APPLICATION NOTE

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 ($\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range
25 - 110 MHz
NCO8701

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (VD = 28 V); range 25 - 110 MHz

 Application Note

 Application Note NCO8701

CONTENTS

1	INTRODUCTION
2	AMPLIFIER DESIGN
2.1	General
2.2	Powergain, input- and output impedance
2.3	Output matching section
2.4	Input matching section
3	TRANSFORMER DESIGN
3.1	General
3.2	Design of the output transformer
3.3	Design of the input transformer
3.4	The tapped choke (T2)
4	AMPLIFIER CONSTRUCTION
4.1	Printed circuit board and component layout
4.2	Heatsink
5	AMPLIFIER ALIGNMENT
6	AMPLIFIER PERFORMANCE
6.1	General
6.2	Performance at constant output power
6.3	Performance at constant input power
6.4	Performance at constant frequency
7	CONCLUSIONS
8	REFERENCES

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Application Note NCO8701

1 INTRODUCTION

A wideband push-pull power amplifier has been developed for the frequency range $25-110 \mathrm{MHz}$. The design is based on the BLF244, a silicon N-channel enhancement mode vertical D-MOS transistor designed for large-signal amplifier applications in the VHF range. This device can deliver 15 W output power at 175 MHz when operated from a 28 V supply. The transistor has a 4-lead flange envelope with a ceramic cap (SOT123).
The objective was to design and construct a 30 W wideband amplifier with high gain and efficiency and low input VSWR and second order distortion. With respect to gain and efficiency a reasonable flatness was desired. The push-pull design is employed because of its low second order distortion.
The design and practical realization of this amplifier are described in the following chapters.

2 AMPLIFIER DESIGN

2.1 General

The schematic set up of the amplifier is depicted in Fig.1.

Fig. 1

Two 1: 1 balance to unbalance transformers are applied; one for splitting the single-ended input source into two out of phase sources driving the transistor-inputs, the other for adding the outputs from the transistors.
Transmission line transformers are employed because of there excellent broadband response. These transformers consist of a twisted-wire-pair transmission line wound on a ferrite toroid.
At the input side a special matching network is applied to obtain a low VSWR and compensation for variation in gain with frequency.
The matching network at the output side provides the transistors with the optimum load for an output power of 30 W at $V_{D S}=28 \mathrm{~V}$.

2.2 Powergain, input- and output impedance

The design has been started by determining powergain, input impedance and output impedance of the transistor for the frequency range $25-110 \mathrm{MHz}$.

First the output impedance was determined.
For HF and VHF the optimum load resistance RL can be calculated with reasonable accuracy with the formula:

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Application Note NCO8701

Fig. 2

$$
\begin{equation*}
R_{L}=\frac{V^{2}{ }_{D S}}{2 \cdot P_{O}} \tag{1}
\end{equation*}
$$

For $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$ and $\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W}$ we get: $\mathrm{R}_{\mathrm{L}}=26.1 \Omega$.
The output impedance is the parallel combination of the output capacitance C_{O} of the transistor and the optimum load resistance.
Because of the large drain voltage swing the effective output capacitance C_{O} is approx. 15% higher than the value of $\mathrm{C}_{\text {oss. }}$. For BLF244 $\mathrm{C}_{\text {oss }}$ is typical 38 pF , so C_{O} is equal to 43.7 pF . So the output impedance of this transistor can be represented by $26.1 \Omega / / 43.7 \mathrm{pF}$ for the whole frequency range.
Second the large-signal input impedance and powergain versus frequency were determined by measurement. For this purpose a single-ended test amplifier was constructed. This amplifier was matched at the output side to a load of 25Ω by a broadband matching network: Dimensioning of this network was based on a practical dummy transistor of $24 \Omega / / 43 \mathrm{pF}$. The maximum VSWR measured within the band was 1.16.
At the input side tunable narrowband matching networks were applied at several frequencies. By tuning this amplifier for minimum return loss at $\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W}$ the powergain was measured directly.

For measurement of the input impedance the DC power, signal source and transistor were disconnected from the amplifier and the signal source circuit connection was terminated with 50Ω. After that the impedance was measured at the gate connection of the transistor. The input impedance of the transistor is the conjugate of the measured impedance if the circuit doesn't contain resistive components.
This procedure was repeated at several frequencies in the band to get sufficient data for the design.
Figures 14,15 and 16 present the data in graphical form.

2.3 Output matching section

Because of the symmetrical set-up of this amplifier its matching sections can be divided into two equal parts. Each part belonging to one transistor. In the next discussion one half of the output matching section will be considered.

