APPLICATION NOTE

Wideband 300 W push-pull FM amplifier using BLV25
 transistors

AN98031

Wideband 300 W push-pull FM amplifier
 Application Note using BLV25 transistors

CONTENTS

1 INTRODUCTION
2 AMPLIFIER DESIGN THEORY
2.1 The output network
2.2 The input network
2.3 Bias components

3 PRACTICAL 300 W PUSH-PULL AMPLIFIER WITH $2 \times$ BLV25
3.1 General remarks
3.2 Alignment
3.3 Performance

4 BLW86 DRIVER AMPLIFIER
4.1 Amplifier Design
4.2 Alignment
4.3 Performance

5 COMBINATION OF DRIVER AND FINAL
AMPLIFIER
6 STABILITY AND EFFICIENCY IMPROVEMENT
7 CONCLUSION
8 REFERENCE

Wideband 300 W push-pull FM amplifier

SUMMARY

For transmitters and transposers for the FM broadcast band ($87.5-108 \mathrm{MHz}$), a 300 W push-pull amplifier using two BLV25 transistors has been designed and built. The transistors operate in class-B from a 28 V supply. In addition, a suitable single-stage driver amplifier using a BLW86 transistor also operating in class-B from a 28 V supply has been designed and built.
Table 1 shows the main properties of each amplifier and of the driver/final-amplifier combination. The driver and final amplifier have been aligned at output powers of 45 W and 300 W respectively.

The $2 \times$ BLV25 amplifier has a heatsink with forced air cooling and a 10 mm copper plate heat-spreader.
Table 1 Amplifier performance overview; note 1

$\begin{gathered} \text { FM BAND } \\ 87.5-108 \mathrm{MHz} \end{gathered}$	BLW86 DRIVER$P_{\text {OUt }}=45 \mathrm{~W}$		$2 \times$ BLV25 FINAL AMPLIFIER $P_{\text {Out }}=300 \mathrm{~W}$		COMBINATION AMPLIFIER BLW86 AND $2 \times$ BLV25 $P_{\text {OUt }}=300 \mathrm{~W}$	
	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
Gain (dB)	12	13	10.4	11	22.6	25
Input VSWR	1.2	1.3	1.45	1.70	1.1	1.85
Efficiency (\%)	69	72	70	71	63	66

Note

1. Circuit board: double copper-clad epoxy fibre glass $\left(\varepsilon_{r}=4.5\right)$, thickness $1 / 16$-inch.

1 INTRODUCTION

The BLV25 power transistor is intended for use in FM broadcast transmitters and transposers. This transistor which is in a 6-lead flanged package with $1 / 2$-inch ceramic cap (SOT119) can deliver 175 W output power at 108 MHz . This report describes the design and practical implementation of a 300 W wideband push-pull amplifier for the FM broadcast band using two BLV25 transistors operating in class-B from a 28 V supply voltage. In addition, a suitable driver amplifier is described. The driver is a single-stage amplifier designed for an output power of 45 W using a BLW86 transistor which also operates in class-B from a 28 V supply. The BLW86 is in a $3 / 8$-inch, 4 -lead flanged package with a ceramic cap (SOT123).

2 AMPLIFIER DESIGN THEORY

First, consider the BLV25 transistor. Table 2 gives some of its characteristics at an output power of 160 W and a supply voltage of 28 V .

The output of a BLV25 can be accurately represented by the equivalent circuit of Fig.1. In Section 3.2, it will be explained how the information in Table 2 and Fig. 1 are used to align the amplifier.
Figure 2 shows a schematic of the amplifier; Fig. 3 shows the complete circuit.

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Table 2 Some characteristics of the BLV25 at several frequencies in the FM broadcast band

Freq. \mathbf{f} $(\mathbf{M H z})$	POWER GAIN \mathbf{G} $(\mathbf{d B})$	INPUT IMPEDANCE $\mathbf{Z}_{\mathbf{i}}$ (Ω)	OPTIMUM LOAD IMPEDANCE $\mathbf{Z}_{\mathbf{L}}$ (Ω)
87.5	11.8	$0.54+\mathrm{j} 0.38$	$1.96-\mathrm{j} 0.04$
92.2	11.5	$0.56+\mathrm{j} 0.43$	$1.94-\mathrm{j} 0.06$
97.2	11.1	$0.58+\mathrm{j} 0.48$	$1.91-\mathrm{j} 0.07$
102.5	10.8	$0.60+\mathrm{j} 0.53$	$1.88-\mathrm{j} 0.08$
108.0	10.4	$0.63+\mathrm{j} 0.59$	$1.84-\mathrm{j} 0.11$

2.1 The output network

The output network consists of three parts:

1. The combination of L_{9}, L_{10} and C_{8} which transforms the output impedance of the transistors to a resistance of 12.5Ω (balanced).
2. The transmission lines L_{11} and L_{12} which are connected such that they perform a 1:4 impedance transformation, making the output impedance of this part 50Ω (balanced).
3. The transmission lines L_{13} and L_{14} which function as a balanced-to-unbalanced transformer (balun), so their output impedance is 50Ω (unbalanced).

