathrm{Gfs}^{\prime} \times \mathrm{Ls}\right) / \mathrm{Ci}$
$\mathrm{Li}=\mathrm{Lq}+(\mathrm{Ls} \times \mathrm{Cgs}) / \mathrm{Ci}$
$\mathrm{Ci}=$ Cgs + Cgd ($1+$ Gfs' \times Rload)
$\mathrm{w}=2 \pi \mathrm{f}$
Zload is chosen for maximum broadband capability.
Table 3 Calculated powergain, Zin and required Zload (series components)

$\mathbf{F}(\mathbf{M H z})$	PL (W)	Gp (dB)	ZIN (Ω)	ZLOAD (Ω)
100	78.8	26.7	$0.43-\mathrm{j} 4.1$	$4.7+\mathrm{j} 1.5$
150	78.8	23.3	$0.43-\mathrm{j} 2.5$	$4.0+\mathrm{j} 1.0$
200	78.8	20.8	$0.42-\mathrm{j} 1.7$	$3.4+\mathrm{j} 2.0$
250	78.8	18.4	$0.43-\mathrm{j} 1.1$	$2.8+\mathrm{j} 1.9$
300	78.8	17.2	$0.43-\mathrm{j} 0.7$	$2.3+\mathrm{j} 1.7$
350	78.8	15.8	$0.43-\mathrm{j} .0 .3$	$1.9+\mathrm{j} 1.4$
400	78.8	14.5	$0.44-\mathrm{j} 0.0$	$1.6+\mathrm{j} 1.1$
450	78.8	13.4	$0.44+\mathrm{j} 0.2$	$1.3+\mathrm{j} 0.7$
500	78.8	12.4	$0.45+\mathrm{j} 0.5$	$1.1+\mathrm{j} 0.4$

The data is also given in datahandbook "RF power MOS transistors" - Philips Components. It can be noticed that without any gaincompensation the powergain difference between 100 and 500 MHz will exceed 10 dB .
To terminate the transistor with the required loadimpedance, with respect to the broadband capability, the unbalanced 50Ω load has to be transformed as close as possible to the loadimpedance as shown in Table 3. (Note: the impedances shown are based on one section, since the transistor is of a balanced type, Zin and Zload are related to virtual ground).

To reduce the number of components which would be needed in case of a lumped element solution, a coaxial semi-rigid balun is used to transform the unbalanced 50Ω load into two 25Ω sections that are 180° apart in phase and 90° away from virtual ground. This is followed by a coaxial 4:1 transformer, with a characteristic impedance of 25Ω.

The result of this is: $R p=(\sqrt{ } 25 \times 25) / 4=6.2 \Omega$, which is close to the required Rload of the transistor.
In order to give a good description of the outputnetwork, it will be described as a 3-port: one port terminated with 50Ω unbalanced, the other two terminated with the transistor's outputimpedance (the complex conjugate of loadimpedance). A computer listing of the outputnetwork is given in "Appendix A". After optimizing the network to minimum returnloss (S11), while checking S13, the optimized return loss (in dB) of this network has been determined, see Fig.3. As a next step now the difference between the required and the network related loadimpedance can be (re-) calculated. The result on powergain (Gp) and imputimpedance (Zin) is given in Table 4.

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

Application Note
AN98021

Table 4 Result on Zin and Gp as a result of the presented outputmatching network

$\mathbf{F}(\mathbf{M H z})$	PL (W)	Gp (dB)	ZIN (Ω)	ZLOAD (Ω)
100	78.6	32.7	$0.11-\mathrm{j} 4.1$	$4.3+\mathrm{j} 1.0$
150	78.8	19.7	$1.04-\mathrm{j} 2.9$	$4.1+\mathrm{j} 0.2$
200	78.8	17.3	$1.02-\mathrm{j} 2.2$	$3.3+\mathrm{j} 0.1$
250	78.8	16.0	$0.87-\mathrm{j} 1.5$	$2.9+\mathrm{j} 0.1$
300	78.8	14.9	$0.79-\mathrm{j} 0.9$	$2.8+\mathrm{j} 0.3$
350	78.8	13.5	$0.80-\mathrm{j} .0 .4$	$2.8+\mathrm{j} 0.4$
400	78.8	12.4	$0.79-\mathrm{j} 0.1$	$2.5+\mathrm{j} 0.2$
450	78.8	12.0	$0.67+\mathrm{j} 0.1$	$1.9+\mathrm{j} 0.1$
500	72.0	12.4	$0.43+\mathrm{j} 0.5$	$1.1+\mathrm{j} 0.6$

Fig. 3 Simulated network response (output side).