As mentioned in the previous section the optimum load resistance for $\mathrm{P}_{\mathrm{O}}=15 \mathrm{~W}$ and $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$ is 26.1Ω according to equation (1).
When two of these transistors are used in a push-pull configuration the optimum load resistance adds up to 52.2Ω. This value is very close to 50Ω to which these transistors have to be matched. So, if we choose the optimum load resistance to be 50Ω we can suffice with a $1: 1$ balance to unbalance transformer.
The output capacitance C_{O} of the transistor can be compensated over a certain bandwidth by absorbing it in a low-pass Chebyshev π-section, see Fig.2.

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$
 Application Note NCO8701

R_{L} represents the optimum load resistance for the transistor. The components $L 5$ and $C 12$ can be determined with the following formulae if $R_{L}=R$ and $C_{O}=C 12=C$:
The normalized value of C is:

$$
\begin{equation*}
\mathrm{A}=\omega_{\mathrm{m}} \cdot \mathrm{C} \cdot \mathrm{R} \tag{2}
\end{equation*}
$$

in which $\omega_{\mathrm{m}}=2 \times \pi \times \mathrm{f}_{\text {max }}$
The normalized value of L5 can be calculated as follows:

$$
\begin{align*}
B & =\frac{\omega_{m} \times L_{5}}{R} \tag{3}\\
B & =\frac{8 \times A}{3 \cdot A^{2}+4} \tag{4}
\end{align*}
$$

The maximum VSWR of this network follows from:

$$
\begin{equation*}
\mathrm{VSWR}_{\max }=\left\{\frac{x^{3}+1}{x^{3}-1}\right\}^{2} \tag{5}
\end{equation*}
$$

in which $x=\gamma+\left(\gamma^{2}+1\right)^{1 / 2}$
and $\gamma=1 / \mathrm{A}$
For this section $R=25 \Omega$ and $C=43 \mathrm{pF}$. This results in: $A=0.7430 \rightarrow B=1.0509 \rightarrow \mathrm{~L} 5=38 \mathrm{nH}$ and $\mathrm{VSWR}_{\max }=1.156$
In practice this circuit comprises some additional components, see Fig.3.

Fig. 3

These are:
L_{p} - the parasitic drain and source inductance which has been accounted for by this way. Its value is approx. 1.4 nH $\mathrm{L}_{\mathrm{T} 2}$ - the drain choke inductance which equals approx. $0.8 \mu \mathrm{H}$. Determination of this inductance will be treated in a later chapter.
$\mathrm{L}_{12 S}$ - the parasitic series inductance of C12, which is approx. 1 nH
C_{6} - the DC-blocking capacitor which is also employed for low frequency compensation of $\mathrm{L}_{\mathrm{T} 2}$.
The value of C_{6} is calculated with the aid of the information given in ref.(1). The drain load circuit for low frequency is shown in Fig. 4.

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$
 Application Note
 NCO8701

Fig. 4

Compensation according to ref.(1) gives at $\mathrm{f}=25 \mathrm{MHz}$:
$\mathrm{C}_{6}=1.28 \mathrm{nF}$ with $\mathrm{VSWR}_{\text {max }}=1.04$
The circuit in Fig. 3 was optimized for the frequency range $25-110 \mathrm{MHz}$. For this purpose a computer optimization program was used. The criterion used was for overall minimum VSWR with respect to 25Ω.

The results before and after optimization are shown in Table 1.
Table 1

BEFORE OPTIMIZATION		AFTER OPTIMIZATION	
C_{6}	1.28 nF	C_{6}	7.9 nF
L_{5}	38 nH	L_{5}	34.6 nH
C_{12}	43 pF	C_{12}	37.9 pF
VSWR $_{\max }$	1.169	$\mathrm{VSWR}_{\max }$	1.098

2.4 Input matching section

The purpose of the input matching section is two-fold. First to match the transistor input impedance to the source impedance of 50Ω with a sufficiently low VSWR across the frequency band.
Second to compensate the variation in gain with frequency.
The input matching section chosen is depicted in Fig. 5 for one transistor.

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$
 Application Note
 NCO8701

Fig. 5

Since the input impedance of the transistor is strongly capacitive, Zi can be approximated by an ideal capacitor. This network can then be treated as a symmetrical double pi-section, see Fig.6.