Note on 1:
The matching section L_{9}, L_{10} and C_{8} is rather conventional except that the inductors have been replaced by striplines.
Note on 2:
Lines L_{11} and L_{12} are transmission lines with a characteristic resistance of 25Ω. They are soldered to a copper track on the p.c. board. This track is 2.8 mm wide, so its characteristic impedance with reference to the ground plane of the p.c. board is 50Ω.

Theoretically, their lengths should be $1 / 4$ wavelength for the centre of the frequency band, namely 42 cm . As this is rather impractical, we must find a way to use shorter lines. Two possibilities exist:

Lines L_{11} and L_{12} are not soldered to tracks on the p.c. board but are surrounded by ferrite tubes of suitable dimensions and material. Finding the correct combination is however somewhat involved.

The lengths of lines L_{11} and L_{12} are reduced significantly and the parallel inductance introduced is compensated by increasing the value of C_{8}. As this method provides good results, it has been adopted.

Note on 3:

The line L_{14} is a transmission line with a characteristic resistance of 50Ω. It is also soldered to a 2.8 mm wide track on the p.c. board. For the length of this line, the story is similar to that of the $1: 4$ impedance transformer. By making the line shorter than a $1 / 4$ wavelength, an inductance is introduced from point B (Fig.2) to ground. To restore the symmetry, an equal inductance must be introduced between point A and ground. This is done by means of line L_{13} which is a 2.8 mm wide track on the p.c. board of the same length as L_{14}. Finally, the parallel inductances (from point A to ground, and from point B to ground) are compensated by the series capacitors C_{9} and C_{10}.

After initial calculation of the separate sections and their compensation, the network was optimized using a computer optimization program. The final dimensions of the components can be found in Fig. 3.

The maximum VSWR of this network is <1.05.
A remark must be made about the reactive loading of C_{8} which is nearly 900 VA at 108 MHz , so a high-quality capacitor must be used. Two or three capacitors in parallel can also be considered.

Wideband 300 W push-pull FM amplifier using BLV25 transistors

2.2 The input network

This network is very similar to the output network and, like it, consists of three parts:

1. The combination of L_{1} and L_{2} forms an unbalanced-to-balanced transformer whose output impedance is 50Ω (balanced)
2. The combination L_{3} and L_{4} forms a 4:1 impedance transformer whose output impedance is 12.5Ω (balanced)
3. The components L_{5} to L_{8} and C_{3} to C_{7} form a two-section matching network to match the input impedances of the transistors to 12.5Ω (balanced).
All the remarks made for the output network also apply to the input network, though several values are different.
The calculation of the input network was made in the same way as that for the output network. However, the total length of the lines L_{1} to L_{4} became too long for practical use. After dividing the lengths of these lines by 1.6, the other components were re-optimized, raising the input VSWR from 1.20 to 1.27 . All component values are given in Table 5.

A consequence of this way of designing is that the power gain at 87.5 MHz is approximately 1.4 dB higher than that at 108 MHz . This variation must be compensated in one of the driver stages.

An alternative design with a nearly flat power gain of about 10 dB can be made, however, the input matching is only good at the high end of the frequency band; at 87.5 MHz , the input VSWR rises to about 3.2. Further details of this alternative are not given here.

2.3 Bias components

Theoretically, point V_{B} can be grounded directly. However, it may be better to ground it via an RF choke shunted by a 12Ω resistor as shown in Fig. 4 because of:

- Small asymmetries in the transistors and circuit, and
- Possible parasitic oscillation when the transistors operate in parallel rather than push-pull.

Resistors R_{1} and R_{2} have been added to improve stability during mismatch. For point V_{C}, the same holds as for point V_{B}, except that the supply voltage must be connected to the former. In the simplest configuration, point V_{C} is decoupled for RF frequencies. A better proposition is probably the circuit shown in Fig.5.

3 PRACTICAL 300 W PUSH-PULL AMPLIFIER WITH $2 \times$ BLV25

3.1 General remarks

Having established a theoretical design, let us now look at a practical implementation.
The amplifier has been designed on a double copper-clad epoxy fibre glass ($\varepsilon_{r}=4.5$) board, thickness $1 / 16$-inch. Figure 6 shows the print board and Fig. 7 the layout of the amplifier. Rivets and, at the board edges, soldered copper straps have been used to provide good contact between both sides of the board. Where the emitters are grounded, contact is made with the lower side of the board.