4 INPUT CIRCUITRY

Since Zin and Gp are now determined in a accurate way, the inputcircuitry can be determined. Special attention is given to the flatness of the gain as a function of frequency. The input network also consists of a coaxial balum, followed by a $1: 4$ coaxial transformer, both made of semi-rigid coaxial cable. Since Zin is rather low the characteristic impedance of the $1: 4$ transformer was chosen to be 10Ω.

The result of this is: $R p=(\sqrt{ } 25 \times 10) / 4=3.9 \Omega$.

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

Application Note

AN98021

In order to compensate for the $6 \mathrm{~dB} /$ octave slope, matching to Zin is achieved at 450 MHz . At lower frequencies a mismatch is created, resulting in a decrease of powergain inversely proportional to the increase of the gain related to the transistor's $6 \mathrm{~dB} /$ octave slope.

The network listing of the input circuitry, again presented as a 3-port, is given in "Appendix B". The network response (both input returnloss and predicted powergain) is given in Fig.4. Finally the schematic diagram and list of components are given in Fig.5. The unit's layout is given in Fig.6. Note: two toroidal cores around T2 and T3 are used to prevent oscillations.

5 ADJUSTMENT OF THE AMPLIFIER

5.1 Tuning the outputnetwork

In order to terminate the transistor with the proper load impedance, first the output network has to be tuned.
The transistor was replaced by a dummyload, representing the transistors output impedance under full power conditions. The dummyload was realized after fitting the data of Table 3. To the dummyload model (roughly Rload in parallel with Coss, in series with draininductance Ld). Later the model was compensated for parasitics of both SOT262 header and network components.

Initial settings for each side of the dummyload are:
Rload $=\mathrm{Vds}^{2} / 2 \times \mathrm{PI}=5.2 \Omega$
$C=1.15 \times$ Coss $=104 \mathrm{pF}$
$\mathrm{L}=\mathrm{Ld}=0.5 \mathrm{nH}$
The network listing is given in "Appendix C". The final result, the dummyload lay-out, is given in Fig.7.

(1) $\mathrm{DB}[\mathrm{S} 12]$.
(2) $\mathrm{DB}[\mathrm{S} 22]$.

Fig. 4 Simulated network response of inputside (predicted $G p=f(f)$).

Fig. 5 Schematical diagram and list of components of one unit.

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

Application Note AN98021

List of components

DESIGNATION	DESCRIPTION	VALUE	DIMENSIONS	CATALOGUE NO.
C1, C17	multilayer ceramic chip capacitor	100 nF		222285247104
C2, C3	multilayer ceramic chip capacitor (note 1)	47 pF		
C4, C5, C8	multilayer ceramic chip capacitor (note 1)	820 pF		
C6, C9	multilayer ceramic chip capacitor (note 1)	300 pF		
C7	film dielectric trimmer	2-18 pF		222280909006
C10, C14	film dielectric trimmer	2-9 pF		222280909005
C11	multilayer ceramic chip capacitor (note 2)	39 pF		
C12	capacitor	22 nF		
C13	capacitor	100 nF		
C15, C16	multilayer ceramic chip capacitor (note 1)	120 pF		
C18	63 V electorlytic capacitor	$1 \mu \mathrm{~F}$		222268578108
C19	film dielectric trimmer	$1-5 \mathrm{pF}$		22280809004
L1, L3	stripline (note 3)	20Ω	$5 \times 8 \mathrm{~mm}$	
L2, L4	stripline (note 3)	20Ω	$2.5 \times 8 \mathrm{~mm}$	
L5, L7	stripline (note 3)	20Ω	$11.5 \times 8 \mathrm{~mm}$	
L6, L8	stripline (note 3)	20Ω	$4 \times 8 \mathrm{~mm}$	
L9	5 turns enamelled Cu wire on R6		1.4 mm	
L10, L11	grade 3B Ferroxcube wideband RF choke			433003036642
T1	semi-rigid coax (note 4)	50Ω	length 54 mm	
T2, T3	semi-rigid coax (note 4)	10Ω	length 44 mm	
T4, T5	semi-rigid coax	25Ω	length 53 mm	
T6	semi-rigid coax	50Ω	length 74 mm	
R1	0.4 W metal film resistor	19.6 k Ω		232215111963
R2	10 turn potentiometer	$5 \mathrm{k} \Omega$		212236200725
R3, R4, R5	0.4 W metal film resistor	$2.05 \mathrm{k} \Omega$		232215112052
R6, R7, R8	1.0 W metal film resistor	10Ω		232215371009