Fig. 6

In order to get sufficient gain flatness a constant voltage has to be developed across capacitor Ci. For optimum dimensioning of this network the following formulae are valid:

$$
\begin{gather*}
\mathrm{Rg}=\mathrm{R} 2=\frac{1.6}{\omega_{\mathrm{m}} \cdot \mathrm{ci}} \tag{6}\\
\mathrm{C} 1=\mathrm{C} 5=0.386 \times \mathrm{Ci} \tag{7}\\
\mathrm{~L} 1=\mathrm{L} 3=0.997 \times \frac{\mathrm{Rg}}{\omega_{\mathrm{m}}} \tag{8}
\end{gather*}
$$

in which ωm is the maximum angular frequency. These formulae have been obtained by a computer optimization program which also indicates that the maximum voltage variation across Ci is $\pm 0.36 \mathrm{~dB}$ and the maximum VSWR seen by the generator 1.36 . When the input capacitance at the lowest frequency is chosen, which is approx. 117 pF , we find that:
$R g=R 2=19.8 \Omega$

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Application Note NCO8701

$$
\mathrm{C} 1=\mathrm{C} 5=45.2 \mathrm{pF}
$$

$$
\mathrm{L} 1=\mathrm{L} 3=28.6 \mathrm{nH} .
$$

In practice Rg is equal to 25Ω and Zi varies with frequency. This required a re-optimization of this network with the actual values of Zi and Rg . The values calculated above were used as the initial values and parasitics of C 1 and C 5 were included. The target gain was set to 17.5 dB .
The results of this optimization are shown in Table 2.
Table 2

BEFORE OPTIMIZATION		AFTER OPTIMIZATION	
C1	45.2 pF	C 1	60.1 pF
C5	45.2 pF	C 5	47.5 pF
L1	28.6 nH	L 1	36 nH
L3	28.6 nH	L 3	43.8 nH
R2	19.8Ω	R 2	20.8Ω
Rg	25Ω	Rg	25Ω
VSWR $_{\max }$	1.812	$\mathrm{VSWR}_{\max }$	1.376
$\mathrm{G}_{\text {pmin }}$	15.8 dB	$\mathrm{G}_{\text {pmin }}$	17.1 dB
$\mathrm{G}_{\text {pmax }}$	16.9 dB	$\mathrm{G}_{\text {pmax }}$	17.9 dB

3 TRANSFORMER DESIGN

3.1 General

As mentioned before transformers employed at the input and output side utilize twisted-wire-pair transmission lines wound on a toroidal core.
The windings are uniformly distributed around the toroid. The required characteristic impedance of the transmission lines is 50Ω. In practice Zo will differ from this required value and compensation measures will be necessary (2). This can be achieved with:

- Parallel capacitances across input and output terminals of the transformers if Zo $>50 \Omega$
- Inductances in series with the input and output terminals of the transformer if Zo < 50Ω.

The result of this compensation is an exact match at the maximum frequency. There will be however, a slight mismatch at low frequency which is many times smaller then that at the maximum frequency without compensation. Because the amount of HF compensation will depend on the circuit layout and the exact transformer construction no calculations will be made on this aspect of the transformers. The amount of compensation will be determined in the circuit by employing adjustable capacitors.

3.2 Design of the output transformer

The characteristic impedance of 50Ω for the transmission line of the output transformer has been obtained with enamelled copper wire of 0.6 mm diameter. Its diameter with isolation included is 0.66 mm . The number of twists applied are 2 per centimeter.
A suitable core material for this frequency range is Philips 4C6 grade available in several sizes of toroid. The size of the toroid is determined by the maximum allowable dissipation which is limited to $350 \mathrm{~mW} / \mathrm{cm}^{3}$ to prevent excessive rise in temperature. Designing for a maximum of 1% power loss in the core $(300 \mathrm{~mW})$ the minimum effective volume required is:
$\mathrm{Ve}_{\text {min }}=\frac{\mathrm{P}_{\text {loss }}}{350 \mathrm{~mW} / \mathrm{cm}^{3}}=\frac{300}{350}=0.85 \mathrm{~cm}^{3}$

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Application Note NCO8701

The smallest toroid that is suitable is a core with dimensions $\mathrm{D} \times \mathrm{d} \times \mathrm{h}=23 \times 14 \times 7 \mathrm{~mm}$ corresponding with a effective core volume of $1.79 \mathrm{~cm}^{3}$. As a result the core loss reduces to $170 \mathrm{~mW} / \mathrm{cm}^{3}$.
According to reference (3) this corresponds to a maximum flux density (B) of 0.2 mT at 110 MHz . The required number of turns is determined by the ratio Rp / L in which R_{p} is the loss resistance that represents the core loss and L the inductance in parallel with the output terminals, see reference (4).
This ratio is equal to:

$$
\begin{equation*}
R_{p} / L=\frac{\omega^{2} \times B^{2} \times V e}{2 \times \mu_{o} \times \mu_{r} \times P_{\text {loss }}} \tag{9}
\end{equation*}
$$

which amounts to: $R_{p} / L=\frac{\left(2 \times \pi \times 110 \times 10^{6}\right)^{2} \times\left(0.2 \times 10^{-3}\right)^{2} \times 1.79 \times 10^{-6}}{2 \times 4 \times \pi \times 10^{-7} \times 120 \times 0.3}=472 \Omega / \mu \mathrm{H}$
To keep the core loss below 1% we must keep the parallel loss resistance above 5000Ω with reference to 50Ω. This means an inductance of: $L=R p / 472=10.6 \mu \mathrm{H}$