The print board and transistors are attached to a 10 mm thick copper plate which acts as a heat-spreader. This plate is screwed to a standard heatsink with forced air cooling. At an ambient temperature of $25^{\circ} \mathrm{C}$, and with the amplifier operating at 300 W output power, the heatsink temperature is below $55^{\circ} \mathrm{C}$.

3.2 Alignment

The first alignment was done with small signals, starting with the output circuit. The BLV25 transistors were replaced by dummy loads, representing the complex conjugate of the optimum load impedance. The dummy consists of a 2.22Ω resistance and a 300 pF capacitance.

To reduce parasitic inductance and to maintain the best possible symmetry, we used several components in parallel. These components were soldered to an empty SOT119 header.

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Application Note
AN98031

The reflection versus frequency was measured at the output terminal and minimized by adjusting the capacitors $\mathrm{C}_{16}, \mathrm{C}_{14}, \mathrm{C}_{15}$ and C_{9}. Figure 8 shows the schematic diagram and Fig. 9 the return losses; the VSWR remains below 1.13.

The alignment of the input network was done with the transistors in circuit and with the supply voltage and load connected. First, alignment was made with the transistors in class -A ($\mathrm{I}_{\mathrm{C}}=1.7 \mathrm{~A}$ and $\mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}$). The reflection versus frequency was then minimized at small-signal levels. Then the operation was altered to class-B, and the amplifier realigned at an output power of 300 W . The required circuit modifications were rather small. Figure 10 shows the final circuit. Resistances R_{2} and R_{3} are necessary to prevent parallel oscillations. The inductance of these resistors is very important (see Table 6).

In spite of the dummy adjustment of the output circuit, the capacitance of C_{9} had to be reduced to improve the collector efficiency, η, of the amplifier. In addition, three capacitors in parallel have been used because of the very high reactive loading at that point.

3.3 Performance

The amplifier has been aligned at an output power of 300 W . Figures 11 to 13 show the gain, input VSWR and collector efficiency as functions of frequency at 300 W output power. Figure 14 shows the variation of efficiency with output power, both measured at 108 MHz .

4 BLW86 DRIVER AMPLIFIER

4.1 Amplifier Design

The required drive power for the $2 \times$ BLV25 amplifier described in Section 3 is about 30 W . The input VSWR of this final amplifier varies between 1.45 and 1.7 (see Fig.12), so the load impedance of the driver amplifier differs from 50Ω and varies with frequency. As the effect of this on the performance of the driver cannot be predicted, some reserve output power was built in and a 45 W driver was designed. The driver is a single-stage class-B amplifier using a BLW86 transistor.

Table 3 shows some properties of the BLW86 from 87.5 to 108 MHz , valid for class-B operation and an output power of 45 W .

Table 3 Some characteristics of the BLW86 at several frequencies in the FM broadcast band

Freq. $(\mathbf{M H z})$	GAIN (dB)	INPUT IMPEDANCE (Ω)	LOAD IMPEDANCE (Ω)
87.5	13.61	$0.76-\mathrm{j} 0.00$	$7.65+\mathrm{j} 3.28$
89.8	13.40	$0.76+\mathrm{j} 0.04$	$7.56+\mathrm{j} 3.32$
92.2	13.18	$0.76+\mathrm{j} 0.08$	$7.48+\mathrm{j} 3.36$
94.7	12.96	$0.76+\mathrm{j} 0.12$	$7.39+\mathrm{j} 3.40$
97.2	12.75	$0.75+\mathrm{j} 0.16$	$7.32+\mathrm{j} 3.47$
99.8	12.53	$0.75+\mathrm{j} 0.20$	$7.23+\mathrm{j} 3.51$
102.5	12.31	$0.75+\mathrm{j} 0.24$	$7.13+\mathrm{j} 3.54$
105.2	12.10	$0.75+\mathrm{j} 0.28$	$7.05+\mathrm{j} 3.60$
108	11.89	$0.75+\mathrm{j} 0.32$	$6.95+\mathrm{j} 3.63$

The input impedance has to be matched to the 50Ω source impedance to obtain a good input VSWR and the 50Ω load impedance has to be transformed into the optimum load impedance, which is given in Table 2. This has been done using Chebychev low-pass LC filter techniques (see Chapter "Reference").