Notes

1. American Technical Ceramics type 100B or capacitor of same quality.
2. American Technical Ceramics type 175B or capacitor of same quality.
3. The striplines are on a double copper-clad PCB with P.T.F.E. fibre-glass dielectric ($\varepsilon_{r}=2.2$); thickness $1 / 32$ inch.
4. T2 and T3 are equipped with a Toroidal core, grade 4C6 (cat.no. 4322020 97171).

Fig. 6 Lay-out of one unit.

Fig. 7 Lay-out of BLF548 dummyload.

By means of a RF-analyzer the predicted frequency response of the network can be reproduced in practice, while tuning C10 and C14 for optimum R1. This is presented in Fig.8. A comparison with the simulated networkresponse (Fig.3) shows a high amount of common behaviour.

Fig. 8 Measured network response of one unit after tuning C10 and C14.

```
100 - 450 MHz 250 W Power Amplifier
with the BLF548 MOSFET
```


Application Note

 AN98021
5.2 Testing the unit under RF conditions

After exchanging the dummyload for a BLF548, a frequencysweep under power conditions can be made with help of a network analyzer. The used measurement set-up is given in Fig.9.

Fig. 9 Measurement set-up for frequency sweep under powerconditions.

```
100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET
```


Application Note

AN98021

5.3 Tuning the unit's inputnetwork

After supplying both the bias- and drain voltages to the unit and adjusting the drain quiescent current with R2 to 320 mA (160 mA per side), the inputpower (Ps) is applied. Gainflatness is optimized while tuning C7. The unit's input returnloss is given in Fig.10. Pl versus frequency is shown in Fig.11. A comparison with the simulated network response of the inputside (Fig.4) shows a high similarity. Gainflatness within 1 dB is achieved between 100 and 450 MHz .

CH1	\log	MAG			10 dB				мєн793
				-					
Cor									
Ref									
							\gg		

(1) $400 \mathrm{MHz} ;-8.3 \mathrm{~dB}$.

Fig. 10 Input return loss of one unit (Frequency sweep at $\mathrm{PI}=150 \mathrm{~W}$, for $\mathrm{f}=90$ to 500 MHz .

(1) $400 \mathrm{MHz} ; 12.526 \mathrm{~dB}$.

Fig. 11 Powergain of one unit (Frequency sweep at $\mathrm{PI}=150 \mathrm{~W}$, for $\mathrm{f}=90$ to 500 MHz).

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

Application Note
 AN98021

5.4 Combining the units

After tuning the second unit similar as described above, the connection was made to the 90° hybrid couplers. The couplers do contain 4 ports, one at which the input signal is applied (1). The input is devided equally into two ports (3 and 4). Between ports 3 and 4 there is a voltage lag of 90°. Mismatch at ports 3 and 4 do not effect the VSWR of port 1, since port 2 is terminated with a 50Ω load (KDI-PPT820-75-3 flange mounted). At the output side of the amplifier the units are combined in a similar way. Both input and output hybrids and 50Ω loads are mounted in a Brass baseplate (dimensions; $200 \times 160 \times 10 \mathrm{~mm}$), which also serves as a heatspreader for both BLF548 devices. The baseplate is connected to a heatsink which is cooled by means of forced air. Final results are given in Fig.12. (input return loss of the amplifier) and Fig. 13 (the amplifier's powergain).

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

Application Note
AN98021

(1) $450 \mathrm{MHz} ; 11.1 \mathrm{~dB}$.

Fig. 13 Powergain of complete amplifier (Frequency sweep at $\mathrm{PI}=250 \mathrm{~W}$, for $\mathrm{f}=90$ to 500 MHz).

6 CONCLUSIONS

The described procedures shown in this paper, are a great help in designing high-power broadband amplifiers. The differences between theory and practice are relatively small.