Fig. 7

Between point A and B in Fig. 7 the voltage is one half of the output voltage. Therefore the inductance between these points must be a quarter of that across the 50Ω terminals, so:
$L_{A B}=L / 4=10.6 / 4=2.65 \mu \mathrm{H}$
The number of turns required can be calculated with the following formula (3):

$$
\begin{gather*}
\mathrm{L}=\mathrm{A}_{\mathrm{L}} \times \mathrm{N}^{2} \tag{10}\\
\mathrm{~A}_{\mathrm{L}}=\frac{0.4 \times \pi \times \mu \mathrm{r}}{\Sigma \mathrm{I} / \mathrm{A}} \tag{11}
\end{gather*}
$$

in which:
A_{L} is the inductance in (nH)
$\sum \mid / A$ is the core constant in $\left(\mathrm{mm}^{-1}\right)$ given in (3)
N is the number of turns
μr is the relative permeability (120 for grade 4C6).
For a toroid of 23 mm the core constant is $1.81 \mathrm{~mm}^{-1}$. So, the inductance factor amounts to:
$A_{L}=\frac{0.4 \times \pi \times 120}{1.81}=83.3 \mathrm{nH}$

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

and the required number of turns:
$N=\sqrt{\frac{2.65 \times 10^{3}}{83.3}}=5.6$ turns
In practice the number of turns will be 6 , so the inductance in parallel with the output terminals rises to:
$(6 / 5.6)^{2} \times 10.6=12 \mu \mathrm{H}$
This corresponds to a reactance of 1885Ω at 25 MHz which is high enough to be neglected.
The core loss reduces to:
$(5.6 / 6)^{2} \times 1 \%=0.87 \%$
The measured value of $L_{A B}$ was approx. 3.5 $\mu \mathrm{H}$.

3.3 Design of the input transformer

The input transformer is of the same type as the output transformer and is also designed in the same way.
To obtain a characteristic impedance of 50Ω for the windings enamelled Cu-wire with a bare diameter of 0.50 mm is used. The diameter with isolation included is 0.55 mm . The number of twists applied is $23 / 4$ per centimeter.
Allowing an input power level of 1.5 W the minimum effective volume for 1% power loss in the core is:
$\mathrm{Ve}_{\text {min }}=15 / 350=0.043 \mathrm{~cm}^{3}$
The smallest toroid that suits our need is a type with dimensions $\mathrm{D} \times \mathrm{d} \times \mathrm{h}=9 \times 6 \times 3 \mathrm{~mm}$. The effective core volume is $0.105 \mathrm{~cm}^{3}$, so the core loss reduces to $143 \mathrm{~mW} / \mathrm{cm}^{3}$. This corresponds to a maximum flux density B of approx. 0.18 mT at $f=110 \mathrm{MHz}$ according to ref.(3). The ratio Rp / L amounts to:
$R p / L=\frac{\left(2 \times \pi \times 110 \times 10^{6}\right)^{2} \times\left(0.18 \times 10^{-3}\right)^{2} \times 0.105 \times 10^{-6}}{2 \times 4 \times \pi \times 10^{-7} \times 120 \times 0.015}=360 \Omega / \mu \mathrm{H}$
For 1% loss L amount to:
$L=R p / 360=5000 / 360=13.9 \mu \mathrm{H}$
$L_{A B}=13.9 / 4=3.48 \mu \mathrm{H}$
The required number of turns for a 9 mm toroid with a core constant of $5.17 \mathrm{~mm}^{-1}$ is:
$A_{L}=\frac{0.4 \times \pi \times 120}{5.17}=29.2 \mathrm{nH}$
$N=\sqrt{\frac{3.48 \times 10^{3}}{29.2}}=11$ turns
An inductance of $L=13.9 \mu \mathrm{H}$ corresponds to a reactance of 2183Ω at 25 MHz which is high enough to be neglected. According to measurements 10 turns were sufficient to obtain $L_{A B} \approx 3.5 \mu \mathrm{H}$.

3.4 The tapped choke (T2)

The chokes in the drain circuits are wound on a common ferrite rod. The windings are twisted together. Constructional details are shown in Fig.8. With this arrangement the dc flux components in the core cancel out and a much smaller component results. Because a rod has a open magnetic circuit saturation effects will hardly occur. In Fig. 9 the output part of the amplifier is given in a different way.