Wideband 300 W push-pull FM amplifier using BLV25 transistors

The driver amplifier was designed on double-clad epoxy glass fibre board ($\varepsilon_{r}=4.5$), $1 / 16$-inch thick. Figure 16 shows the board and layout of the amplifier. Rivets and straps were again used and the emitter connected to the underside of the board.

4.2 Alignment

The alignment procedure was as described in Section 3.2. The optimal load impedance given in Table 2 suggested a dummy load of 10Ω resistance in parallel with a 91 pF capacitance. Alignment with this dummy load resulted in a collector efficiency of about 60%. Later, it was found that lowering the dummy capacitance to 56 pF raised the efficiency to about 70\%. Figure 17 shows the alignment circuit and Fig. 18 the VSWR at the output terminal measured with the $10 \Omega / / 56 \mathrm{pF}$ dummy load.

The input circuit has been aligned with the transistor in the circuit and the supply voltage connected. Again, alignment was started with the transistor operating in class-A ($\mathrm{I}_{\mathrm{C}}=1 \mathrm{~A}$ and $\mathrm{V}_{\mathrm{CE}}=25 \mathrm{~V}$). The small-signal input VSWR has been minimized.

Then, the transistor was set to class-B operation, and the amplifier realigned at an output power of 45 W . Figure 19 shows the final circuit and Table 7 shows the part list. The collector DC biasing coil, L_{8}, plays an active role in the impedance transformation.

4.3 Performance

Figs 20 and 21 show the gain and input VSWR as functions of frequency. The gain is $12.5 \pm 0.5 \mathrm{~dB}$ and the VSWR remains below 1.3:1 throughout the band.

Figure 21 shows that the collector efficiency is better than 69%. The measurements were taken at 45 W output power.
Figures 23 and 24 show collector efficiency and amplifier gain versus output power at 108 MHz . Note, the amplifier was only aligned at 45 W output power.

5 COMBINATION OF DRIVER AND FINAL AMPLIFIER

Figs 25 and 26 show the gain and input VSWR of the combination of driver and final amplifier at 300 W output power. This gives an indication of the effect of the fluctuating input VSWR of the final amplifier on the performance of the driver amplifier. The efficiency of the combination is more than 63%, as Fig. 27 shows.

No additional alignment was made. The required input drive power for 300 W output is less than 1.7 W .

6 STABILITY AND EFFICIENCY IMPROVEMENT

It is recommended to add an inductance $L_{c c}$ between the collectors of the two BLV25 transistors, see Fig. 28 (c.f. Fig.10) to improve stability at low output powers. An additional advantage of this modification is that it raises collector efficiency while hardly affecting the input VSWR (which remains below 1.75). Figures 29 to 31 show the results measured on a water-cooled amplifier for three conditions: without L_{CC}, with $\mathrm{L}_{\mathrm{CC}}=41 \mathrm{nH}$, and with $\mathrm{L}_{\mathrm{CC}}=29 \mathrm{nH}$.

7 CONCLUSION

A 300 W push-pull amplifier using two BLV25 transistors driven by a single-stage amplifier using a BLW86 have been designed. Table 4 shows the main performance parameters of the individual amplifiers and of their combination.

Wideband 300 W push-pull FM amplifier

Table 4 Performance overview (basic amplifier without the modification for higher efficiency)

$\begin{gathered} \text { FM BAND } \\ 87.5-108 \mathrm{MHz} \end{gathered}$	BLW86 DRIVER $P_{\text {OUt }}=45 \mathrm{~W}$		$2 \times$ BLV25 FINAL AMPLIFIER Pout $=300 \mathrm{~W}$		COMBINATION AMPLIFIER BLW86 AND $2 \times$ BLV25 $P_{\text {OUt }}=300 \mathrm{~W}$	
	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
Gain (dB)	12	13	10.4	11	22.6	25
Input VSWR	1.2	1.3	1.45	1.70	1.1	1.85
Efficiency (\%)	69	72	70	71	63	66

8 REFERENCE

G.L. Matthaei, Tables of Chebychev impedance transforming networks of low-pass filter form. Proc. of the IEEE, Aug. 1964, pp. 939-963.

Fig. 1 Equivalent circuit of BLV25 output.

Fig. 2 Main amplifier schematic.