The BLF548 is very well suited to perform in multi-octave broadband UHF-amplifiers; at a supply voltage of 28 V , between 100 and $450 \mathrm{MHz}, 250 \mathrm{~W}$ of outputpower could be generated with a powergain of 11 dB (gainripple smaller than 1 dB). Drainefficiency is 45 to 55% throughout the band. The reduction of the second harmonic is more than 25 dB , with respect to the fundamental. The input returnloss is better than -12 dB .

7 REFERENCES

- Data Handbook SC08b, RF power MOS transistors - Philips Components
- Application Report Bipolar \& MOS transmitting transistors - Philips Components
- A look inside those integrated two-chip amps - Joe Johnson - Microwaves feb. 1980
- Apply wideband techniques to balanced amplifiers - Lee B. Max - Microwaves apr. 1980
- Demystifying new generation silicon high power FETs - Steve McIntyre - Microwave Journal apr. 1984
- Anaren - Microwave components catalog no.17A.

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

8 APPENDIX A

DIM

FREQ	MHz
RES	OH
IND	NH
CAP	PF
LNG	MM

VAR
$\mathrm{C} 1=120 \quad \mathrm{C}=270$
$\mathrm{L} 2=74 \quad!50$
$\mathrm{L} 3=53 \quad!50$
L10 = $9 \quad!9$
$\mathrm{L} 11=0.350559$! 0.5
R11 $=4.191123!5.1$
C11 $=64.2821 \quad!75$
4
L12 $=0.409981$! 0.31
$\mathrm{W} 1=6$
$\mathrm{L} 22=10$
L33 $=66$

CKT

RES $10 \quad R=50$
DEFIP 1 REFIMP
S1PA 20 BLF548OU
DEF1P 2 BALI
IND 12 L^L11
RES 20 R^R11

SLC 20 L^L12; !to determine zload
$\mathrm{C}^{\wedge} \mathrm{C} 11$
DEFIP 1 BAL3
SLC $10 \quad \mathrm{~L}=0.5$
$\operatorname{COAX} \quad 1203 \quad \mathrm{DI}=0.91 ; \quad$ TAND $=0.0002$;
$\mathrm{DO}=2.98 ; \quad \mathrm{RHO}=1$
L^L3;
$\mathrm{ER}=2.03$
MSUB $\quad E R=2.2 ; T=0.035 \quad \mathrm{RHO}=0.72$;
SLC $24 \quad \mathrm{~L}=0.5 ; \mathrm{C}^{\wedge} \mathrm{Cl}$
SLC $\quad 35 \quad \mathrm{~L}=0.5 ; \mathrm{C}^{\wedge} \mathrm{cl}$
COAX

COAX

SLC
SLC
MLIN
5806
$\mathrm{DI}=1.63$
DO = 2.95; $\mathrm{L}^{\wedge} \mathrm{L} 2$
$E R=2.03 ;$
TAND $=0.0002$;
RHO = 1
DO = 2.95; L^L2;
$\mathrm{ER}=2.03$;
TAND $=0.0002$;
$\mathrm{RHO}=1$
$!C=41$
$\mathrm{L}=0.5$
$\mathrm{C}=41$
-
$\begin{aligned} 68 \quad \mathrm{~L} & =0.7 ; \\ \mathrm{C} & =8\end{aligned}$
$919 \begin{aligned} & \mathrm{w}^{\wedge} \mathrm{w} 1 ; \\ & 1^{\wedge} 122\end{aligned}$

MLIN	1020	$\mathrm{w}^{\wedge} \mathrm{w} 1$; 1^122	
MBEND3	1929	$\mathrm{w}^{\wedge} \mathrm{w} 1$	
MBEND3	2030	$\mathrm{w}^{\wedge} \mathrm{w} 1$	
MLIN	290	$\begin{aligned} & w^{\wedge} w 1 ; \\ & 1^{\wedge} 133 \end{aligned}$	
MLIN	300	$\begin{aligned} & w^{\wedge} w 1 ; \\ & 1^{\wedge} 133 \end{aligned}$	
MCLIN	68910	$\begin{aligned} & \mathrm{W}=8 ; \\ & \mathrm{S}=2.5 ; \\ & \mathrm{L}=12 \end{aligned}$	$!L=13$
SLC	910	$\begin{aligned} & \mathrm{L}=0.5 ; \\ & \mathrm{C}=3 \end{aligned}$	$!C=5$
DEF3P	1910	TRAFO	!OUTPUT