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Application Note

 NCO8701

Fig. 8

Fig. 9

The current sources have a frequency spectrum in which the even order components are in phase and the odd order ones in anti-phase.
For the even harmonics the impedance between point A and C will depend on the coupling factor K between the windings with:

$$
\begin{equation*}
\omega L_{A B}(1-K) \tag{12}
\end{equation*}
$$

If the coupling factor amounts to 1 points A and C will be short circuited. If the current components are in anti-phase the total inductance between these points shunts the load resistance. Because the voltage between point A and B is equal to $1 / 2 V_{A C}$ the total inductance $L_{A C}$ is equal to $4 L_{A B}$ if the coupling factor is 1 .
The reactance of this shunting inductance is allowed to be at least 4 times the load resistance or 200Ω at 25 MHz . So, $L_{A C}$ amounts to $1.27 \mu \mathrm{H}$ and $\mathrm{L}_{A B}$ to $0.318 \mu \mathrm{H}$.
To obtain the inductance $L_{A B}$ a ferrite rod grade $4 B 1$ has been used with a length of 30 mm and a diameter of 5 mm . According to ref.(3) its relative permeability is equal to 20 . The number of turns can be determined with:

$$
\begin{equation*}
N=\sqrt{\frac{L \times I}{\mu O \times \mu r \times A}} \tag{13}
\end{equation*}
$$

For $L_{A B}$ this amount to:
$N=\sqrt{\frac{0.318 \times 10^{-6} \times 30 \times 10^{-3}}{4 \times \pi \times 10^{-7} \times 1 / 4 \times \pi \times\left(5 \times 10^{-3}\right)^{2}}}=4.4$ turns
In practice 5 turns will be used so $L_{A C}$ will be equal to $1.6 \mu \mathrm{H}$. The measured value for L_{AB} was $0.48 \mu \mathrm{H}$ at 25 MHz . The windings are constructed of enamelled copper wire of 0.8 mm diameter.

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

4 AMPLIFIER CONSTRUCTION

4.1 Printed circuit board and component layout

The printer circuit board of this amplifier is made of two-sided copper clad epoxy fibre glass $(\varepsilon r=4.5)$ laminate of $1 / 16$ " thickness.
Circuit components are situated on one side of this board, the other side serves as ground plane. A full sized pattern of the printed circuit board and component layout is given in Fig.13. The parasitic inductance of the printed tracks are absorbed in the inductances of the matching networks. Connections to the ground plane are made by means of tubular rivets, straps under the source leads and at the N -connectors and the mounting screws.

4.2 Heatsink

The printed circuit board is attached to a solid copper plate, with dimensions $120 \times 100 \times 10 \mathrm{~mm}$, which functions as a heatsink. It is provided with a tube in order to control its temperature by means of a water cooling system. Good thermal contacts between transistors and heatsink is obtained by use of a heat-sinking compound.

5 AMPLIFIER ALIGNMENT

The amplifier was constructed according to the theoretical design procedures. Figure 12 shows the total circuit diagram of this amplifier. Parallel matching components as C1, C5 and C12 are connected directly from one side of the circuit to the other. Therefore their values are exactly one half of those calculated. The component list is given in Table 4.

Alignment of this amplifier was first done on a small signal basis. First the output circuit was aligned by replacing the BLF244 transistors with dummy loads, representing the conjugate of the optimum load impedance. The dummy's consisted of a 25Ω resistance and a 43 pF capacitance. Several components in parallel were used to obtain symmetry and to reduce parasitic inductances. These components were soldered in an empty SOT123 header. The return loss was measured versus frequency at the load connection of the amplifier and minimized by applying compensation capacitors between the terminals of the output transformer. At the load site of the transformer 3.6 pF (C13) was needed and at the transistor side C12 was increased from 20 to 22 pF . The maximum VSWR obtained was 1.22.

Alignment of the input circuit has been done with the transistors in the circuit and supply and load connected. The quiescent drain current was set to approx. 200 mA per transistor and return loss was measured versus frequency. Experiments with capacitors in parallel with the input transformer terminals showed that no compensation was needed. The maximum VSWR obtained was 1.30.

After the small signal alignment the transistors were set to class-B operation by decreasing the quiescent drain current to 25 mA .
The first results obtained at $\mathrm{P}_{\text {out }}=30 \mathrm{~W}$ were:
$\mathrm{Gp}=15.6 \pm 1.2 \mathrm{~dB}$; Eff. $=61.3 \pm 10 \%$; VSWR ≤ 1.40 and second harmonic level $\leq-33 \mathrm{~dB}$.
In order to improve the total performance of this amplifier especially with respect to gain flatness, variation in efficiency and second harmonic level some minor changes were introduced in the amplifier.

1. At the input side the circuit configuration shown in Fig.10a was changed into that of Fig.10b. No appreciable improvement was achieved with respect to gain performance but variations in efficiency reduced to $\pm 6 \%$. However, at the lower side of the band the second harmonic level increased to -28 dB .