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Table 5 Parts list of the main amplifier (Theoretical design)

$\mathrm{R}_{1}=\mathrm{R}_{2}=22 \Omega$, carbon
$\mathrm{C}_{1}=\mathrm{C}_{2}=200 \mathrm{pF}$ chip (ATC 100B)
$\mathrm{C}_{3}=330 \mathrm{pF}$ chip (ATC 100B)
$\mathrm{C}_{4}=\mathrm{C}_{5}=\mathrm{C}_{6}=\mathrm{C}_{7}=620 \mathrm{pF}$ chip (ATC 100B)
$\mathrm{C}_{8}=240 \mathrm{pF}, 500 \mathrm{~V}$ chip (ATC 100B or ATC 175)
$\mathrm{C}_{9}=\mathrm{C}_{10}=100 \mathrm{pF}, 500 \mathrm{~V}$ chip (ATC 100B)
$\mathrm{L}_{1}=50 \Omega$ stripline, w $=2.8 \mathrm{~mm}, \mathrm{I}=144 \mathrm{~mm}$
$\mathrm{~L}_{2}=50 \Omega$ semi-rigid coaxial cable, $\mathrm{d}=2.2 \mathrm{~mm}, \mathrm{I}=144 \mathrm{~mm}$ soldered on 50Ω stripline, $\mathrm{w}=2.8 \mathrm{~mm}$
$\mathrm{~L}_{3}=\mathrm{L}_{4}=25 \Omega$ semi-rigid coaxial cable, $\mathrm{d}=2.2 \mathrm{~mm}, \mathrm{I}=96 \mathrm{~mm}$; soldered on 50Ω stripline, $\mathrm{w}=2.8 \mathrm{~mm}$
$\mathrm{~L}_{5}=\mathrm{L}_{6}=50 \Omega$ stripline, $\mathrm{w}=2.8 \mathrm{~mm}, \mathrm{I}=18.1 \mathrm{~mm}$
$\mathrm{~L}_{7}=\mathrm{L}_{8}=30 \Omega$ stripline, $\mathrm{w}=6 \mathrm{~mm}, \mathrm{I}=4.8 \mathrm{~mm}$
$\mathrm{~L}_{9}=\mathrm{L}_{10}=30 \Omega$ stripline, $\mathrm{w}=6 \mathrm{~mm}, \mathrm{I}=14.1 \mathrm{~mm}$
$\mathrm{~L}_{11}=\mathrm{L}_{12}=25 \Omega$ semi-rigid coaxial cable, $\mathrm{d}=3.5 \mathrm{~mm}, \mathrm{I}=60.3 \mathrm{~mm}$ soldered on 50Ω stripline, $\mathrm{w}=2.8 \mathrm{~mm}$
$\mathrm{~L}_{13}=50 \Omega$ stripline, w $=2.8 \mathrm{~mm}, \mathrm{I}=139.6 \mathrm{~mm}$
$\mathrm{~L}_{14}=50 \Omega$ semi-rigid coaxial cable, $\mathrm{d}=3.5 \mathrm{~mm}, \mathrm{I}=139.6 \mathrm{~mm}$ soldered on 50Ω stripline, $\mathrm{w}=2.8 \mathrm{~mm}$
$\mathrm{~T}_{1}=\mathrm{T}_{2}=\mathrm{BLV} 25$
Print board material: $1 / 16$-inch epoxy fibre- $\mathrm{glass}, \varepsilon_{r}=4.5$

Fig. $4 \mathrm{~V}_{\mathrm{b}}$ bias, components: $\mathrm{R}=12 \Omega$, carbon; $\mathrm{L}=$ Fxc 3B RF choke, part no. 431202036640.

Fig. $5 \quad \mathrm{~V}_{\mathrm{c}}$ bias. Components: $\mathrm{R}=12 \Omega$, carbon; $\mathrm{C}_{1}=2.7 \mathrm{nF}$, chip (NP0 type); $\mathrm{C}_{2}=100 \mathrm{nF}$, chip (X7R type); $L=F X C 3 B$ bead, part no. 431202031500 wound with 3 to 6 wires in parallel.
Fig. 6 Printed-circuit board.

$\begin{aligned} & \text { tE086NV } \\ & \text { əłon uo!̣eอ!!dd } \end{aligned}$	sıols!suext c̨^7g 6uisn

Wideband 300 W push-pull FM amplifier

Fig. 9 Return loss in circuit of Fig.8.

[^0]Wideband 300 W push-pull FM amplifier

Table 6 Parts list of the main amplifier (Practical design)