BAL2	20
TRAFO	312

DEF2P 13 IMP2
BAL1 10

BAL1 20
TRAFO 3120
DEFIP 3 IMP

FREQ

SWEEP $\quad 5055025$
OUT
IMP RE(Z1)
IMP IM(Z1)
IMP DB(S11) GR1
IMP S11 SC2
!IMP VSWR1
BAL3 RE(Z1)

BAL3 IM(Z1)
!TO DETERMIN
E
!ZLOAD
IMP2 DB(S12)

GRID

RANGE 5055050
GR1 -3005
TERM

IMP2	BAL1	$!50 \Omega$
	REFIMP	$\stackrel{\text { PORT1 }}{ } 1$

OPT
RANGE 50550
!IMP VSWR1 <
1.6

IMP MODEL
REFIMP

Note

1. Slp file BLF5480U does contain data given in "Appendix C".

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

Application Note

 AN98021
9 APPENDIX B

Input BLF548 application ($300 \mathrm{~W} / 28 \mathrm{~V} / 500 \mathrm{MHz}$); input in 1P file fit between $100-500 \mathrm{MHz}$ with $1: 4$ transformer ($\mathrm{Zc}=10 \Omega$) to determine Gp and inputVSWR ZiN and Gp data derived from calculations, which represent the performance of the device after applying the output NEtwork, given in "Appendix A" to IT.

Table 5

DIM

FREQ	MHz
RES	OH
IND	NH
CAP	PF
LNG	MM

VAR

C1157.83880	$!C=27$
L2164.28568	$!L=25$
L3 $=55$	$!L=25$
R11 $=0.00020$	$!4.1$
7	
C11 $=241.805$	$!65$
9	
L12 $=0.00004$	$!0.41$

L 12
8
CKT

RES	10
DEF1P	1
S1PA	20
DEF1P	2
RES	12
SLC	20
DEF1P	1

GAIN	23
GAIN	34

DEF2P	13
SLC	10
COAX	1203

MSUB	
SLC	24
SLC	35
COAX	4678

COAX	5876	$\begin{aligned} & \text { DI = 1.15; } \\ & \text { DO = 1.45; L^L2; } \\ & \text { ER = 2.03; } \\ & \text { TAND }=0.0002 \end{aligned}$	$\mathrm{RHO}=1$
UNIT	70		
SLC	68	$\begin{aligned} & \mathrm{L}=0.5 ; \\ & \mathrm{C} \backslash 0.103064 \\ & \mathrm{IC}-2.1 \end{aligned}$	
MCLIN	68910	$\begin{aligned} & W=8 ; \\ & S=2.5 ; L \backslash 3.05628 \\ & 0 \end{aligned}$	
SLC	910	$\begin{aligned} & \mathrm{L}=0.5 ; \\ & \mathrm{C} \backslash 0.923788 \text {; } \\ & \text { !c }-3.5 \end{aligned}$	
DEF3P	1910	TRAFO	INPUT NETWORK
BALI	20		
TRAFO	3540		
GPAF	42		
GPAF	51		
DEF2P	13	IMP2	!TO DETERMINE S11, S12
FREQ			
SWEEP	10050025		
OUT			
IMP2 TE(Z2)			
IMP2 IM(Z2)			
IMP2 DB(S22)	GR1	$\begin{aligned} & \text { !S11 AT } 50 \Omega \\ & \text { PORT } \end{aligned}$	
IMP2 DB(S12)	GR1	ICALCULATED POWERGAIN	
IMP2 VSWR2			
GPAF DB(S21)		!BLF548's GP	
GRID			
RANGE	10050025		
GRI	-20 205		
TERM			
IMP2 BAL1 REFIMP			
OPT			
RANGE	150550		
IMP2 $\mathrm{DB}(\mathrm{~S} 12)>11$			
IMP2 $\mathrm{DB}(\mathrm{~S} 12)<12.4$			
Note			

1. S1p file BLF548I2 does contain data given in Table 4. Format as shown in "Appendix C".

100 - 450 MHz 250 W Power Amplifier with the BLF548 MOSFET

10 APPENDIX C

Fit dummyloadmodel to calculated BLF548 Zoutput !FIlename: E:\userslblf548ou.s1p !reference: calculated data derived from transmod program;!Zload converted to Zoutput