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Application Note NCO8701

2. Raising the quiescent drain current to 50 mA improved the gain with approx. 0.3 dB . However, the efficiency decreased with approx. 0.8%.
3. A resistance of approx. 12Ω from the mid tap of the drain choke T 2 to ground instead of direct grounding increased the average efficiency with approx. 1% and its variations decreased to $\pm 2.8 \%$. The second harmonic level improved with 2 dB .
4. The input balun was originally connected as shown in Fig.11a. For a perfect symmetrical push-pull amplifier it does not matter which terminal is grounded. In this case exchange of the terminals strongly affected the second harmonic level. For the case of Fig.11b this level improved to <-40 dB.
5. Finally the value of the resistors shown in Fig. 10 was increased to 23.7Ω. This improved the gain flatness to approx. $\pm 0.6 \mathrm{~dB}$. The input VSWR increased to 1.5 .

Fig. 10

a.

b.

MGP943

Fig. 11

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Application Note NCO8701

6 AMPLIFIER PERFORMANCE

6.1 General

Measurement of the amplifier performance was carried out under nominal conditions unless stated otherwise. These conditions are:

Supply voltage $\mathrm{V}_{\mathrm{dd}}=28 \mathrm{~V}$
Quiescent drain current $I_{d q}=50 \mathrm{~mA}$
Heatsink temperature $\mathrm{T}_{\text {hs }}=25^{\circ} \mathrm{C}$.
Measurements were done at 10 frequencies within the band and 2 frequencies outside the band.
The BLF244 samples used, are matched on their threshold voltage V. The measured parameters of these transistors which can be relevant for balanced operation are given in Table 3.

Table 3

PARAMETER	CONDITIONS	UNIT	T1	T2
V_{T}	$\mathrm{V}_{\mathrm{ds}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{d}}=5 \mathrm{~mA}$	V	3.14	3.14
G_{Fs}	$\mathrm{V}_{\mathrm{ds}}=10 \mathrm{~V} ; \mathrm{I}_{\mathrm{d}}=750 \mathrm{~mA}$	mS	794	838
$\mathrm{C}_{\mathrm{rss}}$	$\mathrm{V}_{\mathrm{ds}}=28 \mathrm{~V} ; \mathrm{V}_{\mathrm{gs}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$	pF	4.46	4.21

The largest asymmetry observed in the drain current was $\pm 3 \%$ at $f=25 \mathrm{MHz}$ and $\mathrm{P}_{0}=30 \mathrm{~W}$.

6.2 Performance at constant output power

Measurements of the performance at a constant output power of 30 W were carried out at two heatsink temperatures, viz. $\mathrm{T}_{\mathrm{h}}=25$ and $70^{\circ} \mathrm{C}$.

The results obtained are:
Powergain $=15.7 \pm 0.7 \mathrm{~dB}$, see Fig. 17
Drain eff. $=60.6 \pm 3.3 \%$, see Fig. 18
Input return loss <-14 dB (VSWR <1.50), see Fig. 19
Second harmonic level $<-40 \mathrm{~dB}$, see Fig. 20
Third harmonic level <-14 dB, see Fig.21.
At $T_{h}=70^{\circ} \mathrm{C}$ the powergain decreased with approx. 1.2 dB see Fig. 17 .
The other parameters showed no appreciable change.

6.3 Performance at constant input power

Performance of this amplifier was also measured at a constant input power of 700 mW . The result obtained are:
Output power $=27.9 \pm 2.3 \mathrm{~W}$, see Fig. 22
Power gain $=16.0 \pm 0.3 \mathrm{~dB}$, see Fig. 23
Drain eff. $=59.0 \pm 4.5 \%$, see Fig. 24 .

6.4 Performance at constant frequency

Figures 25, 26 and 27 show the following curves measured at 5 different frequencies:

$$
\begin{aligned}
& P_{o}=f\left(P_{i}\right) \\
& G_{p}=f\left(P_{o}\right) \\
& \text { Eff. }=f\left(P_{o}\right) .
\end{aligned}
$$

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Application Note NCO8701

7 CONCLUSIONS

Using two BLF244 MOS transistors (matched on threshold voltage) in a push-pull configuration approx. 16 dB power gain and 60% drain efficiency have been obtained for an output power of 30 W , when operated with a quiescent drain current of 50 mA per transistor at $\mathrm{V}_{\mathrm{ds}}=28 \mathrm{~V}$. The largest asymmetry observed in the drain current was $\pm 3 \%$ at $P_{\text {out }}=30 \mathrm{~W}$ and $\mathrm{f}=25 \mathrm{MHz}$. The input VSWR was below 1.5.
Throughout the band the second harmonic level was lower than -40 dB with reference to the fundamental. At a heatsink temperature of $70^{\circ} \mathrm{C}$ the powergain decreased with approximately 1 dB while the other parameters showed no appreciable change.