$\mathrm{R}_{1}=12.1 \Omega$ metal film	Philips MR 25, (2322 151 71219)
$\mathrm{R}_{2}=\mathrm{R}_{3}=4.99 \Omega$ metal film	Philips MR 52, (2322 153 54998)
$\mathrm{R}_{4}=12.1 \Omega$ metal film	Philips MR 52, (2322 153 51219)
$\mathrm{C}_{1}=\mathrm{C}_{4}^{\prime}=\mathrm{C}_{16}=2-18 \mathrm{pF}$ film dielectric trimmer	Philips, (2222 80905003)
$\mathrm{C}_{2}=\mathrm{C}_{3}=200 \mathrm{pF}$ chip	ATC 100B-201-K-Px-300
$\mathrm{C}_{4}=300 \mathrm{pF}$ chip	ATC 100B-301-K-Px-200
$\mathrm{C}_{5}=\mathrm{C}_{6}=\mathrm{C}_{7}=\mathrm{C}_{8}=680 \mathrm{pF}$ chip (ATC 100B-681-K-Px-50) in parallel with 150 pF chip	(ATC 100B-151-J-Px-300)
$\mathrm{C}_{9}=43 \mathrm{pF}$ chip	ATC 100B-430-J-Px-500
$\mathrm{C}_{10}=68 \mathrm{pF}$ chip	ATC 100B-680-J-Px-500
$\mathrm{C}_{11}=82 \mathrm{pF}$ chip	ATC 100B-820-J-Px-500
$\mathrm{C}_{12}=2.7 \mathrm{nF}$ chip	Philips NPO size 1210, (2222 852 13272)
$\mathrm{C}_{13}=100 \mathrm{k}$ chip	Philips X7R size 1812, (2222 852 48104)
$\mathrm{C}_{14}=\mathrm{C}_{15}=100 \mathrm{pF}$ chip	ATC 100B-101-J-Px-500
$\mathrm{L}_{1}=50 \Omega$ semi-rigid coaxial cable, $\mathrm{d}=2.2 \mathrm{~mm}, \mathrm{I}=144 \mathrm{~mm}$, soldered on 50Ω stripline, $\mathrm{w}=2.8 \mathrm{~mm}$	
$\mathrm{L}_{2}=50 \Omega$ stripline, $\mathrm{w}=2.8 \mathrm{~mm}, \mathrm{I}=144 \mathrm{~mm}$	
$\mathrm{L}_{3}=\mathrm{L}_{4}=25 \Omega$ semi-rigid coaxial cable, $\mathrm{d}=3.5 \mathrm{~mm}, \mathrm{I}=96 \mathrm{~mm}$, soldered on 50Ω stripline, $\mathrm{w}=2.8 \mathrm{~mm}$	
$\mathrm{L}_{5}=$ FXC 3B RF choke	Philips 431202036642
$\mathrm{L}_{6}=\mathrm{L}_{7}=50 \Omega$ stripline, $\mathrm{w}=2.8 \mathrm{~mm}, \mathrm{I}=18.1 \mathrm{~mm}$	
$\mathrm{L}_{8}=\mathrm{L}_{9}=30 \Omega$ stripline, $\mathrm{w}=6 \mathrm{~mm}, \mathrm{I}=4.8 \mathrm{~mm}$	
$\mathrm{L}_{10}=\mathrm{L}_{11}=30 \Omega$ stripline, $\mathrm{w}=6 \mathrm{~mm}, \mathrm{l}=14.1 \mathrm{~mm}$	
$\mathrm{L}_{12}=\mathrm{L}_{13}=25 \Omega$ semi-rigid coaxial cable, $\mathrm{d}=3.5 \mathrm{~mm}, \mathrm{l}=60.3 \mathrm{~mm}$ soldered on 50Ω stripline, $\mathrm{w}=2.8 \mathrm{~mm}$	
$L_{14}=L_{15}=$ FXC 3B beads, Philips 431202031500 wound with 6 leads in parallel	
$\mathrm{L}_{16}=50 \Omega$ semi-rigid coaxial cable, $\mathrm{d}=3.5 \mathrm{~mm}, \mathrm{I}=139.6 \mathrm{~mm}$ soldered on 50Ω stripline, $\mathrm{w}=2.8 \mathrm{~mm}$	
$\mathrm{L}_{17}=50 \Omega$ stripline, $\mathrm{w}=2.8 \mathrm{~mm}, \mathrm{I}=139.6 \mathrm{~mm}$	
$\mathrm{T}_{1}=\mathrm{T}_{2}=$ BLV25	
Print board material: $1 / 16$-inch epoxy fibre-glass, $\varepsilon_{r}=4.5$	

Fig. 11 Gain versus frequency (main amplifier).

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Application Note AN98031

Fig. 12 Input VSWR versus frequency (main amplifier).

Fig. 13 Collector efficiency versus frequency (main amplifier).

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Application Note AN98031

Fig. 14 Efficiency, η, versus output power (main amplifier).

Fig. 15 Gain versus output power (main amplifier).

Wideband 300 W push-pull FM amplifier

Fig. 16 Printed circuit board and lay out of the driver.

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Application Note AN98031

Fig. 18 Output VSWR in circuit of Fig. 17.

Fig. 19 Driver amplifier circuit.