FREQ

SWEEP 0.1 0.5 . 050

OUT
MOD RE(Z1)

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1488 2686, Fax. +41 14883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +38044264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands

SUNSTAR 商斯达实业集团是集研发，生产，工程，销售，代理经销 ，技术咨询，信息服务等为一体的高科技企业，是专业高科技电子产品生产厂家，是具有 10 多年历史的专业电子元器件供应商，是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一，是一家专业代理和分銷世界各大品牌 IC 芯片和電子元器件的连锁经营綜合性国际公司，专业经营进口，国产名厂名牌电子元件，型号，种类齐全。在香港，北京，深圳，上海，西安，成都等全国主要电子市场设有直属分公司和产品展示展销窗口门市部专卖店及代理分销商，已在全国范围内建成强大统一的供货和代理分销网络。 我们专业代理经销，开发生产电子元器件，集成电路，传感器，微波光电元器件，工控机／DOC／DOM 电子盘，专用电路，单片机开发，MCU／DSP／ARM／FPGA 软件硬件，二极管，三极管，模块等，是您可靠的一站式现货配套供应商，方案提供商，部件功能模块开发配套商。商斯达实业公司拥有庞大的资料库，有数位毕业于著名高校——有中国电子工业摇篮之称的西安电子科技大学（西军电）并长期从事国防尖端科技研究的高级工程师为您精挑细选，量身订做各种高科技电子元器件，并解决各种技术问题。

微波光电部专业代理经销高频，微波，光纤，光电元器件，组件，部件，模块，整机；电磁兼容元器件，材料，设备；微波 CAD，EDA 软件，开发测试仿真工具；微波，光纤仪器仪表。欢迎国外高科技微波，光纤厂商将优秀产品介绍到中国，共同开拓市场。长期大量现货专业批发高频，微波，卫星，光纤，电视，CATV 器件：晶振，VC0，连接器，PIN 开关，变容二极管，开关二极管，低噪晶体管，功率电阻及电容，放大器，功率管，MMIC，混频器，耦合器，功分器，振荡器，合成器，衰减器，滤波器，隔离器，环行器，移相器，调制解调器；光电子元器件和组件：红外发射管，红外接收管，光电开关，光敏管，发光二极管和发光二极管组件，半导体激光二极管和激光器组件，光电探测器和光接收组件，光发射接收模块，光纤激光器和光放大器，光调制器，光开关，DWDM 用光发射和接收器件，用户接入系统光光收发器件与模块，光纤连接器，光纤跳线／尾纤，光衰减器，光纤适 配器，光隔离器，光耦合器，光环行器，光复用器／转换器；无线收发芯片和模组，蓝牙芯片和模组。
更多产品请看本公司产品专用销售网站：
商斯达中国传感器科技信息网：http：／／www．sensor－ic．com／
商斯达工控安防网：http：／／www．pc－ps．net／
商斯达电子元器件网：http：／／www．sunstare．com／
商斯达微波光电产品网：HTTP：／／www．rfoe．net／
商斯达消费电子产品网：／／www．icasic．com／
商斯达实业科技产品网：／／www．sunstars．cn／微波元器件销售热线：
地址：深圳市福田区福华路福庆街鸿图大厦 1602 室
电话：0755－82884100 833970338339682283398585
传真：0755－83376182（0）13823648918 MSN：SUNS8888＠hotmail．com
邮编：518033 E－mail：szss20＠163．com QQ： 195847376
深圳赛格展销部：深圳华强北路赛格电子市场2583号 电话：0755－83665529 25059422
技术支持：0755－83394033 13501568376
欢迎索取免费详细资料，设计指南和光盘；产品凡多，未能尽录，欢迎来电查询。
北京分公司：北京海淀区知春路 132 号中发电子大厦 3097 号
TEL：010－81159046 8261502013501189838 FAX：010－62543996
上海分公司：上海市北京东路 668 号上海賽格电子市场 D125号
TEL：021－28311762 5670303713701955389 FAX：021－56703037
西安分公司：西安高新开发区 20 所（中国电子科技集团导航技术研究所）
西安劳动南路 88 号电子商城二楼 D23号
TEL：029－81022619 13072977981 FAX：029－88789382