8 REFERENCES

1. H. Nielinger: 'Optimale dimensionerung von Breitbandanpassungsnetwerken'; N.T.Z. 1968, Heft 2, p.p. 88-91
2. A.H. Hilbers: 'Design of HF wideband power transformers'; Philips Applications information ECO6907, 1970
3. Philips Data Handbook: 'MA01 on Magnetic Products: Soft Ferrites. For power handling of 4C6 material. See also earlier version of this handbook.
4. A.H. Hilbers; 'Power transformers for the frequency range of $30-80 \mathrm{MHz}$ '; Laboratory report ECO7703, 1977.

Fig. 12 Circuit diagram of the wideband push-pull amplifier.

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Application Note NCO8701

Table 4 List of components

Capacitors	
C1 $=30 \mathrm{pF}$	multilayer ceramic chip capacitor; note 1
$\mathrm{C} 2=\mathrm{C} 3=\mathrm{C} 6=\mathrm{C} 7=\mathrm{C} 8=\mathrm{C} 9=10 \mathrm{nF}$	multilayer ceramic capacitor (cat.nr. 2222852 47103)
$\mathrm{C} 4=2 \times 10 \mathrm{nF}$	multilayer ceramic chip capacitor (cat.nr. 2222852 47103)
$\mathrm{C} 5=24 \mathrm{pF}$	multilayer ceramic chip capacitor; note 1
$\mathrm{C} 10=\mathrm{C} 11=100 \mathrm{nF}$	multilayer ceramic chip capacitor (cat.nr. 2222852 47104)
C12 $=22 \mathrm{pF}$	multilayer ceramic chip capacitor; note 1
$\mathrm{C} 13=3.6 \mathrm{pF}$	multilayer ceramic chip capacitor; note 1
Inductors	
$\mathrm{L} 1=\mathrm{L} 2=27 \mathrm{nH}$	3 turns enamelled Cu-wire (0.8 mm); int.dia. $=4.0 \mathrm{~mm}$; length $=6.1 \mathrm{~mm}$; leads $2 \times 3 \mathrm{~mm}$
$\mathrm{L} 3=\mathrm{L} 4=48 \mathrm{nH}$	4 turns enamelled Cu-wire (0.8 mm); int.dia $=4.0 \mathrm{~mm}$; length 6.2 mm ; leads $2 \times 1 \mathrm{~mm}$
$\mathrm{L} 5=\mathrm{L} 8=30 \mathrm{nH}$	3 turns enamelled Cu-wire (0.8 mm); int.dia. $=4.0 \mathrm{~mm}$; length $=4.8 \mathrm{~mm}$; leads $2 \times 2 \mathrm{~mm}$
L6 = L7 = Ferroxcube RF choke	grade 3B (cat.nr. 4312020 36640)
Resistors	
$\mathrm{R} 1=1 \mathrm{k} \Omega$	metal film resistor; 0.4 W
$\mathrm{R} 2=\mathrm{R} 3=23.7 \Omega$	metal film resistor; 0.4 W
$\mathrm{R} 4=12.1 \Omega$	metal film resistor; 0.4 W
Transformers	
T1- $\frac{1}{1}$ Balun	10 turns of twisted pair of 0.5 mm enamelled Cu-wire ($2^{3 / 4}$ twists per cm) wound on a toroidal core grade 4C6, dimensions $(9 \times 6 \times 3) \mathrm{mm}$ (cat.nr. 4322020 97191)
T2- Drain choke	5 turns of twisted pair of enamelled Cu-wire (4.5 twists per cm) wound on a ferroxcube rod grade 4B1, dimensions $(5 \times 30) \mathrm{mm}$
T3- $\frac{1}{1}$ Balun	6 turns of twisted pair of 0.6 mm enamelled Cu-wire (2 twists per cm) wound on a toroidal core grade 4C6, dimensions $(23 \times 14 \times 7) \mathrm{mm}$ (cat.nr. 4322020 97171)
Printed circuit board	double sided Cu-clad epoxy fibreglass laminate (ε (= 4.5), thickness 1/16"

Note

1. American Technical Ceramics capacitor type 100B.

A wideband 30 W push-pull amplifier with two MOS
Application Note transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$

Fig. 13 Printed circuit board and component lay-out.

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (VD $=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$
 Application Note NCO8701

Fig. 14 Real part of input impedance.

Fig. 16 Powergain of transistor.

Fig. 17 Powergain versus frequency.

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$
 Application Note NCO8701

Fig. 18 Drain efficiency versus frequency.

Fig. 20 2nd harmonic level versus frequency.

Fig. 21 3rd harmonic level versus frequency.

A wideband 30 W push-pull amplifier with two MOS transistors BLF244 (V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$); range $25-110 \mathrm{MHz}$
 Application Note NCO8701

Fig. 22 Output power versus frequency.