Wideband 300 W push-pull FM amplifier

Table 7 Driver amplifier

$\mathrm{R}_{1}=12.1 \Omega$ metal film	Philips MR 25 (2322 151 71219)
$\mathrm{R}_{2}=10 \Omega$ metal film	Philips MR 25, (2322 151 71009)
$\mathrm{C}_{1}=\mathrm{C}_{8}=\mathrm{C}_{14}=2.7 \mathrm{nF}$ chip	Philips NPO size 1210, (2222 852 13272)
$\mathrm{C}_{2}=33 \mathrm{pF}$ chip	ATC 100B-330-J-Px-500
$\mathrm{C}_{3}=\mathrm{C}_{13}=2-18 \mathrm{pF}$ film dielectric trimmer	Philips, (2222 809 09003)
$\mathrm{C}_{4}=\mathrm{C}_{5}=120 \mathrm{pF}$ chip	ATC 100B-121-J-Px-300
$\mathrm{C}_{6}=\mathrm{C}_{7}=510 \mathrm{pF}$ chip	ATC 100B-511-M-Px-100
$\mathrm{C}_{9}=100 \mathrm{nF}$ metallized film capacitor	Philips, (2222 352 45104)
$\mathrm{C}_{10}=\mathrm{C}_{11}=30 \mathrm{pF}$ chip	ATC 100B-300-J-Px-500
$\mathrm{C}_{12}=18 \mathrm{pF}$ chip	ATC 100B-180-J-Px-500
$\mathrm{L}_{1}=48 \mathrm{nH} 4$ turns enamelled Cu wire $\phi=0.8 \mathrm{~mm}$, i.d. 3 mm , closely wound, length 3.5 mm , leads $2 \times 5 \mathrm{~mm}$	
$\mathrm{L}_{2}=60.2 \Omega$ stripline, $\mathrm{w}=2 \mathrm{~mm}, \mathrm{I}=27.2 \mathrm{~mm}$	
$\mathrm{L}_{3}=30.1 \Omega$ stripline, $\mathrm{w}=6 \mathrm{~mm}, \mathrm{I}=7.9 \mathrm{~mm}$	
$\mathrm{L}_{4}=\mathrm{L}_{9}=$ FXC 3B RF choke	Philips 431202036640
$\mathrm{L}_{5}=200 \mathrm{nH} 14$ turns enamelled Cu wire $\phi=0.5 \mathrm{~mm}$, i.d. 3 mm , closely wound, length 9 mm	
$\mathrm{L}_{6}=30.1 \Omega$ stripline, $\mathrm{w}=6 \mathrm{~mm}, \mathrm{I}=3 \mathrm{~mm}$	
$\mathrm{L}_{7}=30.1 \Omega$ stripline, $\mathrm{w}=6 \mathrm{~mm}, \mathrm{I}=11.8 \mathrm{~mm}$	
$\mathrm{L}_{8}=27.9 \mathrm{nH} 4$ turns enamelled Cu wire $\phi=1 \mathrm{~mm}$, i.d. 4 mm , length 14.3 mm , leads $2 \times 5 \mathrm{~mm}$	
$\mathrm{L}_{10}=60.2 \Omega$ stripline, $\mathrm{w}=2 \mathrm{~mm}, \mathrm{I}=47 \mathrm{~mm}$	
$\mathrm{L}_{11}=55 \mathrm{nH} 4$ turns enamelled Cu wire $\phi=1 \mathrm{~mm}$, i.d. 4 mm , length 5.5 mm , leads $2 \times 5 \mathrm{~mm}$	
T_{1} = BLW86	
Print board material: $1 / 16$-inch epoxy fibre-glass, $\varepsilon_{r}=4.5$	

Fig. 20 Gain versus frequency (driver).

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Application Note AN98031

Fig. 21 Input VSWR versus frequency (driver).

Fig. 22 Collector efficiency versus frequency (driver).

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Application Note AN98031

Fig. 23 Collector efficiency, η, versus output power (driver).

Fig. 24 Gain versus output power (driver).

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Application Note AN98031

Fig. 25 Gain versus frequency (combination amplifier).

Fig. 26 Input VSWR versus frequency (combination amplifier).

Fig. 27 Efficiency versus frequency (combination amplifier).

Legend:
(1) no $L_{c c}$.
(2) $\mathrm{L}_{\mathrm{CC}}=41 \mathrm{nH}$; 2 turns enamelled Cu wire $\phi=1.7 \mathrm{~mm}$, i.d. $\mathrm{D}=8 \mathrm{~mm}$, length 6 mm , leads $2 \times 10 \mathrm{~mm}$.
(3) $L_{C C}=29 \mathrm{nH} 1$ turn enamelled Cu wire $\phi=1.7 \mathrm{~mm}$, i.d. $\mathrm{D}=10 \mathrm{~mm}$, leads $2 \times 12 \mathrm{~mm}$.