Fig. 24 Drain efficiency versus frequency.

Fig. 25 Output power versus input power.

A wideband 30 W push－pull amplifier with two MOS transistors BLF244（V $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}$ ）；range $25-110 \mathrm{MHz}$
 Application Note NCO8701

＿f＝ 25 MHz
－－－－－f＝ 45 MHz
－．－ー．－－$\quad \mathrm{f}=65 \mathrm{MHz}$
ー－ー－ー－－$f=85 \mathrm{MHz}$
———— $f=110 \mathrm{MHz}$
Fig． 26 Powergain versus output power．

Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +3592689 211, Fax. +3592689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +3589615800, Fax. +358961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11470 5911, Fax. +27 114705494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1488 2686, Fax. +41 14883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +38044264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands

SUNSTAR 商斯达实业集团是集研发，生产，工程，销售，代理经销 ，技术咨询，信息服务等为一体的高科技企业，是专业高科技电子产品生产厂家，是具有 10 多年历史的专业电子元器件供应商，是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一，是一家专业代理和分銷世界各大品牌 IC 芯片和電子元器件的连锁经营綜合性国际公司，专业经营进口，国产名厂名牌电子元件，型号，种类齐全。在香港，北京，深圳，上海，西安，成都等全国主要电子市场设有直属分公司和产品展示展销窗口门市部专卖店及代理分销商，已在全国范围内建成强大统一的供货和代理分销网络。 我们专业代理经销，开发生产电子元器件，集成电路，传感器，微波光电元器件，工控机／DOC／DOM 电子盘，专用电路，单片机开发，MCU／DSP／ARM／FPGA 软件硬件，二极管，三极管，模块等，是您可靠的一站式现货配套供应商，方案提供商，部件功能模块开发配套商。商斯达实业公司拥有庞大的资料库，有数位毕业于著名高校——有中国电子工业摇篮之称的西安电子科技大学（西军电）并长期从事国防尖端科技研究的高级工程师为您精挑细选，量身订做各种高科技电子元器件，并解决各种技术问题。

微波光电部专业代理经销高频，微波，光纤，光电元器件，组件，部件，模块，整机；电磁兼容元器件，材料，设备；微波 CAD，EDA 软件，开发测试仿真工具；微波，光纤仪器仪表。欢迎国外高科技微波，光纤厂商将优秀产品介绍到中国，共同开拓市场。长期大量现货专业批发高频，微波，卫星，光纤，电视，CATV 器件：晶振，VC0，连接器，PIN 开关，变容二极管，开关二极管，低噪晶体管，功率电阻及电容，放大器，功率管，MMIC，混频器，耦合器，功分器，振荡器，合成器，衰减器，滤波器，隔离器，环行器，移相器，调制解调器；光电子元器件和组件：红外发射管，红外接收管，光电开关，光敏管，发光二极管和发光二极管组件，半导体激光二极管和激光器组件，光电探测器和光接收组件，光发射接收模块，光纤激光器和光放大器，光调制器，光开关，DWDM 用光发射和接收器件，用户接入系统光光收发器件与模块，光纤连接器，光纤跳线／尾纤，光衰减器，光纤适 配器，光隔离器，光耦合器，光环行器，光复用器／转换器；无线收发芯片和模组，蓝牙芯片和模组。
更多产品请看本公司产品专用销售网站：
商斯达中国传感器科技信息网：http：／／www．sensor－ic．com／
商斯达工控安防网：http：／／www．pc－ps．net／
商斯达电子元器件网：http：／／www．sunstare．com／
商斯达微波光电产品网：HTTP：／／www．rfoe．net／
商斯达消费电子产品网：／／www．icasic．com／
商斯达实业科技产品网：／／www．sunstars．cn／微波元器件销售热线：
地址：深圳市福田区福华路福庆街鸿图大厦 1602 室
电话：0755－82884100 833970338339682283398585
传真：0755－83376182（0）13823648918 MSN：SUNS8888＠hotmail．com
邮编：518033 E－mail：szss20＠163．com QQ： 195847376
深圳赛格展销部：深圳华强北路赛格电子市场2583号 电话：0755－83665529 25059422
技术支持：0755－83394033 13501568376
欢迎索取免费详细资料，设计指南和光盘；产品凡多，未能尽录，欢迎来电查询。
北京分公司：北京海淀区知春路 132 号中发电子大厦 3097 号
TEL：010－81159046 8261502013501189838 FAX：010－62543996
上海分公司：上海市北京东路 668 号上海賽格电子市场 D125号
TEL：021－28311762 5670303713701955389 FAX：021－56703037
西安分公司：西安高新开发区 20 所（中国电子科技集团导航技术研究所）
西安劳动南路 88 号电子商城二楼 D23号
TEL：029－81022619 13072977981 FAX：029－88789382