Fig. 29 Gain versus frequency.

Wideband 300 W push-pull FM amplifier using BLV25 transistors

Application Note AN98031

Legend: as Fig. 29.
Fig. 31 Efficiency versus frequency.

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1488 2686, Fax. +41 14883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +38044264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands

SUNSTAR 商斯达实业集团是集研发，生产，工程，销售，代理经销 ，技术咨询，信息服务等为一体的高科技企业，是专业高科技电子产品生产厂家，是具有 10 多年历史的专业电子元器件供应商，是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一，是一家专业代理和分銷世界各大品牌 IC 芯片和電子元器件的连锁经营綜合性国际公司，专业经营进口，国产名厂名牌电子元件，型号，种类齐全。在香港，北京，深圳，上海，西安，成都等全国主要电子市场设有直属分公司和产品展示展销窗口门市部专卖店及代理分销商，已在全国范围内建成强大统一的供货和代理分销网络。 我们专业代理经销，开发生产电子元器件，集成电路，传感器，微波光电元器件，工控机／DOC／DOM 电子盘，专用电路，单片机开发，MCU／DSP／ARM／FPGA 软件硬件，二极管，三极管，模块等，是您可靠的一站式现货配套供应商，方案提供商，部件功能模块开发配套商。商斯达实业公司拥有庞大的资料库，有数位毕业于著名高校——有中国电子工业摇篮之称的西安电子科技大学（西军电）并长期从事国防尖端科技研究的高级工程师为您精挑细选，量身订做各种高科技电子元器件，并解决各种技术问题。

微波光电部专业代理经销高频，微波，光纤，光电元器件，组件，部件，模块，整机；电磁兼容元器件，材料，设备；微波 CAD，EDA 软件，开发测试仿真工具；微波，光纤仪器仪表。欢迎国外高科技微波，光纤厂商将优秀产品介绍到中国，共同开拓市场。长期大量现货专业批发高频，微波，卫星，光纤，电视，CATV 器件：晶振，VC0，连接器，PIN 开关，变容二极管，开关二极管，低噪晶体管，功率电阻及电容，放大器，功率管，MMIC，混频器，耦合器，功分器，振荡器，合成器，衰减器，滤波器，隔离器，环行器，移相器，调制解调器；光电子元器件和组件：红外发射管，红外接收管，光电开关，光敏管，发光二极管和发光二极管组件，半导体激光二极管和激光器组件，光电探测器和光接收组件，光发射接收模块，光纤激光器和光放大器，光调制器，光开关，DWDM 用光发射和接收器件，用户接入系统光光收发器件与模块，光纤连接器，光纤跳线／尾纤，光衰减器，光纤适 配器，光隔离器，光耦合器，光环行器，光复用器／转换器；无线收发芯片和模组，蓝牙芯片和模组。
更多产品请看本公司产品专用销售网站：
商斯达中国传感器科技信息网：http：／／www．sensor－ic．com／
商斯达工控安防网：http：／／www．pc－ps．net／
商斯达电子元器件网：http：／／www．sunstare．com／
商斯达微波光电产品网：HTTP：／／www．rfoe．net／
商斯达消费电子产品网：／／www．icasic．com／
商斯达实业科技产品网：／／www．sunstars．cn／微波元器件销售热线：
地址：深圳市福田区福华路福庆街鸿图大厦 1602 室
电话：0755－82884100 833970338339682283398585
传真：0755－83376182（0）13823648918 MSN：SUNS8888＠hotmail．com
邮编：518033 E－mail：szss20＠163．com QQ： 195847376
深圳赛格展销部：深圳华强北路赛格电子市场2583号 电话：0755－83665529 25059422
技术支持：0755－83394033 13501568376
欢迎索取免费详细资料，设计指南和光盘；产品凡多，未能尽录，欢迎来电查询。
北京分公司：北京海淀区知春路 132 号中发电子大厦 3097 号
TEL：010－81159046 8261502013501189838 FAX：010－62543996
上海分公司：上海市北京东路 668 号上海賽格电子市场 D125号
TEL：021－28311762 5670303713701955389 FAX：021－56703037
西安分公司：西安高新开发区 20 所（中国电子科技集团导航技术研究所）
西安劳动南路 88 号电子商城二楼 D23号
TEL：029－81022619 13072977981 FAX：029－88789382

[^0]: using BLV25 transistors
 Wideband 300 W push-pull FM amplifier

